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ABSTRACT

Proactive identification and characterization of hazards attributable to chemicals are central aspects of risk assessments.
Current legislations and trends in predictive toxicology advocate a transition from in vivo methods to nonanimal
alternatives. For skin sensitization assessment, several OECD validated alternatives exist for hazard identification, but
nonanimal methods capable of accurately characterizing the risks associated with sensitizing potency are still lacking. The
GARD (Genomic Allergen Rapid Detection) platform utilizes exposure-induced gene expression profiles of a dendritic-like
cell line in combination with machine learning to provide hazard classifications for different immunotoxicity endpoints.
Recently, a novel genomic biomarker signature displaying promising potency-associated discrimination between weak and
strong skin sensitizers was proposed. Here, we present the adaptation of the defined biomarker signature on a gene
expression analysis platform suited for routine acquisition, confirm the validity of the proposed biomarkers, and define the
GARDpotency assay for prediction of skin sensitizer potency. The performance of GARDpotency was validated in a blinded
ring trial, in accordance with OECD guidance documents. The cumulative accuracy was estimated to 88.0% across 3
laboratories and 9 independent experiments. The within-laboratory reproducibility measures ranged between 62.5% and
88.9%, and the between-laboratory reproducibility was estimated to 61.1%. Currently, no direct or systematic cause for the
observed inconsistencies between the laboratories has been identified. Further investigations into the sources of introduced
variability will potentially allow for increased reproducibility. In conclusion, the in vitro GARDpotency assay constitutes a
step forward for development of nonanimal alternatives for hazard characterization of skin sensitizers.
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Adverse health effects brought on by exposure to chemicals is a
regular occurrence (Prüss-€Ustün et al., 2016), influenced by the
high incidence of contact with chemicals in modern society.
One of the most typical adverse effects is allergic contact der-
matitis, which is caused by repeated exposure to compounds

known as skin sensitizers (Kimber et al., 2011). Reducing the rate
of such adverse effects, which would decrease economic burden
and relieve human pain and suffering, is relying on the ability
to accurately assess the risks associated with chemicals. A criti-
cal part of risk assessment includes the identification and

VC The Author(s) 2020. Published by Oxford University Press on behalf of the Society of Toxicology.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/
licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
For commercial re-use, please contact journals.permissions@oup.com

423

TOXICOLOGICAL SCIENCES, 176(2), 2020, 423–432

doi: 10.1093/toxsci/kfaa068
Advance Access Publication Date: 18 May 2020
Research article

http://orcid.org/0000-0002-3339-1269
http://orcid.org/0000-0002-9506-0078
https://academic.oup.com/


characterization of the hazards attributable to chemicals
(Gilmour et al., 2019). For assessment of skin sensitizers, several
in vitro assays have gained regulatory acceptance for the pur-
pose of performing hazard identification (OECD, 2018a,b, 2019).
However, because each of the assays target specific parts of the
known sensitization mechanisms, such as protein reactivity
(OECD, 2019), keratinocyte activation (OECD, 2018a), or dendritic
cell activation (OECD, 2018b), applying a battery of tests target-
ing different mechanistic events is often recommended (Casati
et al., 2018; Daniel et al., 2018). Furthermore, none of the regula-
tory accepted alternative assays do, on their own, provides in-
formation pertinent for hazard characterization, which is
relevant for ranking chemicals according to their relative skin
sensitization potency. In contrast, the regulatory accepted
in vivo method, the murine local lymph node assay (LLNA)
(OECD, 2010), can be used for both hazard identification and
characterization (Loveless et al., 2010). Indeed, it is the recom-
mended method for determining skin sensitizer potency when
other information sources are lacking, as described by the
Classification, Labelling, and Packaging (CLP) guidance docu-
ments (ECHA, 2017). Therefore, with the continuous develop-
ment and implementation of new legislations and regulations
restricting the use of in vivo methods (EC, 2006; EU, 2003), and
with the public opinion advocating replacement of animal
methods, there is a need for further development of nonanimal
alternatives that are also capable of providing information re-
garding the potency of skin sensitizers.

GARD (Genomic Allergen Rapid Detection) is a methodology
platform for assessment of chemical sensitizers. It is based on
an in vitro dendritic-like cell line, which is exposed to test chem-
icals of interest. Exposure-induced changes of transcriptional
expression profiles are measured using state-of-the-art gene ex-
pression technologies. Generated high informational content
data allows for machine-learning assisted classification of test
chemical-specific hazards, eg, skin (Forreryd et al., 2016;
Johansson et al., 2011, 2013) or respiratory (Forreryd et al., 2015;
Johansson, in preparation) sensitizing properties.

GARDskin was the first GARD platform application de-
scribed and is consequently the most advanced in terms of
regulatory acceptance. An interlaboratory ring trial was con-
ducted in adherence with OECD guidance documents for ac-
ceptance of novel alternative methods (OECD, 2005, 2009),
demonstrating that GARDskin is a powerful tool for assess-
ment of chemical skin sensitizers, with a predictive accuracy
of 93.8% and high reproducibility between laboratories
(Johansson et al., 2019).

Although it has been argued that the GARD platform indeed
captures information of relevance for potency subcategorization
(Johansson et al., 2017), GARDskin is currently proposed for haz-
ard identification. However, the concept of identifying and uti-
lizing a subset of genomic biomarkers that are specific for
sensitizing potency has been explored (Albrekt et al., 2014). It
was shown that strong and extreme sensitizers tend to induce
increased regulation of a larger set of pathways, compared with
moderate and weak sensitizers. Thus, it was hypothesized that
there exist genes that are specifically regulated only if the sensi-
tizing potency is sufficiently strong, and if found, such genes
could be utilized as predictive tools. This hypothesis was further
explored in work by (Zeller et al., 2017), in which it was demon-
strated that a complementary biomarker signature was able to
subcategorize relatively strong and relatively weak sensitizers
into potency categories 1A and 1B, respectively, according to the
Globally Harmonized System (GHS)/CLP sensitizing potency
classification system.

Based on this research, we here introduce the GARDpotency
assay for subclassification of chemical sensitizers according to
their relative sensitizing potency. We describe the prediction
model rationale and the implementation of such a rationale on
a technological platform for standardized gene expression
measurements. We also propose a tiered approach in which
GARDskin and GARDpotency are combined to provide complete
risk assessment according to REACH requirements (EC, 2006).
Finally, we provide descriptive parameters such as within- and
between-laboratory reproducibility (WLR/BLR) and predictive
performances of the GARDpotency assay and of the tiered ap-
proach, as obtained from an inter laboratory ring trial, the data
of which is currently in review of validating bodies. The feasibil-
ities of the approaches are demonstrated by comparisons with
the existing state of the art.

MATERIAL AND METHODS

GARDpotency training dataset. The chemical constituents of the
GARDpotency training dataset are listed in Table 1. All chemi-
cals were purchased from Sigma Aldrich (St Louis, Missouri).
Individual training dataset samples were created according to
GARD cellular protocols. Samples were created in 3 independent
cellular exposure experiment, thus generating biological tripli-
cates for model training, including solvent (DMSO, Sigma
Aldrich) controls and unstimulated cells.

GARD cellular protocols. All cellular protocols associated with
GARDpotency are identical to those of GARDskin, which has
been previously described (Forreryd et al., 2016; Johansson et al.,
2019). For further details, the GARD SOP is available and at-
tached to this publication as Supplementary material 1, includ-
ing attachments amending the data analysis section for
potency subclassification using GARDpotency.

In short, for generation of total RNA samples for downstream
gene expression analysis, here utilized for both the generation of
training dataset samples and the subsequent ring trial, cultivated
SenzaCells (ATCC Depository PTA-123875), were exposed in vitro
to (the) test chemical(s) for 24 h. Following dose-response meas-
urements of induced cell toxicity, an appropriate and test
chemical-specific input concentration was defined at non- to
low-toxic levels. Genetic material (ie, mRNA) was isolated from
cells exposed to the appropriate input concentration of (the) test
chemical(s) in 3 biological replicates and stored at�80�C.

Gene expression acquisition platform transfer. NanoString nCounter
probe pairs targeting endogenous transcripts were designed to
match at exon level to the transcripts of the Affymetrix HuGene
1.0 ST arrays measurements of the 52 genes previously identi-
fied (Zeller et al., 2017). Each probe pair was translated to a
unique 100-bp target sequence, using Affymetrix transcript
cluster IDs as identifier for a specific target transcript. Design
priorities were given to reach the maximum number of variants
associated with the target gene, as specified by the Affymetrix
HuGene 1.0 ST array, while also maintaining kinetic parameters
of the nCounter system and minimizing cross-reactivity with
nontarget transcripts. Successful design of probe pairs was
achieved for 51 out of the 52 genes (transcript cluster ID 7896697
was dropped because it could not be mapped to any RefSeq or
Ensembl accession numbers). All probe pair design was per-
formed by NanoString Technologies (Seattle, Washington). The
final list of genomic biomarkers utilized in GARDpotency is at-
tached as Supplementary material 2.
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Gene expression analysis. All gene expression analysis using
the NanoString GEN2 nCounter system, for both generation
of the GARDpotency training dataset and subsequent appli-
cation of the GARDpotency assay in the interlaboratory
ring trial, was performed according to protocols provided
by the supplier (NanoString Technologies). In short,

isolated RNA samples were thawed on ice and quality con-
trolled using the Agilent 2100 Bioanalyzer (Agilent
Technologies, Santa Clara, California). RNA samples were
hybridized to the GARDpotency-specific probe pairs and
assayed in the nCounter system, using recommended kits
and reagents.

Table 1. Training Dataset Details and Prediction Model Results Summary

Chemical CAS No. CLP C (lM) Model 1a Model 2a

2,4-Dinitrochlorobenzene 97-00-7 1A 5 1B 1A
2,4-Dinitrofluorobenzene 70-34-8 1A 16.8 1A 1A
2-Aminophenol 95-55-6 1A 100 1A 1A
2-Hydroxyethyl acrylate 818-61-1 1A 128 1A 1A
2-Nitro-1,4-phenylenediamine 5307-14-2 1A 200 1A 1A
3-Methylcatechol 488-17-5 1A 33 1A 1A
4-Methylaminophenol sulfate (metol) 55-55-0 1A 16.8 1B 1A
4-Nitrobenzylbromide 100-11-8 1A 5 1A 1A
Abietic acid 514-10-3 1B 100 1B 1B
Amylcinnamyl alcohol 101-85-9 1B 500 1B 1B
Aniline 62-53-3 1B 500 1B 1B
Anisyl alcohol 105-13-5 1B 500 1B 1B
Benzocaine 94-09-7 1B 500 1B 1B
Benzyl benzoate 120-51-4 1B 100 1B 1B
Bisphenol A-diglycidyl ether 1675-54-3 1A 100 1A 1A
Butyl glycidyl ether 2426-08-6 1B 500 1B 1B
Chloroaniline 106-47-8 1B 500 1B 1B
Cinnamaldehyde 104-55-2 1A 50 1B 1A
Cinnamyl alcohol 104-54-1 1B 500 1B 1B
Citral 5392-40-5 1B 50 1B 1B
Citronellol 106-22-9 1B 500 1B 1B
Diethanolamine 111-42-2 1B 500 1B 1B
Diethyl maleate 141-05-9 1B 200 1A 1B
Diphenylcyclopropenone 886-38-4 1A 10 1A 1A
Ethylenediamine 107-15-3 1B 500 1B 1B
Eugenol 97-53-0 1B 500 1B 1B
Formaldehyde 50-00-0 1A 100 1B 1B
Geraniol 106-24-1 1B 500 1B 1B
Glutaraldehyde 111-30-8 1A 26 1A 1A
Hexylcinnamic aldehyde 101-86-0 1B 50 1B 1B
Hydroquinone 123-31-9 1A 100 1A 1A
Hydroxycitronellal 107-75-5 1B 100 1A 1A
Imidazolidinyl urea 39236-46-9 1B 72.9 1A 1A
Iodopropynyl butylcarbamate 55406-53-6 1A 100 1A 1B
Isoeugenol 97-54-1 1A 500 1B 1B
Isopropyl myristate 110-27-0 1B 500 1B 1B
Lauryl gallate 1166-52-5 1A 5 1A 1A
Lilial 80-54-6 1B 150 1B 1B
Linalool 78-70-6 1B 500 1B 1B
Lyral 31906-04-4 1B 175 1B 1A
Methyl heptine carbonate 111-12-6 1A 100 1A 1A
p-Benzochinone 106-51-4 1A 100 1A 1A
Pentachlorophenol 87-86-5 1B 200 1B 1B
Phenyl benzoate 93-99-2 1B 100 1B 1B
Phenylacetaldehyde 122-78-1 1B 3.3 1A 1A
Potassium dichromate 7778-50-9 1A 75 1A 1A
p-Phenylenediamine 106-50-3 1A 100 1A 1A
Propyl gallate 121-79-9 1A 200 1A 1A
Pyridine 110-86-1 1B 500 1B 1B
Resorcinol 108-46-3 1B 500 1A 1A
Tetramethylthiuram disulfide 137-26-8 1B 0.17 1A 1A
Prediction accuracy (%) 78 82

aModel 1; Support Vector Machine (SVM)-based 51 genomic biomarkers.
bModel 2; SVM based on 51 genomic biomarkers and Genomic Allergen Rapid Detection input concentration.

Abbreviation: CLP, Classification, Labelling, and Packaging.
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Training dataset exploration and prediction model optimization and fi-
nalization. NanoString raw data were imported into the R statis-
tical programming environment (R Core Team, 2019) and RNA-
content normalized using a single-sample counts per total
counts algorithm, as previously described (Forreryd et al., 2016).
Tentative prediction models were trained using a Support
Vector Machine (SVM) (Cortes and Vapnik, 1995), as imple-
mented in the e1071 package (Meyer et al., 2019). A linear kernel
was utilized, and the cost parameter was set to 1. The remain-
ing parameters were kept as default as described in
Supplementary material 3. The predictive performances of ten-
tative prediction models were evaluated using an iterative 10-
fold cross-validation strategy. Two different prediction models
were explored, both of which used the GHS/CLP category label
of the training dataset (1A/1B) as the dependent (ie, modeled)
variable. Model 1 utilized only the 51 genomic biomarkers as in-
dependent variables (ie, predictors), whereas Model 2 comple-
mented the genomic biomarkers with a concentration
parameter, ie, the GARD input concentration, given as lM. A fi-
nalized prediction model for potency subclassification was
established based on Model 2, as trained by the entire training
dataset, and frozen prior to any application of test data gener-
ated by the subsequent interlaboratory ring trial.

Tiered prediction approach. A tiered prediction approach for skin
sensitizer potency assessment according to the 3 GHS/CLP cate-
gories was defined as follows: in an initial tier, chemicals were
classified using the GARDskin assay. Chemicals classified as
nonskin sensitizers were assigned the GHS/CLP class label No
Cat. Chemicals classified as skin sensitizers were assessed in a
second tier, using the herein described GARDpotency assay, for

assignment to either of the GHS/CLP class labels 1B or 1A. This
combined utilization of GARDskin and GARDpotency is referred
to as the GARD tiered approach.

Interlaboratory ring trial. The design of the interlaboratory ring
trial was to a great extent based on the structure of a previously
described interlaboratory ring study performed with the pur-
pose of validating the GARDskin assay (Johansson et al., 2019),
which was conducted in accordance with OECD guidance docu-
ments (OECD, 2005). Briefly, SenzaGen AB (SenzaGen, Lund,
Sweden) initiated the study and acted as lead laboratory
throughout the experiments. A validation management group
(VMG), comprising 3Rs management and consulting ApS
(Lyngby, Denmark), Triskelion (Zeist, the Netherlands) and
Adriens Consulting (Aalter, Belgium), was assembled with the
purpose of guiding and facilitating the validation process, and
evaluating the results. Furthermore, the VMG was responsible
for ensuring the study’s blinded nature and was solely responsi-
ble for strategic decisions, such as the selection and approval of
test chemicals. The study included 2 additional participating
laboratories, Eurofins BioPharma Product Munich GmbH
(Eurofins, Planegg, Germany) and Burleson Research
Technologies, Inc (BRT, Morrisville, North Carolina).

Due to the identical experimental protocols of the GARDskin
and the GARDpotency assays (Supplementary material 1), and
because both participating laboratories had already shown pro-
ficiency in running the GARDskin assay (Johansson et al., 2019),
neither transfer nor training phases were performed.

For assessment of GARDpotency’s predictive performance
and reproducibility, the VMG determined that the 28 chemicals
that were assayed for the purpose of validating GARDskin
(Johansson et al., 2019) would be used, see Table 2. Only chemi-
cals that were classified as skin sensitizers by the GARDskin as-
say (by respective laboratory in each experiment) were assessed
in the GARDpotency assay, as defined by the GARD tiered ap-
proach. The expression of the genes in the GARDpotency signa-
ture was quantified using the same RNA samples that were
generated in the GARDskin validation study but using a
GARDpotency-specific NanoString codeset. Of note, the identity
of the 28 chemicals was not revealed to any of the participating
laboratories until predictions from both assays had been
reported to the VMG, ensuring the blinded nature of the study.
Each participating laboratory assessed the chemicals in 3 inde-
pendent experiments. Chemicals were distributed, uniquely
encoded in every experiment, by the VMG.

All chemicals assayed during the validation phase were pur-
chased by Triskelion from Sigma Aldrich Chemie N.V.
(Zwijndrecht, the Netherlands).

Statistical analysis. Data submitted to the VMG was indepen-
dently analyzed and summarized without interference or input
from any of the participating laboratories, with the purpose of
assessing the reproducibility and the predictive performance of
the assay. Prior to the study initiation, it was decided that miss-
ing values would be excluded from the analysis. WLR was calcu-
lated as the fraction of substances that received consistent
predictions over 3 independent experiments within a labora-
tory. For the calculation of BLR, a consensus prediction was
established for each chemical and laboratory by majority voting
over the 3 experiments. Substances that failed to generate a ma-
jority prediction due to inconsistencies were given the label
“inconsistent.” BLR was then calculated as the fraction of con-
sistent consensus predictions between the laboratories. The
predictive performance was evaluated by accuracy and class-

Table 2. Assayed Chemicals During Validation Phase

Chemical CAS No. CLP

4-Nitrobenzyl bromide 100-11-8 1A
2-Bromo-2-glutaronitrile 35691-65-7 1A
Cinnamal 104-55-2 1A
Formaldehyde 50-00-0 1A
Lauryl gallate 1166-52-5 1A
4-(Methylamino)phenol sulfate 55-55-0 1A
Methylisothiazolinone 2682-20-4 1A
Propyl gallate 121-79-9 1A
Toluene diamine sulfate 615-50-9 1A
Diethyl maleate 141-05-9 1B
3-Dimethylaminopropylamine 109-55-7 1B
Ethylenediamine 107-15-3 1B
Isoeugenol 97-54-1 1A
2-Mercaptobenzothiazole 149-30-4 1A
Benzyl benzoate 120-51-4 1B
Cinnamyl alcohol 104-54-1 1B
Citral 5392-40-5 1B
Ethylene glycol dimethacrylate 97-90-5 1B
Eugenol 97-53-0 1B
Dextran 9004-54-0 NC
Glycerol 56-81-5 NC
Hexane 110-54-3 NC
Isopropanol 67-63-0 NC
Kanamycin 70560-51-9 NC
Lactic acid 50-21-5 NC
Propylene glycol 57-55-6 NC
Salicylic acid 69-72-7 NC
Vanillin 121-33-5 NC

Abbreviation: CLP, Classification, Labelling, and Packaging.
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based sensitivity metrices based on the consensus prediction
from respective laboratory. Cumulative equivalents of the per-
formance metrices were calculated from all consensus predic-
tions established by all 3 laboratories. For example, the
cumulative accuracy was calculated as the number of correct
consensus predictions (over all laboratories) divided by the total
number of established consensus predictions.

Visualization of data. Graphical illustrations were created in R
v3.6.1 (R Core Team, 2019) with the assistance of the R-pack-
ages: ggplot2 v3.2.1 (Wickham, 2016), ggridges v0.5.1, and
gridExtra v2.3. The uniform manifold approximation and pro-
jection (UMAP) map was created using the R-package umap
v0.2.3.1.

Statistical analysis of dimensionality reduction. For the principal
component analysis (PCA), the significance of the observed sep-
aration between strong and weak skin sensitizers in the first 2
principal components were estimated using Hotelling’s 2 sam-
ple T2 test (Hotelling, 1931). Prior to calculating the test statistic,
the assumption of equal covariance matrices was tested using
Box’s M test (BOX GEP, 1949). The Hotelling’s T2 and the Box’s M
tests were utilized as implemented in the R packages Hotelling
v1.0-5 and biotools v3.1 (da Silva et al., 2017), respectively.

RESULTS

GARDpotency NanoString Technology Transfer
The concept of utilizing genomic biomarkers specific for sensi-
tizing potency in the GARD platform has been previously ex-
plored and a biomarker signature consisting of 52 transcripts
has been proposed (Zeller et al., 2017). To verify these findings,
data were reproduced in repeated GARD exposure experiments,
aiming to produce a training dataset for subsequent predictive
modeling on the NanoString nCounter platform. Novel total
RNA samples were generated following cellular exposure to a
reference panel of chemical sensitizers (Table 1) and gene ex-
pression levels of 51 of the 52 previously identified genes were

quantified. The transcriptional profiles of these samples were
investigated using the dimensionality reduction techniques
PCA and UMAP, as presented in Figure 1. It was concluded that
discriminatory capabilities of the proposed biomarkers were
maintained also in the NanoString nCounter system, as distinct
separation between samples of different sensitizing potencies
were clearly detectable.

To estimate the predictive capacity of the proposed bio-
marker signature, tentative prediction models based on SVM
were trained and evaluated in an iterative cross-validation exer-
cise. In each iteration, 10-fold data were left out, whereas an
SVM was trained on retained data and used to classify the left-
out data. The predictions of left-out samples were recorded, and
iterations proceeded until each sample had been left out once.
Results are listed in Table 1 (Model 1) and a cumulative predic-
tive accuracy was calculated to 78%.

GARDpotency Prediction Model Rationale and Optimization
It has previously been observed that information relating to
sensitizing potency of chemicals correlates with the concentra-
tion in which chemicals are assayed (Johansson et al., 2017).
Table 1 includes information of the chemical-specific GARD in-
put concentration for each of the 51 sensitizers included in the
training dataset. These concentrations were further explored
and correlated with known sensitizing potency parameters, ie,
LLNA categories, LLNA EC3, and human potency categories, as
defined by Basketter et al. (2014). Results are presented in
Figure 2. Indeed, for all studied parameters, it was observed that
strong sensitizers are typically assayed at a lower concentra-
tion, as compared with weak sensitizers. Although the choice of
input concentration is based on a dose-response-dependent cy-
totoxicity profile, it is evident that strong sensitizers require
smaller amounts of substance to trigger a response, one of the
hallmarks of sensitizing potency.

Having confirmed the functionality of the 51 genomic bio-
markers proposed by Zeller et al. and explored the linkage be-
tween used GARD input concentrations and sensitizing
potency, the potential advantage of combining the 2 concepts

Figure 1. Training dataset visualized using principal component analysis (PCA) (left) and uniform manifold approximation and projection (UMAP) (right). Both plots

were constructed using the gene expression values of the 51 genes in the biomarker signature acquired on the NanoString nCounter platform. For the PCA, the signifi-

cance of the observed separation between the groups were assessed using Hotelling’s 2 sample T2 test, which indicated a significant separation with p¼ 2.9*10-7.

Abbreviation: CLP, Classification, Labelling, and Packaging.
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was explored. To this end, the readout of the transcriptional ex-
pression levels of the genomic biomarkers was complemented
with the experimentally derived concentration parameter in the
form of chemical-specific GARD input concentrations, given as
in-well concentration during stimulation (mM).

Using this extended dataset, 10-fold cross-validations were
repeated as described above, with results presented in Table 1
(Model 2). The predictive accuracy of this updated model was
82%. Thus, based on available information in the internal train-
ing dataset, there is indeed an added value in complementing
the readout of the genomic biomarker with the experimentally
derived GARD input concentration.

Based on these observations, a finalized GARDpotency
model was defined based on Model 2; An SVM that is trained on
the 51 samples (true sensitizers, divided into 1A and 1B potency
classes as presented), that uses the GHS/CLP class as the depen-
dent variable (ie, the predicted parameter) and the expression
levels of 51 genes (Supplementary material 2), as assessed by
NanoString nCounter measurements, along with the GARD in-
put concentration (mM) as independent variables (ie, predictors).
As such, the model was frozen prior to any subsequent classifi-
cations of test chemicals assayed in an interlaboratory ring trial,
as described below.

Interlaboratory Ring Trial
Predictive performance and assay robustness of GARDpotency
and of the GARD tiered approach, for prediction of chemicals’
relative skin sensitization potency according to the GHS/CLP
categories, were evaluated in a blinded ring trial study compris-
ing 3 laboratories, each assessing a set of 28 chemicals in 3 inde-
pendent experiments. First, all chemicals were assessed by the
GARDskin assay, the results of which have been reported
(Johansson et al., 2019). Substances classified as nonskin sensi-
tizers were assigned the GHS/CLP category No Cat, and substan-
ces classified as skin sensitizers were assessed in a second tier
comprising the GARDpotency assay for subcategorization by
their relative potency. The experimental setup of the ring trial
generated a total of 252 chemical assessments (28 encoded

substances in 3 laboratories in 3 separated experiments). During
the course of the experiments, 12 chemical instances failed to
generate valid predictions. The missing values were due to; sol-
ubility issues in 6 instances (dextran for both Eurofins and BRT
in all 3 experiments), interference in the flow-cytometry-based
cell-viability assessment caused by autofluorescence (citral in 3
experiments by BRT), failure to meet the cell-viability require-
ments as specified in the SOP (2-bromo-2-glutaronitrile and 4-
(methylamino)phenol sulfate in 2 and 1 experiments by BRT,
respectively).

GARDpotency: Reproducibility
The reproducibility of GARDpotency was evaluated by examin-
ing the consistency between predictions generated within labo-
ratories (WLR), as well as between laboratories (BLR). When
evaluating BLR, consensus predictions for test substances were
acquired from all laboratories by majority voting.

For binary potency subclassification, ie, classification of pre-
viously predicted skin sensitizers into the GHS/CLP category 1A
or 1B using GARDpotency, the WLR was estimated to; 62.5% for
BRT, 83.3% for Eurofins, and 88.9% for SenzaGen. The consis-
tency of consensus predictions between laboratories resulted in
a BLR estimate of 61.1%.

GARDpotency: Predictive Performance
The binary potency subclassifications of GARDpotency gener-
ated by the laboratories can be seen in Figure 3 and in the con-
tingency tables in Table 3. Predictive accuracies were estimated
to 93.3% for Burleson, 94.4% for Eurofins, and 76.5% for
SenzaGen. Considering each GHS/CLP category in turn, the sen-
sitivity for category 1A was 88.9% for BRT, 90.9% for Eurofins,
and 90.9% for SenzaGen. Conversely, the sensitivity for category
1B substances was estimated to 100%, 100%, and 50% for BRT,
Eurofins, and SenzaGen, respectively. The cumulative perfor-
mance of binary potency subclassification was determined to
88.0% accuracy, 90.3% category 1A sensitivity, and 84.2% cate-
gory 1B sensitivity. A closer examination of the predictions
shows that none of the assayed chemicals were consistently

Figure 2. GARD (Genomic Allergen Rapid Detection) input concentrations for the substances in the training dataset visualized against local lymph node assay (LLNA)

EC3 values and human potency categories. The left scatter plot visualizes the correlation between the GARD input concentrations and LLNA EC3 values. The right plot

shows histograms of the GARD input concentrations for each human potency category. For each category, the mean GARD input concentration is described by the

point.
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misclassified by the laboratories. Nonetheless, misclassifica-
tions were made on toluene diamine sulfate by BRT, 2-mercap-
tobenzothiazole by Eurofins, and 2-bromo-2-glutaronitrile,
cinnamyl alcohol, citral, and diethyl maleate by SenzaGen.

GARD Tiered Approach: Reproducibility
The reproducibility measures of the GARD tiered approach, ie,
classification of substances into either of the 3 GHS/CLP catego-
ries—No Cat, 1B, or 1A by combining GARDskin and
GARDpotency—resulted in WLRs of 60% for Burleson, 77.8% for
Eurofins, and 75% for SenzaGen. The BLR for consensus predic-
tions was estimated to 66.7%.

GARD Tiered Approach: Predictive Performance
Figure 3 shows the consensus predictions of the GARD tiered
approach established by respective laboratory and Table 4
describes the contingency tables and the laboratories’ individ-
ual performance metrices. Summarizing the results, the cumu-
lative accuracy was estimated to 86.1%. The cumulative
sensitivities for respective class (considering each category in
turn to be the “positive” outcome) were 96.0% for No Cat, 69.6%
for category 1B, and 90.3% for category 1A. Of the misclassified
compounds, only ethylenediamine was consistently

Figure 3. Consensus predictions established by each laboratory for the GARDpotency assay (left) and for the Genomic Allergen Rapid Detection tiered approach (right),

described by the color of respective tile. For substances where no prediction could be obtained, the rectangle fill color is white. Abbreviation: CLP, Classification,

Labelling, and Packaging.

Table 3. Contingency Tables and Prediction Performances Achieved
by Respective Laboratory in the Ring Trial for the GARDpotency
Assay

BRT Eurofins SenzaGen

Reference 1A 1B 1A 1B 1A 1B

1A 8 1 10 1 10 1
1B 0 6 0 7 3 3
Accuracy (%) 93.3 94.4 76.5
Sensitivity 1A (%) 88.9 90.9 90.9
Sensitivity 1B (%) 100 100 50
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misclassified as No Cat by all 3 laboratories. Additional misclas-
sifications not previously described include the prediction on
vanillin as a weak skin sensitizer (1B) rather than a nonskin sen-
sitizer, and the prediction on benzyl benzoate as a nonskin sen-
sitizer instead of a weak sensitizer, both predictions generated
by SenzaGen. Furthermore, methylisothiazolinone was incon-
sistently classified by BRT in 2 experiments and therefore failed
to generate a valid consensus prediction.

DISCUSSION

Skin sensitizer hazard identification and characterization are
crucial aspects of chemical risk assessment. Though both end-
points have historically been acquired using in vivo models, sev-
eral nonanimal alternatives have been developed in recent
years. However, these approaches have mainly shown profi-
ciency in hazard identification, and methods enabling the rela-
tive ranking of chemicals by their skin sensitizing potency are
still lacking. Currently, weight-of-evidence approaches has
been suggested, that utilizes regulatory accepted nonanimal al-
ternative assays, for assessment of skin sensitizer potency
(Casati et al., 2018). Several such approaches were recently ex-
amined and compared with human data, and though perform-
ances were comparable with those of the LLNA (Kleinstreuer
et al., 2018), no strategy based on nonanimal methods has yet
been recommended for regulatory purposes. Furthermore, con-
sidering the estimated prediction performances, it is the
authors belief that continued development of nonanimal
approaches for prediction of skin sensitizer potency will lead to
additional improvements in correlation with human data.

In this study, an optimized GARDpotency prediction model
was established, based on both gene expression analysis of ge-
nomic biomarkers, as well as an experimentally derived con-
centration parameter, as defined by dose-dependent
cytotoxicity measurements. The relevance of gene expression
measurements for characterization of skin sensitizer potency
has previously been described (Albrekt et al., 2014; Zeller et al.,
2017), and the genomic biomarkers’ ability to provide discrimi-
natory power between weak and strong skin sensitizers was
here confirmed. Furthermore, the link between the concentra-
tion required to trigger a binary event, and the severity or fre-
quency of such an event, is often explored within the field of
toxicology, and provides an opportunity for an intuitive inter-
pretation. In the field of sensitization assessment, examples in-
clude the in vivo LLNA, which determines sensitizing potency by
linking the binary event of a 3-fold induction of T-cell prolifera-
tion, as compared with a vehicle control, to the concentration

required to generate the response. Similarly, the No Observed
Adverse Effect Level value describes the maximum concentra-
tion studied that did not induce sensitization in a clinical set-
ting. Here, as well as in other studies (Johansson et al., 2017),
correlations between the GARD input concentration, ie, the sin-
gle dose used for cell exposures prior to gene expression meas-
urements, and both LLNA and Human Potency Categories were
observed. Based on these observations, it was hypothesized
that the experimentally derived concentration with which test
chemicals are assayed provides predictive information related
to sensitizing potency. The hypothesis was tested in cross-
validation exercises within the training dataset. Indeed, inclu-
sion of GARD input concentration information in the
GARDpotency prediction model provides both an intuitive inter-
pretation of data and an increased predictive capacity, as
demonstrated.

To validate the GARDpotency prediction model and to allow
for estimations of its predictive performance and robustness, a
blinded interlaboratory ring trial was performed, encompass-
ing 3 laboratories, each assessing a set of chemicals in 3 inde-
pendent experiments, using a test dataset comprising positive
classifications from the associated GARDskin validation study.
The cumulative accuracy of GARDpotency was estimated to
88.0%, suggesting that GARDpotency is indeed functional, as it
harbors a capacity to distinguish weak from strong skin
sensitizers.

Considering GARDpotency classifications of the test dataset,
observed misclassifications were only generated at individual
laboratories. Of these, a set of weak sensitizers was overpre-
dicted by the lead laboratory; citral, diethyl maleate, and cin-
namyl alcohol. However, no systematic differences in
experimental details capable of explaining the observed predic-
tion discrepancies could be identified.

Having assessed the functionality of GARDpotency as a tool
for potency-associated subclassification of skin sensitizers, a
tiered approach was proposed for complete hazard assessment
and characterization. In this GARD tiered approach, test items
are subjected to skin sensitizing hazard assessment in a first
tier by utilization of the GARDskin assay. Any test item classi-
fied as a skin sensitizer is passed to a second tier, in which
GARDpotency allows for potency-associated subclassification.
Taken together, the GARD tiered approach allows for risk as-
sessment into 3 categories, similar to currently proposed testing
strategies (Kleinstreuer et al., 2018).

The predictive performance of the GARD tiered approach
was also evaluated within the scope of this study, with an esti-
mated accuracy of 86.1%, based on the common test dataset de-
fined for the validation of GARDskin and GARDpotency,
respectively. As evidenced by recent review articles, proposed
in vitro and in silico assays and defined approaches (DAs) for po-
tency assessment exhibit predictive accuracies ranging between
55% and 69% when predicting human sensitizing potencies into
3 discrete categories, similar to the GARD tiered approach
(Kleinstreuer et al., 2018). Similarly, when predicting sensitizing
potency into 3 categories, in vivo counterparts (ie, the LLNA and
guinea pig data) exhibit predictive accuracies of 59% (ICCVAM
and NICEATM, 2010; Kleinstreuer et al., 2018). Based on such
estimates, it is generally agreed that developing approaches
that can provide an understanding of potency and that facili-
tates risk assessment processes represents one of the most sig-
nificant challenges in skin sensitization sciences today.
Adhering the herein reported data to this context, we propose
that the GARD tiered approach constitutes progress in the field
and that it can positively contribute valuable information to

Table 4. Contingency Tables and Prediction Performances Achieved
by Respective Laboratory in the Ring Trial for the Genomic Allergen
Rapid Detection Tiered Approach

BRT Eurofins SenzaGen

Reference 1A 1B No Cat 1A 1B No Cat 1A 1B No Cat

1A 8 1 0 10 1 0 10 1 0
1B 0 6 1 0 7 1 3 3 2
No Cat 0 0 8 0 0 8 0 1 8
Accuracy (%) 91.7 92.6 75
Sensitivity 1A (%) 88.9 90.9 90.9
Sensitivity 1B (%) 85.7 87.5 37.5
Sensitivity No

Cat (%)
100 100 88.9
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already proposed testing strategies, DA:s, or more loosely incor-
porated into weight-of-evidence approaches.

Considering the reproducibility of the GARD tiered approach,
the herein reported results shows that consistent predictions
for potency categorization, in accordance with the 3 GHS/CLP
categories, between laboratories were obtained for 66.7% of the
assayed chemicals. Furthermore, the reproducibility within re-
spective laboratory ranged between 60.0% and 77.8%. To the
best of our knowledge, this is the first study presented to date,
in which attempts have been made to evaluate the reproducibil-
ity of an in vitro potency assessment strategy in a ring trial, mak-
ing a comparative evaluation of the herein obtained figures
difficult. However, it is known that the reproducibility of in vivo
counterparts, eg, the LLNA, drops from approximately 70%–80%
for binary hazard, to 60%–70% for potency categorization in 3
categories, identical to the strategy presented here (Dumont
et al., 2016; Kleinstreuer et al., 2018). Thus, the BLR results ac-
quired in the above described ring trial are considered compara-
ble with current regulatory accepted methods for potency
categorization of skin sensitizers. Currently, no direct or sys-
tematic cause for the observed inconsistencies between the lab-
oratories has been identified. Further investigations into the
sources of introduced variability will potentially allow for in-
creased reproducibility.

In conclusion, we have described the optimization of the
GARDpotency assay, for discrimination between weak and
strong skin sensitizers, and the transfer of the proposed model
to a standardized gene acquisition platform. Furthermore, the
validation results from a ring trial study performed in accor-
dance with OECD guidance documents were reported. The
results suggest that the assay is indeed able to categorize chem-
ical skin sensitizers according to their relative potency, in com-
pliance with the GHS/CLP categories. We suggest that the
described testing strategy provides valuable data that, together
with the work of others, will contribute toward realization of an
ultimate solution that will allow, in the future, an assessment
of skin sensitizing potency without recourse to animal
experimentation.

SUPPLEMENTARY DATA

Supplementary data are available at Toxicological Sciences
online.
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