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ABSTRACT: The reliability of free energy simulations (FES) is limited by two factors: (a) the need for correct sampling and
(b) the accuracy of the computational method employed. Classical methods (e.g., force fields) are typically used for FES and
present a myriad of challenges, with parametrization being a principle one. On the other hand, parameter-free quantum
mechanical (QM) methods tend to be too computationally expensive for adequate sampling. One widely used approach is a
combination of methods, where the free energy difference between the two end states is computed by, e.g., molecular mechanics
(MM), and the end states are corrected by more accurate methods, such as QM or hybrid QM/MM techniques. Here we report
two new approaches that significantly improve the aforementioned scheme; with a focus on how to compute corrections
between, e.g., the MM and the more accurate QM calculations. First, a molecular dynamics trajectory that properly samples
relevant conformational degrees of freedom is generated. Next, potential energies of each trajectory frame are generated with a
QM or QM/MM Hamiltonian. Free energy differences are then calculated based on the QM or QM/MM energies using either a
non-Boltzmann Bennett approach (QM-NBB) or non-Boltzmann free energy perturbation (NB-FEP). Both approaches are
applied to calculate relative and absolute solvation free energies in explicit and implicit solvent environments. Solvation free
energy differences (relative and absolute) between ethane and methanol in explicit solvent are used as the initial test case for
QM-NBB. Next, implicit solvent methods are employed in conjunction with both QM-NBB and NB-FEP to compute absolute
solvation free energies for 21 compounds. These compounds range from small molecules such as ethane and methanol to fairly
large, flexible solutes, such as triacetyl glycerol. Several technical aspects were investigated. Ultimately some best practices are
suggested for improving methods that seek to connect MM to QM (or QM/MM) levels of theory in FES.

1. INTRODUCTION
Free energy simulations (FES) have become an indispensable
tool in biophysics. Application of FES has become amazingly
broad and includes free energy calculations of ligand bind-
ing,1−6 solvation,7,8 protein mutation,9,10 pKa,

11−15 redox
potentials,16,17 and more. Although the application of FES
has become more routine, there are still two fundamental
prerequisites: the accurate description of inter- and intramolecular
interactions, and adequate sampling of all relevant conformational
degrees of f reedom.18,19 For example, the recent SAMPL blind
prediction competitions20−28 have highlighted the need for

proper treatment of polarization, high quality charges, and
bonded parameters, as well as the necessity of extensive
conformational sampling.
One logical approach to improving the treatment of inter-

and intramolecular interactions in FES is to move beyond
molecular mechanical (MM) methods; in fact, the application
of quantum mechanical (QM) and QM/MM techniques in
FES is now the source of intense interest.29−42 However, the
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requirement for adequate conformational sampling presents a
major challenge. Typically, free energy differences between two
states are computed via a series of molecular dynamics (MD)
or Monte Carlo (MC) simulations, each consisting of typically
105−107 energy and force calculations. While this level of
computational effort is routine in MM simulations, it quickly
becomes prohibitive if ab initio or density functional theory
(DFT) is required. Semiempirical QM (SQM) or empirical
valence bond (EVB) approaches can reduce the computational
effort;43−50 however, these come with well-known accuracy
limitations.51−54 [For the remainder of this manuscript, we will
use the following abbreviations: QM/MM refers to ab initio or
DFT (e.g., HF, DFT, MP2, etc.) based Hamiltonians coupled
to MM; SQM/MM indicates semiempirical QM (e.g., SCC-
DFTB, AM1, PM3, etc.) based Hamiltonians coupled to MM;
and (S)QM/MM denotes the use of either semiempirical or
EVB methods. For convenience, we subsume all of the these
approaches as “QM” since the FES methods described herein
are independent of Hamiltonian.] Highlighting these weak-
nesses is an active resurgence in the development of improved
SQM potentials,51,55−57 but higher level ab initio/DFT
methods remain essential where accurate results are desired
and/or unique chemical environments encountered.58−61

So-called indirect schemes for FES employing QM
Hamiltonians remove some of the contradictory requirements
of accuracy and sufficient sampling. This technique was largely
pioneered by Gao and co-workers and Warshel and co-
workers,43−47 with generalizations and extensions made by
numerous others.48,62−70 The basic premise behind indirect
FES is the use of a thermodynamic cycle to calculate the free
energy between two states, 0 and 1, at a high level of theory in
three steps: i.e.,

Δ → = −Δ →

+ Δ → + Δ →

A A

A A

(0 1 ) (0 0 )

(0 1 ) (1 1 )

high high low high

low low low high (1)

Here, high denotes the use of an accurate method, typically
QM or QM/MM, which in general is too expensive for large

scale MD simulations. The label low, on the other hand,
denotes a level of theory at which MD simulations can be
carried out easily; this could be plain MM or SQM/MM. Thus,
expensive QM calculations are only required in steps (i) and
(iii) of the thermodynamic cycle, whereas the transformation
(ii) 0low → 1low is carried out at, e.g., the MM level. Aside from
lowering the computational cost, this makes it possible to use
specialized techniques, such as soft-core potentials, to avoid the
so-called van der Waals end point problem.71,72

Indirect approaches reduce the computational complexity of
QM FES significantly since in practice no QM MD simulations
are carried out at all. The free energy differences ΔA(0low →
0high) and ΔA(1low → 1high) are typically computed by free
energy perturbation (FEP, also known as Thermodynamic

Perturbation or Zwanzig’s exponential formula),73 using only a
subset of configurations at the MM end states, for which the
QM energy is computed. However, if the potential energy
surfaces of the MM and the QM description of states 0 and 1
are significantly different, configurations sampled by MM will
not be representative of those at QM. In such situations FEP
does not converge and the free energy differences for steps (i)
and (iii) above will be inaccurate and “noisy”. Yang and co-
workers,74 as well as Rod and Ryde,64,65 circumvented the
problem by “freezing” the QM region [QM region denotes
those atoms which at the high level of theory are computed by
ab initio or DFT] during the pure MM calculations; these fixed
atoms interact with the MM atoms through assigned
electrostatic potential (ESP) derived point charges. The dual-
level strategy for QM/MM calculations by Moliner, Tuñoń, et
al. provides an alternative to frozen QM regions; however,
while the method was used in computations of kinetic isotope
effects, it has not been used in “traditional” QM/MM free
energy simulations.75,76

Warshel and co-workers have criticized the use of frozen QM
regions for quite some time;77,78 clearly, any entropic
contributions from that region will not be accounted for. To
overcome the large differences between the MM and QM
potential energy surfaces, Warshel and co-workers replace the
MM description with an EVB one that is specifically
parametrized to reproduce the QM target states.42,77 Recently,
Heimdal and Ryde also pointed out the limitations of frozen
QM regions.79 However, despite using either specially para-
metrized force fields or a SQM/MM description of the
quantum region, the FEP steps connecting the low and high
levels of theory (i, iii) converged poorly, or at least very slowly,
when a flexible QM region was employed. Recent work by
Essex and co-workers avoided convergence problems of FEP by
inserting differences in interaction energy rather than total
energy differences into the FEP formula.80,81

In classical FES it has been known for quite some time82−85

that FEP is much less efficient than Bennett’s acceptance ratio
(BAR) method.86 Specifically, BAR can often be used to
compute a free energy difference in a single step where other
methods, such as FEP or thermodynamic integration (TI),87

require intermediate steps.88 FEP and BAR are examples of
what has been referred to as one- and two-sided methods to
compute free energy differences, respectively.89 Two-sided
methods require simulations at both end points; i.e., in the
present context simulations with both the MM and the QM
Hamiltonian. Since calculations with the latter are prohibitively
expensive, BAR so far seems not to be used in QM FES. In
some cases, Warshel and co-workers employed another two-
sided method, linear response approximation.41,42,90

It follows from the overview just given that an ideal
(indirect) QM FES employs a flexible QM region and
computes the free energy differences for steps (i) and (iii)
above accurately and precisely by employing a BAR-like
approach. One possible way to avoid the costs of directly
simulating the QM end states, as required for BAR, is to
generate them “virtually” from MM or SQM/MM simulations.
Recently, it was demonstrated how to conduct such calculations
by regarding low level simulations as a special case of high level
simulations in the presence of an unusual biasing potential. By
accounting for those biasing potentials, it is possible to obtain
free energy differences between the virtual high level end states;
an approach referred to as Non-Boltzmann-Bennett (NBB).91

In ref 91, the utility of this approach was illustrated for two

Scheme 1. Typical Thermodynamic Cycle Used in Indirect
Free Energy Calculations

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct401118k | J. Chem. Theory Comput. 2014, 10, 1406−14191407



classical implicit solvent models with significantly different
computational costs, saving about a factor of 10 in computer
time compared to using the more accurate, but expensive,
model throughout. Herein, we describe how NBB can be
combined with an indirect QM FES approach without actually
having to carry out expensive QM simulations. As in standard
indirect schemes, it is enough to recompute energies of selected
configurations sampled with a low level of theory, e.g., MM, at
the desired QM level. Since this is a postprocessing step and
individual configurations are independent of each other, these
calculations are embarrassingly parallel.
In the current work, technical details of this new approach

(i.e., QM-NBB) are presented with particular emphasis on
methodological and technical aspects of FES methods that
connect MM and QM levels of theory. In addition to utilizing
NBB in indirect QM FES schemes, we also extend FEP to
incorporate unusual biasing potentials; this results in a
formulation of FEP better suited to connecting two levels of
theory (NB-FEP). QM-NBB is then applied to a number of test
cases in explicit and implicit solvent with both absolute and
relative solvation free energy differences computed. The solutes
studied range from frequently used model compounds, such as
ethane and methanol, to flexible molecules of up to 30 atoms,
e.g., bis-2-chloroethylether and triacetyl glycerol. Further, QM-
NBB is compared critically to both the standard FEP based
indirect scheme and the newly developed NB-FEP approach. A
first large-scale application of the methodology described here
to the blind hydration free energy test set of the SAMPL4
competition is reported elsewhere, leading to very good results
(König et al., Predicting hydration f ree energies with a hybrid
QM/MM approach: An evaluation of implicit and explicit
solvation models in SAMPL4, submitted to J. Comput. Aided.
Mol. Des.).

2. THEORY
2.1. Standard Methods To Compute Free Energy

Differences. Given two states 0 and 1, the free energy
difference between them can be computed according to

Δ → = − ⟨ − − ⟩A k T U U k T(0 1) ln exp[ ( )/ ]B 1 0 B 0 (2)

Here kB is Boltzmann’s constant, T the temperature, and U0
and U1 are the potential energies of coordinates evaluated for
states 0 and 1, respectively. The angular brackets ⟨⟩0 denote an
ensemble average obtained for state 0, i.e., averaging over
frames in a trajectory generated in a simulation corresponding
to state 0. Equation 2 forms the basis of FEP or thermodynamic
perturbation and is commonly attributed to Zwanzig,92

although the method can be traced back far earlier.89,93

Over the past decade, an extension to FEP suggested
originally by Bennett86 and, hence, usually referred to as
Bennett’s acceptance ratio method (BAR) has become
increasingly popular.82−85,89,94 In contrast to FEP, one needs
simulations at both states to compute ΔA(0 → 1).

Δ → =
⟨ − + ⟩
⟨ − − ⟩

+
⎛
⎝⎜

⎞
⎠⎟A k T

f U U C
f U U C

C(0 1) ln
( )
( )B

0 1 1

1 0 0 (3)

where f(x) denotes the Fermi function f(x) = (1 + exp(x/
(kBT)))

−1 and

=C k T
Q N

Q N
lnB

0 1

1 0 (4)

Here, Q0 and Q1 are the canonical partition functions of the
two states and N0 and N1 are the number of data points used to
compute the ensemble averages for states 0 and 1, respectively.
Equation 3 is iterated until the condition

⟨ − + ⟩ = ⟨ − − ⟩f U U C f U U C( ) ( )0 1 1 1 0 0 (5)

is fulfilled. With C determined in this manner, one immediately
obtains

Δ → = − +A k T
N
N

C(0 1) lnB
1

0 (6)

As already mentioned in the Introduction, BAR has been
shown to be much more efficient as compared to FEP for
classical FES; i.e., fewer intermediate states are needed to
compute a free energy difference of interest.82−85,89 The need
for simulations of both end states, however, has so far
prevented the use of BAR to connect MM and QM calculations
as MD simulations of sufficient length at the QM end state are
too expensive. In classical FES, there is a third, widely used
method, thermodynamic integration (TI);87 however, in
connection with QM it is less frequently used and thus not a
focus of the current work.33

2.2. Unusual Biasing Potentials. Recently, it was shown
that results obtained with a relatively cheap (i.e., low
computational effort) potential energy function, Ulow, can be
viewed as higher quality results (i.e., more computationally
demanding), Uhigh, in the presence of a biasing potential; Vb =
Ulow − Uhigh.91 Classical simulations are the most common basis
for sampling conformational space, hence Ulow = UMM, whereas
an improved target for FES results would be QM potentials;
Uhigh = UQM. Thus, in the context of QM FES we consider an
MM simulation in the presence of the following biasing
potential:

= −V U Ub MM QM (7)

Torrie and Valleau showed how to obtain an unbiased
ensemble average ⟨X⟩ of some property X from simulations of a
biased state:95

β
β

⟨ ⟩ =
⟨ ⟩
⟨ ⟩

X
X V

V
exp( )

exp( )

b
b

b
b (8)

where β has the usual meaning of 1/kBT and we use the
notation ⟨⟩b to indicate that the ensemble averages on the right-
hand side of eq 8 are evaluated from simulations of the biased
state.

2.3. “Non-Boltzmann” Free Energy Methods. Non-
Boltzmann Bennett. Applying eq 8 to eq 3 (i.e., BAR) leads to
what we call Non-Boltzmann Bennett (NBB).91 In the context
of classical biasing potentials (e.g., accelerated molecular
dynamics), this method has also been referred to as weighted
BAR.96 Reference 91 contains several successful examples of
free energy simulations based on biased states (i.e., U = Ubiased).
In the current work, the computationally cheap MM potential
energy function (Ulow = UMM) is used for the exploration of
phase space with the QM energy being the ultimate target
(Uhigh = UQM). Thus, regular classical MD simulations are
followed by an analysis of the trajectories at the more exact but
computationally demanding QM level of theory. This leads to
the equivalent of eq 3 for NBB:
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β

β

β

β
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⟨ ⟩
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⎝
⎜⎜

⎞
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(0 1)
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( ) exp( )

( ) exp( )

exp( )

exp( )B
0 1 1

b
1,b

1 0 0
b

0,b

0
b

0,b

1
b

1,b (9)

The notation follows that of eq 3; however, the additional
subscript b indicates that the ensemble averages were obtained
in the presence of an unusual biasing potential (eq 7). To use
eq 9 it is necessary to evaluate three quantities for each frame of
the trajectories: U0, U1, and V0

b for state 0 and U0, U1, and V1
b for

state 1. Note that U0 and U1 denote the energies without the
biasing potential, i.e., both the MM and QM energies of
interest.
The workflow for NBB is illustrated in Figure 1. In the first

step, an MD simulation is conducted for each of the end states,

saving coordinates to trajectories at regular intervals. For each
frame of the trajectory, state i, the potential energies are
evaluated using both MM and QM. The difference between
these energies is the biasing potential Vi

b (i = 0,1) and is
required for NBB. Calculating Vb at every step of the simulation
would obviously be cost prohibitive; however, since typically
only every hundredth or thousandth MD step is saved, the
expensive QM calculations are needed for only a small fraction
of the total simulation steps; this greatly reduces the
computational cost. In fact, ideally the saving frequency should
be long enough to ensure that consecutive data points are
statistically independent. In the remainder of this paper, we
refer to the use of NBB to connect MM and QM energy
surfaces as “QM-NBB” or as reweighting from MM to QM.
Non-Boltzmann FEP. In this study we also tested the utility

of reweighting from MM to QM based on FEP, which in
analogy to NBB we refer to as NB-FEP. Applying eq 8 to eq 2
gives

β β

β

Δ → = −

⟨ − − + ⟩

⟨ + ⟩

A k T

U U V

V

(0 1)

ln
exp[ ( )] exp( )

exp( )
b

b

B

1 0 0
b

0,

0
b

0,

(10)

As in the case for QM-NBB, U0 and U1 are the re-evaluated
energies without the biasing potentials; i.e., in the present case
the QM energies. Note that the idea of carrying out, e.g., FEP
based on simulations in the presence of a biasing potential is
hardly new. It was first described by Straatsma and McCammon
in 199497 and has been gradually rediscovered recently.91,98

However, in most cases the purpose of the biasing potential was
to overcome barriers; the only applications of unusual biasing
potentials as employed in this work we are aware of are ref 91
and, to some extent, ref 3.

2.4. Practical Aspects. Implicit Solvent QM Calculations.
Calculating solvation free energies using an implicit solvent
(IS) model is a special case. The free energy difference between
the solute in the gas phase and IS can be computed in one step
(i.e., no intermediate states), in particular, if BAR is used.88,99

Thus eq 9 can be used directly. States 0 and 1 represent gas
phase and IS, respectively, with separate simulations (e.g., MM
and MM/IS) in addition to re-evaluated QM and QM/IS
energies required for both. This leads to the generic symbols in
eqs 9 and 10 having the following concrete meaning: U0 = UQM,
U1 = UQM/IS, and the biasing potentials are V0

b = UMM − UQM,
V1
b = UMM/IS − UQM/IS. In all IS calculations presented here, all

atoms are treated by either MM or QM (i.e., MM/IS, QM/IS).
Reweighting in Indirect QM FES. In practice, FES usually

require intermediate λ states; i.e., one needs to carry out
simulations at λ = λ0, λ1, ..., λn−1, λn, with λ0 = 0 and λn = 1.
Since the free energy is a state function, one does not have to
reweight every λ-state; it is sufficient to carry out the
reweighting only at the end states. This is the basis of the
indirect approach to QM FES; Scheme 1. The corresponding
indirect QM-NBB scheme can be seen in Figure 2. We outline

the approach for end state 0. For the analogous steps at state 1
replace λ0 by λn−1 and λ1 by λn. The MM simulation at, e.g., λ0 is
considered a QM simulation in the presence of the biasing
potential Vb = UMM − UQM. Together with an MM simulation
at λ1, NBB is used to compute the free energy difference ΔA(λ0,
QM/MM → λ1, MM). This should be contrasted with the
usual FEP based indirect scheme where ΔA(λ0, MM → λ1,
MM) would be computed by some method and combined with
ΔA(λ0, MM → λ0, QM/MM).

Figure 1. Workflow for using non-Boltzmann Bennett in the hybrid
QM/MM free energy simulation approach.

Figure 2. Illustration of the QM-NBB scheme applied to indirect
alchemical FES (i.e., reweighting only the end states). Gray nodes
represent simulated states, and white nodes are virtual states that are
generated through reweighting (thin arrows). Except for the first and
the last free energy step, all free energy calculations are performed with
regular BAR (eq 3); i.e., without reweighting. The first and the last free
energy calculation use NBB to calculate the free energy difference
between a virtual QM state and a simulated MM state.
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3. METHODS
3.1. Calculations in Explicit Solvent. All explicit solvent

simulations were conducted with CHARMM,100,101 using the
CHARMM22102 force field. The QM and QM/MM calcu-
lations were performed with Q-Chem103 based on the Q-
Chem/CHARMM interface.104

Calculation of Alchemical Intermediate States with QM/
MM. Many applications of FES involve alchemical mutations of
one molecule to another; e.g., to compare binding affinities of
two ligands to a particular target or calculate relative solvation
free energy differences. Such alchemical mutations are usually
realized by mixing the potential energy functions (U) of both
end states 0 and 1 as a function of the coupling parameter λ
(e.g., Uλ = (1 − λ)U0 + λU1) to form artificial intermediate
states between the two end states.
In order to evaluate the potential energies U0 and U1, the

coordinates of the atoms of both end states have to be defined.
This can be achieved in two possible ways. The first strategy
involves a single topology setup,105,106 where the bonded and
nonbonded parameters of atoms are changed according to λ
(e.g., in the mutation of ethane to methanol where the C−C
bond length is slowly changed to the C−O bond length). While
this approach is viable in MM, it is more problematic for QM
or QM/MM approaches. The second approach, dual top-
ology,105,106 is illustrated for the mutation of ethane to
methanol in Figure 3. It involves a hybrid molecule that

contains three sets of coordinates: (a) the common environ-
ment (atoms that are the same in both end states, e.g., for
ethane−methanol the first methyl group shown in black); (b)
atoms that exist only in the initial state 0 (e.g., the second
methyl group in ethane, shown in blue); and (c) atoms that
exist only in the final state 1 (e.g., the hydroxyl group in
methanol, shown in red). It is important to ensure that there
are no interactions between groups b and c. This approach is
easy to implement in QM calculations, as the potential energy
evaluations are only performed using coordinates of the pure
end states (i.e., to produce the initial state 0, groups a and b are
used, while for the final state 1 groups a and c are required).
Ethane−Methanol. Solvation free energy differences

between ethane and methanol were calculated using the
standard thermodynamic cycle.107 The dual topology hybrid
scheme was implemented using the MSCALE module108 of
CHARMM and follows the recommendations by Boresch and
Karplus.106,109 For the simulations, each energy evaluation was
divided into three tasks: calculate energetic contributions of all
(a) bond, angle, and Urey−Bradley terms from the full hybrid
molecule, Ucommonbonds

MM (this was done in the “main” MSCALE
process to maintain the connectivity of the hybrid molecule);
(b) dihedral angle and nonbonded contributions corresponding
to state 0, U0

MM (i.e., all atoms that are not part of ethane or the

common environment were deleted); and (c) dihedral angle
and nonbonded contributions corresponding to state 1, U1

MM

(i.e., all atoms that are not part of methanol or the common
environment were deleted). The λ states were generated by
mixing those three energy contributions according to Uλ

MM =
Ucommonbonds

MM + (1 − λ)U0
MM + λU1

MM.
To calculate the biasing potential, Vb, individual potential

energies were calculated with Q-Chem and CHARMM based
on input files generated by the Q-Chem/CHARMM inter-
face.104 B3LYP/6-31G* was used to describe the solute in both
gas phase and explicit solvent QM/MM calculations (solvent
was treated classically with the TIP3P water model). Each
frame of the trajectory was calculated as follows: (a) by
removing all atoms not corresponding to the initial state 0
(ethane) and calculating the potential energy, U0

QM, and (b) by
removing all atoms not corresponding to the final state 1
(methanol) and calculating the potential energy, U1

QM. To
calculate the potential energy of λ states, the two terms were
mixed according to Uλ

QM = (1 − λ)U0
QM + λU1

QM. Of course it is
not necessary to compute the terms that are multiplied with
zero at the corresponding end state.
Unfortunately, at the time those calculations were conducted,

periodic boundary conditions (PBC) and Particle Mesh Ewald
(PME) calculations were not supported by Q-Chem. There-
fore, the approach to calculate Uλ

QM as outlined in the last
paragraph could only be used in the gas phase. Instead, the
explicit solvent QM/MM calculations in Q-Chem used a single
box of water molecules that were centered around the solute for
each frame of the trajectory (since no PBCs were used, we refer
to this energy as Unopbc

QM/MM). To make the calculation of Vb

possible, we also performed MM calculations with CHARMM
in exactly the same setup (i.e., without PBC and water
molecules centered around the solute, using a cutoff of 999 Å;
Unopbc

MM ). Thus, Vb = Unopbc
MM − Unopbc

QM/MM for the solvent
trajectories. To include the effects from periodic boundary
conditions in the FES, each U in the QM-NBB calculations
consisted of UQM/MM = Uwithpbc

MM − Vb, where Uwithpbc
MM is the

potential energy of the hybrid molecule as used in the
simulation (i.e., with PME using CHARMM). This assumes
that long-range polarization effects are minimal. To generate
potential energies for each λ state, UQM/MM was evaluated once
for the initial state 0 (U0

QM/MM) and once for the final state 1
(U1

QM/MM), leading to Uλ
QM/MM = (1 − λ)U0

QM/MM + λU1
QM/MM

for simulations in solution. Correspondingly, the biasing
potential for each lambda state Vλ

b is given by Vλ
b = (1 − λ)

Unopbc0
MM + λUnopbc1

MM − (1 − λ)Unopbc0
QM/MM − λUnopbc1

QM/MM, where the
indices 0 and 1 indicate which end state is used.
Gas phase simulations were conducted with Langevin

dynamics, using a friction coefficient of 5 ps−1 on all atoms
and random forces according to a target temperature of 300 K.
In solution, we used 862 water molecules and an octahedral box
that was cut from a cube with a side length of 32.168 Å. The
temperature was maintained at about 300 K by a Nose-́Hoover
thermostat.110 Lennard-Jones interactions were switched off
between 10 and 12 Å, while electrostatic interactions were
computed with the PME method.111 Three different time steps
were evaluated: 0.5, 1, and 2 fs. For the last two time steps (1
and 2 fs), we also compared simulations with and without
SHAKE on all hydrogen atoms. In the gas phase, the cutoff
radius was set to 998 Å.
Free energy differences were calculated based on simulations

of 5 ns in gas phase and 1 ns in solution. Trajectories were
written every 100 steps in the gas phase and every 20 steps in

Figure 3. Dual topology setup of a mutation from ethane to methanol.
Starting from the hybrid molecule (middle), it is possible to calculate
the potential energy of both end states by ignoring all atoms
corresponding to the other end state. The system is divided into three
groups: The common environment that is present in both end states
(black); atoms that only exist in the ethane initial state (blue); and
atoms that only exist in the methanol final state (red). The last two
groups do not interact with each other.
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solution. For the free energy calculations, 5 λ points were
employed in the gas phase (0.00, 0.25, 0.50, 0.75, and 1.00) and
11 in solution (0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0).
The standard deviations of the free energy results were
determined by repeating each simulation four times, starting
with different initial random velocities.
Absolute Solvation Free Energies. The classical absolute

solvation free energies of ethane and methanol were calculated
by turning off all nonbonded interactions of the solute in both
gas phase and solution. Since turning off both inter- and
intramolecular interactions at the QM level is nontrivial, the
indirect FES approach was employed. The alchemical mutation
was done in two steps: first, all charges of the solute were set to
zero using 6 λ states in gas phase (λ = 0.00, 0.05, 0.15, 0.40,
0.80, and 1.00) and 12 in solution (λ = 0.00, 0.05, 0.10, 0.20, ...,
0.90, and 1.00). QM/MM potential energy calculations were
carried out only at λ = 0.00 and λ = 0.05 of the uncharging step.
In the second step, all Lennard-Jones interactions of the solute
were set to zero, using 7 λ states in gas phase (λ = 0.00,0.15,
0.35, 0.65, 0.80, 0.90, and 1.00) and 13 in solution (λ = 0.00,
0.05, 0.10, 0.20, ..., 0.90, 0.95, and 1.00). Soft core potentials, as
implemented in the PERT module of CHARMM, were
employed to avoid the end point problem. Free energy
differences were calculated based on simulations of 50 ns in gas
phase and 0.5 ns in solution with coordinates saved every 1000
steps and 20 steps, respectively. Simulations were repeated in
triplicate with different random seeds to compute standard
deviations.
Gas phase simulations were conducted with Langevin

dynamics, using a friction coefficient of 5 ps−1 on all atoms
and random forces according to a target temperature of 300 K.
In solution, we used 1492 water molecules and an octahedral
box that was cut from a cube with a side length of 38.604 Å.
The temperature was maintained at about 300 K by a Nose-́
Hoover thermostat. Lennard-Jones interactions were switched
off between 10 and 12 Å, while electrostatic interactions were
computed with PME. Both molecules were equilibrated for 0.1
ns using constant pressure and, prior to production, each λ
point was further equilibrated for 0.1 ns using constant volume.
3.2. Calculations in Implicit Solvent (IS). The reweight-

ing formalism described in Sections 2.2 and 2.4 can be directly
applied to solvation free energy calculations employing IS
models. Analogous to previous work,91 we carry out classical
gas phase and GBMV112 IS simulations. Subsequently, the
solvation free energy differences were reweighted via NBB to
approximate results obtained using DFT (e.g., M06-2X,113

B3LYP114,115) and QM/IS models (e.g., SMD,116,117

SM8,103,118 SM12103,119). To demonstrate the applicability of
QM-NBB, we chose model compounds from two groups. First,
a set of amino acid side chain analogues that are neutral at pH =
7 were chosen; these have been established as a gauge for the
accuracy and efficiency of free energy simulations.7,120,121

Second, in a study combining BAR with implicit solvent models
Mobley and co-workers pointed out a number of compounds
where contributions from solute entropy were expected to be
significant;99 this list included methyl formate, 2-methoxy
phenol, bis-2-chloroethylether, 1-octanol, phenyl trifluoroethyl
ether, and triacetyl glycerol, which we, therefore, also include in
our set. The MM simulations on which the reweighting was
based employed the CHARMM36 generalized (CGenFF) and
protein force fields.122,123

Static QM/IS Calculations. In addition to solvation free
energy differences obtained from MD simulations, we also

computed solvation free energy differences based on single
coordinate frames. The starting geometry of each solute, taken
from the Supporting Information of ref 99, was minimized at
the M06-2X/6-31G* level of theory using GAMESS-
US113−115,117 with and without the SMD IS model.116 ΔAsolv
is the difference between the minimized energy in the gas phase
and in the presence of the SMD model. These data are referred
to as “static” SMD results, labeled just “SMD” in Table 5.

Data Generation. CHARMM version c38b1 was used to
carry out Langevin dynamics simulations of the model
compounds in the gas phase and in GBMV IS. A friction
coefficient of 5 ps−1 was applied to all atoms. All interactions
were included in both gas phase and GBMV simulations; i.e.,
there was no truncation of nonbonded interactions. The time
step in all simulations was 0.5 fs, and the molecules were fully
flexible; no bond-length constraints were used. For each solute,
at least 5000 coordinate sets were saved in the gas phase and in
solution; see the third column in Table 5. The time interval for
saving consecutive coordinates Δt is specified in the fourth
column of Table 5. The total simulation length in gas phase and
implicit solvent, respectively, for a particular compound was,
therefore, the number of coordinate sets times Δt; it ranged
from 100 ns (e.g., propane) to 500 ns (bis-2-chloroethylether,
triacetylglycerol).

Analysis. For each of the coordinates saved, both classical
and QM energies were recomputed (gas phase and IS - GBMV,
SMx (x = D, 8, 12)). Benchmark results for SMx models were
examined and the M06-2X/6-31G* level of theory was
determined appropriate for SMD and SM8 IS models while
B3LYP/6-31G* showed good performance for the SM12
model. All SMD calculations were carried out with GAMESS-
US117 while SM8/SM12 results were generated with Q-
Chem.103 Initially, classical simulation data was used to estimate
the solvation free energy differences (i.e., gas phase→ GBMV);
referred to as “GBMV”. Second, NBB was applied to the
forward and backward energy differences obtained from QM/IS
calculations, treating the differences between MM and QM
energies for the respective reference state as the “biasing”
potential. These results are referred to as “SMD,NBB”,
“SM8,NBB”, etc.
In addition to using QM-NBB, the raw data were also

evaluated by FEP and NB-FEP (SMD only). For these, the
standard thermodynamic cycle of indirect QM FES (Scheme 1)
was used; applied to the calculation of ΔAsolv for a solute X
using an IS model, the scheme shown in Figure 2 simplifies to

⎯ →⎯⎯ ⎯ →⎯⎯

⎯ →⎯⎯ = Δ

Δ Δ

Δ

X X X

X

(QM) (MM) (MM, GBMV)

(QM, SMx) A

A A

A P
solv
FE

1 2

3 trad

(11)

Here, ΔA2 is the classical GBMV result. ΔA1 and ΔA3 were
computed by FEP, perturbing from the end points of the MM
FES to the corresponding QM target states. We refer to results
obtained in this manner as “traditional” FEP (FEPtrad). Next,
based on classical gas phase and GBMV simulations, NB-FEP
(eq 10) was applied to estimate both the “forward” (FW; QM
→ QM/IS) and “backward” (BW; QM/IS → QM) directions,
respectively. Similar to QM-NBB, the difference between MM
and QM energies for the respective reference state was
considered the biasing potential, Vb.

Estimating Error. All free energy differences, regardless of
method, reported in Table 5 are the values obtained from the
full data set. The standard deviations reported were calculated
as follows. Free energy differences for blocks of 1000
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coordinate frames were calculated, and the standard deviation
of these block averages is reported. Given that the coordinate
frames should already be almost statistically independent (Δt ≥
20 fs), this is likely to overestimate the statistical error; yet the
number gives some feeling for the variability of the data. We
also always compared ΔAsolv computed from the full data and
the mean value of the block averages. If the calculations are
converged, the two values should be identical. Any discrep-
ancies between these two numbers indicate that the results are
not (fully) converged.

4. RESULTS AND DISCUSSION
4.1. Calculations in Explicit Solvent. Relative Solvation

Free Energy Difference between Ethane and Methanol.
Many applications of FES involve alchemical mutations of one
molecule to another to predict relative free energies. Further,
many systems of interest are poorly described by current
classical force fields. Therefore, the capability to efficiently and
accurately conduct QM alchemical FES is of critical
importance. Here, we evaluate the performance of the proposed
QM-NBB approach for a simple mutation of ethane to
methanol in water. Calculation of the corresponding solvation
free energy difference (ΔΔAsolv) has become somewhat of a
benchmark for FES.124 A variety of MM force fields yield highly
accurate results within very short simulation lengths. Therefore,
this system is a useful test for computationally expensive QM
free energy methods, as different approaches can be evaluated
within reasonable time.
In Table 1 we compare the results of FES based on MM with

BAR (MM-BAR, left) and the QM-NBB approach (QM-NBB,

middle). The first row gives the free energy difference between
ethane and methanol in the gas phase (ΔAgas), while the second
row represents the corresponding free energy change in
aqueous solution (ΔAH2O). Subtracting ΔAgas from ΔAH2O

leads to the solvation free energy difference, ΔΔAsolv, which
is shown in the last row together with the experimental
reference result (Exp., rightmost column).125 Both MM-BAR
and QM-NBB are in excellent agreement with experiment
(deviations of 0.04 and 0.02 kcal/mol). While this small
difference in accuracy between MM-BAR and QM-NBB is
probably fortuitous, it is still an indicator that QM-NBB FES
can lead to improved accuracy even in cases where the MM
parameters are well developed.
Obviously, the QM data for ΔAgas and ΔAH2O are orders of

magnitude larger than the corresponding MM-BAR results.
This reflects the differences in internal energies between ethane
and methanol (i.e., the energetic costs of creating the atoms in
the respective method). The major contribution to the internal
energy in QM methods arises from the interactions between
core electrons and the nuclei. In particular for systems
consisting of different numbers of atoms, this results in large

differences in internal energies. However, such electron−nuclei
interactions are not present in MM methods, since they do not
contribute to the chemical bond. In other words, the apparent
discrepancies between MM and QM single free energy
differences ΔAgas and ΔAH2O reflect the different reference
states of the methods. It should be pointed out that the single
free energy differences for MM would also be very different if
another force field had been used (cf., Figure 1 of ref 88).
Strictly speaking, only the difference between ΔAgas from
ΔAH2O, which leads to ΔΔAsolv in the last row, is of relevance,
as the effect of the arbitrary reference state cancels out. The
only practical ramification of the large values in QM is that the
computer codes for NBB or BAR have to be stable numerically.
This is easily accomplished by factoring out large offsets and/or
using a suitable starting value for C in eqs 3 and 9.
In Table 2, we compare experimental solvation free energies

(ΔΔAsolv
Exp, first column) with QM-NBB results (ΔΔAsolv

QM‑NBB,

second column) and alternative free energy methods to analyze
the same set of QM potential energy data (columns three and
four). All computational results presented in this section are
based on the same set of trajectories. Thus, any errors resulting
from sampling should be consistent and provide a fair test
environment for a relative evaluation of accuracy and precision.
One conceivable alternative to QM-NBB consists of using

BAR with the QM potential energy data (which does not
involve reweighting). This approach assumes that all frames in
the MM trajectory are generated with the correct Boltzmann
probability in regard to the QM energy surface. The results for
ΔΔAsolv

QM‑BAR are shown in the third column of Table 2. As can
be seen, the omission of any kind of reweighting step in the
workflow leads to errors of about 0.8 kcal/mol. This large
deviation illustrates that a correction for the change of
probabilities from the MM to the QM energy surface is
absolutely necessary. Interestingly, the standard deviation of
ΔΔAsolv

QM‑BAR is the same as for pure MM (c.f. last row of MM-
BAR in Table 1). This indicates that QM-NBB suffers from
some loss of precision (σ 0.04 vs 0.02) and that it is not a result
of using QM energies instead of MM but rather an effect of
changing the weights of the frames with NBB.
The second alternative consists of using Zwanzig’s

exponential FEP formula92 instead of NBB; i.e., the traditional
approach according to Scheme 1. In contrast to BAR or NBB
that employ two trajectories per FES, FEP uses only a single
trajectory, which lowers computational costs. The correspond-
ing results are shown in the rightmost column of Table 2

(ΔΔAsolv
FEPtrad). As can be seen, the use of FEP leads to a deviation

of 0.21 kcal/mol from experiment. While this deviation might
be considered acceptable for standard applications of FES, it is
an order of magnitude higher than the QM-NBB deviation
(0.03 kcal/mol). In addition, the standard deviation (0.09 kcal/

Table 1. Free Energy Differences between Ethane and
Methanol (kcal/mol)

MM-BAR QM-NBB Exp.a

ΔAgas +6.02 ± 0.01 −22517.95 ± 0.01 -
ΔAH2O −0.86 ± 0.02 −22524.91 ± 0.04 -

ΔΔAsolv
b −6.89 ± 0.02 −6.96 ± 0.01 −6.93

aExperiment: ref 125. bRelative solvation free energy difference:
ΔΔAsolv = ΔAH2O − ΔAgas.

Table 2. Comparison of Relative Solvation Free Energies for
Ethane and Methanol from Several Approaches Based on the
Same Set of QM Potential Energy Dataa

ΔΔAsolv
Expb ΔΔAsolv

QM‑NBBc ΔΔAsolv
QM‑BARd ΔΔAsolv

FEPtrade

ethane−
methanol

−6.93 −6.96 ± 0.04 −6.09 ± 0.02 −7.14 ± 0.09

aAll energies are reported in kcal/mol. bExperiment: ref 125. cQM-
NBB. dQM-BAR (i.e., no reweighting is employed for QM data).
eZwanzig’s equation (i.e., the traditional FEP approach).
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mol) is more than twice that of QM-NBB (0.04 kcal/mol). The
poor performance of FEP here agrees with recent observations
for MM FES,82−84 where FEP was considerably less accurate
and precise than all other free energy methods.
Influence of Time Step and SHAKE. One main difference

between MM and QM/MM is the treatment of chemical
bonds. Most MM simulations replace the Morse potential of
bonds by a harmonic potential. Far from the equilibrium bond
length, the errors incurred by this approximation can be
considerable. One common way to avoid this problem consists
of using SHAKE to keep bond lengths fixed at their equilibrium
distances, thus avoiding errors from the harmonic approx-
imation. As a side effect, SHAKE also allows the use of larger
time steps in molecular dynamics simulations, leading to
improved sampling and thus higher efficiency. One potential
drawback to this approach, however, comes from the neglect of
anharmonicity, i.e., nonharmonic behavior upon bond stretch-
ing.
Table 3 reports data used to analyze the effects of SHAKE

and simulation time step on the accuracy of QM-NBB FES. In
particular, we compare the performance of simulations that use
0.5 and 1 fs time steps without SHAKE (ΔΔAsolv

0.5fs and ΔΔAsolv
1.0fs)

as well as simulations with 1 and 2 fs time steps with SHAKE
(ΔΔAsolv

1.0fs/SHAKE and ΔΔAsolv
2.0fs/SHAKE). Notably, 2 fs time steps

are only possible when using SHAKE, so the two sets of 1 fs
time step simulations serve as a control to possible errors
resulting from SHAKE.
As illustrated in Table 2, using time steps of 0.5 and 1 fs

without SHAKE (first two columns) has negligible effect on
accuracy. Notably, there is a small difference in terms of
precision (standard deviation of 0.06 vs 0.04 kcal/mol), which
likely can be attributed to sampling since simulation time
doubles when going from 0.5 fs →1.0 fs. Therefore, a 1 fs time
step is recommended in the underlying simulations used in
QM-NBB FES; however, when high frequency bond stretching
is expected to significantly contribute to free energy differences,
a smaller time step may be required.
To determine the effect of SHAKE, two 1 fs time step

simulations are employed (with and without SHAKE, second
and third column, respectively). While the deviation from
experimental results is small for the FES without SHAKE (0.03
kcal/mol), the error becomes significantly higher when using
SHAKE (0.28 kcal/mol). Notably, a similar error is found for
MM-BAR FES of the same trajectories, where the computed
solvation free energy difference is −6.73 kcal/mol (error of 0.20
kcal/mol). However, the accuracy deteriorates further when a
time step of 2 fs with SHAKE is used, yielding an error of
almost 0.5 kcal/mol. This is significantly higher than the error
of the underlying MM-BAR FES, which yields a result of −6.76
kcal/mol (error of 0.17 kcal/mol). This suggests that the
difference in fixed versus flexible X−H bond treatment (X = N,
C, O) can have a significant effect on the free energy when
QM-based FES are employed.
To gain additional insight into errors associated with

SHAKE, both standard harmonic and anharmonic gas phase

QM calculations were carried out on ethane and methanol
using the transition-optimized shifted Hermite (TOSH)
method.126 From Table 2, the energetic penalty of using
SHAKE on the 1 fs simulations is 0.31 kcal/mol. This appears
to be a result of limiting high frequency bond stretching in two
systems where the effects do not cancel; i.e., a larger effect in
methanol due to its O−H bond. Calculations at the B3LYP/6-
31G* level of theory seemingly confirm this. Examining ΔStotal
(= Stotal

Anharm − Stotal
Harm) reveals that 0.21 kcal/mol of entropy is

gained for methanol upon accounting for anharmonicity
whereas 0.09 kcal/mol is lost in ethane. This yields a total
effect of 0.30 kcal/mol, in near perfect agreement with QM-
NBB results (vide supra). This should serve as another point of
caution for approaches that connect MM ↔ QM using either
fixed or restrained QM regions.77−79

Absolute Solvation Free Energies of Ethane and
Methanol. The calculation of absolute solvation free energies
involves the gradual deactivation of solute−solvent interactions
until the solute is in a noninteracting ideal gas state. This
process requires scaling all solute−solvent interactions and
naturally leads to the application of the indirect FES scheme.
Table 4 reports the performance of both MM and QM/MM

based results for ethane and methanol. The MM results are
shown in the first column, while the QM-NBB results are
shown in the second. Again, the difference between MM and
QM/MM is statistically significant. Both methods show good
agreement with experiment; root-mean-square deviations,
RMSD, are about 0.4 and 0.2 kcal/mol, respectively (see last
row of Table 4). Of note, RMSD results indicate that the
previously observed excellent experimental agreement
(ΔΔAsolv, Table 2) was fortuitous and likely a result of
cancellation of errors. Nevertheless, it is also clearly
demonstrated that significant error reduction can be realized
when applying QM-NBB FES.

4.2. Calculations in Implicit Solvent. In Table 5 we
report ΔAsolv for 21 compounds, ranging in size from 5 to 29
atoms; see the second column in the table. Aside from the
experimental values, taken from the Supporting Information of
ref 99, we report computed free energy differences obtained by
BAR based on the MM gas phase and GBMV raw data, by
DFT/SMD based on a single coordinate set, and by QM-NBB
based on the reweighting to DFT/SMD, as well as DFT/SMD
results obtained by FEP and NB-FEP (cf. Methods). Results

Table 3. QM-NBB Solvation Free Energy Results from Simulations with Different Time Steps (δt) and with and without
SHAKEa

ΔΔAsolv
0.5fsb ΔΔAsolv

1.0fsc ΔΔAsolv
1.0fs/SHAKEd ΔΔAsolv

2.0fs/SHAKEe ΔΔAsolv
Expf

ethane−methanol −6.96 ± 0.06 −6.96 ± 0.04 −6.65 ± 0.02 −6.45 ± 0.02 −6.93
aAll energies are reported in kcal/mol. bQM-NBB, δt = 0.5 fs, No SHAKE. cQM-NBB, δt = 1.0 fs, No SHAKE. dQM-NBB, δt = 1.0 fs, SHAKE.
eQM-NBB, δt = 2.0 fs, SHAKE. fExperiment: ref 125.

Table 4. Absolute solvation free energies for ethane and
methanola

ΔAsolv
MM−BARb ΔAsolv

QM‑NBBc ΔAsolv
Expd

ethane 2.29 ± 0.10 2.03 ± 0.10 1.83
methanol −4.68 ± 0.03 −4.82 ± 0.04 −5.10
RMSDe 0.42 0.22

aAll energies are reported in kcal/mol. bMM-BAR FES. cQM-NBB,
indirect FES approach. dExperiment: ref 125. eRMSD from
experimental results.
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Table 5. Simulation Details for and Results of Absolute Solvation Free Energy Difference Calculations Based on Implicit
Solvent Modelsa

compound atomsb no. ptsc Δt, psd exp.e GBMVf SMDg SMD,NBBh SMD,FEPtradi NB-FEP,fwj NB-FEP,bwk

methane 5/1 5000 20 1.99 1.35 2.23 2.17 ± 0.03 2.16 ± 0.07 2.16 −2.17
ethane 8/2 15 000 20 1.83 1.33 1.83 1.76 ± 0.03 1.74 ± 0.11 1.77 −1.75
propane 11/3 5000 20 1.96 1.37 1.91 1.88 ± 0.01 1.61 ± 0.27 1.88 −1.88
i-butane 14/4 5000 20 2.32 1.47 2.22 2.21 ± 0.01 2.27 ± 0.36 2.20 −2.21
n-butane 14/4 10 000 40 2.07 1.52 2.11 2.09 ± 0.03 1.87 ± 0.28 2.05 −2.12
methanol 6/2 15 000 20 −5.10 −5.27 −3.88 −4.00 ± 0.09 −3.98 ± 0.31 −4.06 3.92
ethanol 9/3 5000 20 −5.00 −4.96 −3.60 −3.85 ± 0.06 −5.20 ± 0.90 −3.71 3.97
methanethiol 6/2 5000 20 −1.24 −0.29 −0.88 −0.78 ± 0.08 −1.16 ± 0.26 −0.76 0.79
ethyl-methylsulfide 12/4 5000 20 −1.50 1.09 −0.33 −0.30 ± 0.09 0.08 ± 0.26 −0.36 0.26
methylformate 8/4 12 500 40 −2.78 −6.39 −1.62 −1.67 ± 0.07 −1.78 ± 1.59 −1.63 1.67
2-methoxyphenol 17/9 5000 50 −5.57 −4.42 −1.06 −3.33 ± 0.13 −2.67 ± 0.33 −3.39 3.05
bis-2-chloroethylether 15/7 10 000 50 −4.23 −3.04 −5.24 −4.02 ± 0.49 −2.34 ± 1.27 −4.46 4.07
1-octanol 27/9 5000 60 −4.09 −3.62 −1.88 −2.42 ± 0.28 −2.50 ± 0.65 −2.46 2.35
phenyl-trifluoroethyl-ether 19/12 5000 60 −1.29 −2.88 −1.60 −0.57 ± 0.13 −3.21 ± 2.33 −0.67 0.56
triacetylglycerol 29/15 5000 100 −8.84 −14.55 −7.21 −6.37 ± 0.36 −4.02 ± 2.70 −6.09 6.54
acetamide 9/4 5000 20 −9.68 −8.95 −7.96 −7.98 ± 0.28 −9.02 ± 0.58 −7.18 8.57
propionamide 12/5 5000 20 −9.38 −8.56 −7.43 −7.15 ± 0.29 −7.65 ± 0.55 −7.32 7.05
4-methylimidazole 12/6 5000 20 −10.27 −11.27 −7.81 −8.05 ± 0.18 −8.81 ± 0.41 −8.01 8.08
toluene 15/7 5000 20 −0.89 0.11 −0.14 −0.12 ± 0.04 0.59 ± 0.90 −0.15 0.10
p-cresol 16/8 5000 20 −6.13 −4.46 −3.41 −3.69 ± 0.03 −4.30 ± 0.87 −3.75 3.58
3-methylindole 19/9 5000 20 −5.88 −5.50 −3.64 −3.35 ± 0.11 −3.50 ± 0.50 −3.45 3.25

aAll solvation free energies are in kcal/mol. bNumber of atoms/number of non-hydrogen atoms. cTotal number of conformations used to compute
ΔAsolv by the various methods.

dTime interval for saving conformations. eExperimental ΔAsolv taken from the Supporting Information ref 99. fΔAsolv
based on the classical GBMV implicit solvent model calculated with BAR. g“Static” ΔAsolv calculated with the quantum chemical SMD implicit

solvent model based on a single conformation. hΔAsolv based on the quantum chemical SMD implicit solvent model calculated with NBB. iΔAsolv
FEPtrad

based on the quantum chemical SMD implicit solvent model calculated from the classical GBMV result plus corrections between classical and
quantum chemical description computed with FEP; cf. eq 11 and Scheme 1. jΔAsolv based on the quantum chemical SMD implicit solvent model
calculated with NB-FEP in the forward direction kΔAsolv based on the quantum chemical SMD implicit solvent model calculated with NB-FEP in the
backward direction.

Table 6. Simulation Results of Absolute Solvation Free Energy Difference Calculations Based on QM Implicit Solvent Models
SMD, SM8, and SM12a

exp. GBMV SMD,NBB SM8,NBB SM12,NBB

methane 1.99 1.35 2.17 1.72 ± 0.01 1.33 ± 0.01
ethane 1.83 1.33 1.76 1.12 ± 0.01 0.82 ± 0.01
propane 1.96 1.37 1.88 1.12 ± 0.01 0.85 ± 0.01
i-butane 2.32 1.47 2.21 1.42 ± 0.01 1.12 ± 0.01
n-butane 2.07 1.52 2.09 1.21 ± 0.01 0.97 ± 0.01
methanol −5.10 −5.27 −4.00 −4.88 ± 0.01 −5.02 ± 0.02
ethanol −5.00 −4.96 −3.85 −4.71 ± 0.07 −4.91 ± 0.08
methanethiol −1.24 −0.29 −0.78 −0.50 ± 0.01 −1.11 ± 0.01
ethyl-methylsulfide −1.50 1.09 −0.30 −0.42 ± 0.05 −0.70 ± 0.03
methyl formate −2.78 −6.39 −1.67 −2.56 ± 0.04 −3.12 ± 0.03
2-methoxy phenol −5.57 −4.42 −3.33 −5.40 ± 0.09 −6.14 ± 0.04
bis-2-chloroethylether −4.23 −3.04 −4.02 −3.66 ± 0.14 −4.16 ± 0.11
1-octanol −4.09 −3.62 −2.42 −3.45 ± 0.05 −3.49 ± 0.04
phenyl-trifluoroethyl-ether −1.29 −2.88 −0.57 −1.89 ± 0.06 −2.26 ± 0.09
triacetyl glycerol −8.84 −14.55 −6.37 −9.03 ± 0.19 −9.71 ± 0.14
acetamide −9.68 −8.95 −7.98 −10.93 ± 0.17 −10.89 ± 0.04
propionamide −9.38 −8.56 −7.15 −10.57 ± 0.30 −10.58 ± 0.10
4-methylimidazole −10.27 −11.27 −8.05 −9.18 ± 0.19 −8.84 ± 0.08
toluene −0.89 0.11 −0.12 −0.95 ± 0.01 −1.17 ± 0.01
p-cresol −6.13 −4.46 −3.69 −5.35 ± 0.04 −5.58 ± 0.02
3-methylindole −5.88 −5.50 −3.35 −4.66 ± 0.05 −4.79 ± 0.01
RMSDb 1.79 1.47 0.76 0.85

aAll solvation free energies are in kcal/mol. bRMSD of the solvation free energy compared to the experimental result.
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obtained by reweighting to DFT/SM8 and DFT/SM12 are
shown in Table 6; cf. below.
The classical force field combined with the GBMV implicit

solvation model (column “GBMV” in Table 5) does reasonably
well for most compounds; however, there are some severe
errors, such as for ethyl-methylsulfide, methyl formate, and
triacetyl glycerol. The statistical error of all results is extremely
low (<0.1 kcal/mol in all cases, data not shown); thus, the
results reflect the strengths and weaknesses of the classical force
field and solvation model.
Overall, the results obtained with DFT and the SMD

solvation model, based both on single configurations (column
“SMD”) and QM-NBB (column “SMD,NBB”), are in better
agreement with experiment. There are fewer huge outliers
compared to MM/GBMV; yet, the results for alcohols are
somewhat disappointing and unexpected. Much better agree-
ment with experiment is obtained with the SM8 and SM12
solvation models, cf. Table 6. The last line in this table lists the
RMSDs of the computed ΔAsolv results relative to experiment.
While SMD (1.47 kcal/mol) is an improvement over GBMV
(1.79 kcal/mol), it compares poorly to the values of 0.76 and
0.85 kcal/mol for SM8 and SM12. Interestingly, the newer
SM12 model fares slightly worse than its predecessor SM8 for
this particular set of 21 compounds; however, this could be a
consequence of the functional and grid employed (B3LYP (SG-
1) vs M06-2X (99,590), respectively).
The focus of this study is not a critical evaluation of implicit

solvation models. Instead, it is more interesting to note that
introducing flexibility has a large influence on results in some
cases, e.g., bis-2-chloroethylether or phenyl-trifluoroethyl-ether,
where static and MD based results differ by over 1 kcal/mol.
Overall, the QM-NBB results are in slightly better agreement
with experiment (i.e., SMD vs SMD,NBB results in Table 5).
The standard deviation is quite low in most cases; the largest
variation of results was observed for bis-2-chloroethylether.
However, the difference between the free energy difference
obtained for the full data set and the average of the individual
blocks (cf. Methods) is less than 0.1 kcal/mol for all solutes,
i.e., well below the statistical error estimated based on the
standard deviation of the block results. This indicates that the
results are well converged; e.g., for bis-2-chloroethylether,
although the standard deviation is ±0.49 kcal/mol, the
discrepancy is only 0.02 kcal/mol (data not shown).
While our QM-NBB approach performs well and leads to

converged results in all cases, the standard indirect approach
(FEPtrad) based on FEP from MM → QM (eq 11) is
problematic. It does work for small molecules, e.g., methane or
ethane. In those cases, the FEPtrad result (see column
“SMD,FEPtrad”) agrees with the QM-NBB result, the standard
deviation is low, and the free energy difference obtained from
all data agrees with the average of the block results (data not
shown). However, already for, e.g., propane with FEPtrad, the
quality of the result is noticeably poorer than QM-NBB;
differing by more than 0.2 kcal/mol with considerably higher
standard deviation (±0.27 kcal/mol for FEPtrad vs ±0.01 for
QM-NBB). For larger molecules, e.g., toluene, the FEPtrad

results are unusable. The standard deviation is now almost 1
kcal/mol, while the free energy difference obtained from all
data (0.59 kcal/mol) is quite different from the average of the
block results (0.1 kcal/mol, data not shown); both values differ
noticeably from the QM-NBB result (−0.12 kcal/mol).
By contrast, NB-FEP performs surprising well. In most cases,

the NB-FEP results agree within error bars with QM-NBB; the

QM-NBB result is usually close to the average value of the
forward and backward NB-FEP result. However, for larger
molecules the hysteresis between forward and backward results
increases. The outlier is acetamide, where the hysteresis is over
1 kcal/mol; this is the only case where the forward and
backward result cannot be reconciled based on the statistical
error estimate. Given that the computational effort of doing
NB-FEP in both forward and backward direction is comparable
to that of QM-NBB, the latter is clearly advantageous.
Several of the compounds studied can adopt multiple

conformations that require sufficient sampling, the simplest
example being butane. In ref 94 the authors observed that the
central dihedral angle of butane was poorly sampled even in
simulations of 1 ns length, cf. their Figure 7.
Figure 4 shows the degree of sampling of the central dihedral

angle of butane in the data used for the reweighting. The red

line is a reference histogram obtained from a separate 500 ns
simulation, whereas the green curve displays the histogram
obtained from the 10 000 data points (gas phase) used in the
free energy simulations. The two curves are practically identical.
The data underlying our FES (green curve) should be
contrasted to the amount of sampling achieved in a simulation
of just 50 000 MD steps, saving every 10th step (blue line).
One gauche minimum is not sampled at all, and the other
gauche minimum and the trans minimum have wrong weights.
Of course, 50 000 MD steps may seem ridiculously short, but a
brute force simulation with a QM potential as used in this work
for reweighting (DFT - M06-2X, SMD, or SM8 IS model)
would already be a significant computational undertaking.
Performing a 1 ns simulation, the simulation length used in the
study by Shirts et al.94 would be prohibitively expensive even
today. The present implicit solvent work relied on regular long
MD simulations for sufficient sampling, as the MM simulations
are cheap compared to re-evaluation at the QM level. However,
the approach would work equally well (or even better) if
enhanced sampling techniques would have been used to
generate conformations for reweighting; evaluation of this is
already underway.

5. CONCLUSIONS
Two new approaches (QM-NBB and NB-FEP) are presented
for effectively connecting MM simulations with QM calcu-
lations to determine free energy differences. Both methods are
based on the use of “unusual” biasing potentials to obtain more

Figure 4. Sampling of butane’s conformational space. The x-axis is
butane’s central dihedral angle while the y-axis is probability.
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accurate results; i.e., simulations carried out at low levels of
theory (MM) in conjunction with high level (QM) potential
energy evaluations. QM-NBB is initially applied to calculate
both absolute and relative solvation free energy differences of
ethane and methanol in explicit solvent. Our results
demonstrate that the reweighting step is necessary. Just
inserting the QM energies into regular BAR (“QM-BAR” in
Table 2) leads to a clearly erroneous result. This can be
explained by the differences in the underlying MM and QM
potential energy surfaces; i.e., the ensemble of “important”
states on the two surfaces are significantly different. The effect
of those differences can be aggravated by constraining degrees
of freedom with SHAKE (Table 3). In this case, the results
became incorrect because the MM and QM description of the
system did not match. Quite generally, the potential energy
surface at which sampling is carried out has to be, to some
degree, representative of the QM surface, with mismatches
being caused by a variety of energetic components; e.g.,
electrostatics, harmonic approximates, and more. While two-
sided methods such as BAR/NBB are much more efficient than,
e.g., FEP, some minimal amount of overlap is required.
However, if sampling is adequate, QM-NBB leads to a more
accurate and precise result than the traditional indirect scheme

coupled with FEP (ΔΔAsolv
FEPtrad in Table 2).

The computation of solvation free energies for a diverse
series of 21 compounds further validates the usefulness of these
new approaches. The employed compounds range from small
molecules to fairly large, flexible solutes, such as triacetyl
glycerol, and, therefore, can be considered representative of
practical FES applications. Triacetyl glycerol is an example of a
compound where force fields result in poor solvation free
energies (cf. “GBMV” in Table 5 and Supporting Information
of ref 99). The traditional FEP approach for QM/MM FES also
leads to inaccurate results, as it becomes numerically unstable
or completely unusable for systems much larger than 10 atoms.
NB-FEP greatly improved performance compared to standard
FEP; however, numerical inconsistencies were still observed.
Thus, QM-NBB is established as the preferred method to
connect MM to QM (or QM/MM) levels of theory. This is
clearly reflected by comparisons to experiment. The combina-
tion of a classical force field with BAR and the GBMV implicit
solvent model leads to a RMSD of 1.79 kcal/mol while the use
of QM-NBB with SM8 reduces this RMSD to 0.76 kcal/mol.
To put those numbers into perspective, the best results of the
SAMPL0 to SAMPL2 prediction competitions exhibited
RMSDs between 1.3 and 3.6 kcal/mol.21,24,127,128

While the quality of traditional MM FES strongly depends
on the selected parameters (in particular charges),129 conven-
tional QM solvation free energy evaluations based on a single
conformation can suffer from not accounting for solute
entropy. QM-NBB overcomes these weaknesses by combining
the strengths of both approaches: efficient sampling from MM
and accurate intra- and intermolecular interactions from QM.
Thus, QM-NBB with the right choice of QM level of theory
holds significant promise as an “affordable” method for
calculating highly accurate free energies, e.g., on par with or
better than standard methods currently being employed.
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