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Abstract

A new method to develop low-energy folding routes for proteins is presented. The novel aspect of the proposed approach
is the synergistic use of optimal control theory with Molecular Dynamics (MD). In the first step of the method, optimal
control theory is employed to compute the force field and the optimal folding trajectory for the Ca atoms of a Coarse-
Grained (CG) protein model. The solution of this CG optimization provides an harmonic approximation of the true potential
energy surface around the native state. In the next step CG optimization guides the MD simulation by specifying the
optimal target positions for the Ca atoms. In turn, MD simulation provides an all-atom conformation whose Ca positions
match closely the reference target positions determined by CG optimization. This is accomplished by Targeted Molecular
Dynamics (TMD) which uses a bias potential or harmonic restraint in addition to the usual MD potential. Folding is a
dynamical process and as such residues make different contacts during the course of folding. Therefore CG optimization has
to be reinitialized and repeated over time to accomodate these important changes. At each sampled folding time, the active
contacts among the residues are recalculated based on the all-atom conformation obtained from MD. Using the new set of
contacts, the CG potential is updated and the CG optimal trajectory for the Ca atoms is recomputed. This is followed by MD.
Implementation of this repetitive CG optimization - MD simulation cycle generates the folding trajectory. Simulations on a
model protein Villin demonstrate the utility of the method. Since the method is founded on the general tools of optimal
control theory and MD without any restrictions, it is widely applicable to other systems. It can be easily implemented with
available MD software packages.
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Introduction

After their synthesis in the cell, proteins fold to their unique

native states in order to fulfill their biological functions. Significant

amount of research has been devoted to the determination of the

alternative folding routes that bridge the denatured and native

protein configurations. Recent studies show that, the folding

landscape is rugged and funnel-shaped, and the protein prefers to

follow the folding routes that minimize its energy [1,2]. At the

same time proteins avoid those pathways that result in high-

entropy loss [3,4].

In general coarse-grained mesoscopic models are used to

facilitate the protein folding process. At the same time these

simplified models provide useful physical insight before embarking

on full scale modeling. At the heart of coarse-graining lies the

‘‘lumping’’ of atoms to fewer interaction sites (e.g. Ca atoms in the

case of proteins). When coarse-grained (CG) models are combined

with more refined atomistic models, important headway into the

problem of protein folding can be made [5]. For example [6] used

CG models to identify physically meaningful starting conforma-

tions (instead of extended initial structures) for the MD simulations

of the protein folding process.

Recent multiscale or multigraining methods combine CG

models with higher resolution models in molecular simulations

[7–10]. For the folding problem it is important to note that CG

models must be constructed to preserve the dominant character-

istics of folding without significant loss of accuracy. To this end the

potentials of mean force for CG models have been designed by

matching the radial distributions of CG and atomistic models

using the iterative Boltzman technique [11,12]. In [13] a force

matching method has been presented to construct a CG model

that has a mean force field which matches the ab initio MD

reference forces.

There is ample evidence in the literature that folding dynamics are

governed by a reduced dimensional manifold that consists of slow/low-

frequency modes. These modes persist over long time scales and

influence the conformational changes and the protein’s function, while

the rest of the modes reflect the localized high-frequency dynamics

[14,15]. Significant reduction in dimensionality is basically due to the

interresidue correlations which result from the contacts made during

folding. In strong support of this observation, it has been shown that the

motion of the backbone Ca atoms explains most of the essential folding

dynamics [16,17]. This further justifies the use of reduced order CG

representations for the characterization of folding dynamics.
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Folding can be characterized as a dynamical process during

which the protein starts from a random unfolded configuration

and folds into its unique native state under the action of inter and

intramolecular forces. This physical process has lent itself into

different types of mathematical formalisms in the past. One

approach is called the action-derived molecular dynamics

(ADMD) which solves a two-point boundary value problem [18].

In this work the authors discretize the action (Lagrangian) over

time along possible trajectories that satisfy Newton’s equation of

motion subject to preassigned initial and final conditions.

Minimization of this action generates the folding pathway.

Optimal control is yet another natural approach to formulate

and solve the folding problem. Our earlier work [4,19] has

contributed in this direction by applying control theory to linear

CG representations of proteins. However direct application of

optimal control to the nonlinear atomistic models used in MD is

computationally prohibitive as time scale and the number of

residues increase for realistic problems.

As an alternative, in this paper, we have combined the best of

two worlds of CG modeling and MD. Performing dynamic

optimization using a CG model provides simplicity and speed

whereas MD supplements accuracy. This is the motivation behind

the proposed method. Specifically we are interested in developing

a method that can easily compute low-energy folding trajectories

and at the same time closely represent the real protein. To this end

we utilize the well-founded machinery of optimal control theory to

compute the folding trajectory for the Ca atoms. This is coupled

with MD which performs all-atom dynamic simulation and refines

the CG optimal folding trajectory. This CG dynamic optimization

and MD refinement cycle is repeated at sampled folding steps until

the protein reaches its native state. We now describe each element

of the method in detail below.

Methods

Coarse-Grained Model
In the CG model each residue is represented with a spherical

bead centered at the Ca atom. The position of the i-th bead in

space is denoted by the vector Ri with respect to a fixed reference

frame. Beads are connected with each other with springs. Beads-

and-springs representation of the protein is common in the

literature [20]. The total position vector is defined by R, whose i-th

entry is the position vector for the i-th bead Ri . Folding dynamics

is governed by the equation of motion:

m
d2Rg tð Þ

dt2
~{c

dRg tð Þ
dt

zCRg tð Þ~Fg tð Þ g~x,y,z ð1Þ

where, the subscript g denotes the x, y, or z coordinates; m is the

mass of the i-th residue; c is the local friction constant; Fg is the

force field; and C is the connectivity matrix that represents the

covalent bonds of the initial protein structure. Assuming that the

mass term is negligible [20,21] and expressing the variables in

deviation from their native state values leads to

d ~RRg(t)
dt

~c{1C ~RRg(t)zc{1 ~FFg(t) g~x,y,z ð2Þ

where ~RRg tð Þ~Rg tð Þ-Rg
N , and ~FFg tð Þ~Fg tð Þ-Fg

N , and the super-

script N denotes the native state. In the following, in the interest of

simplicity, we omit using the subscript g that refers to the x, y or z

coordinates. We now formulate the dynamic optimization

problem as an optimal control problem.

Optimal Control Formulation: Linear Quadratic Regulator
The CG dynamic model that governs the motion of the

backbone is given by:

d ~RR(t)

dt
~c{1C ~RR(t)zc{1 ~FF(t)

~RR(t~0)~~RR(0)

ð3Þ

It follows from optimal control theory [22] that the Linear

Quadratic Regulator (LQR) synthesizes a feedback solution for the

force field ~FF that drives the initial state ~RR(0) to the desired zero-

state. This means that the unfolded initial structure folds to its

native state under the optimal force field designed by LQR.

Among many possible trajectories that satisfy Eq. 3, LQR chooses

the one that is optimal with respect to a prescribed objective

function. Specifically the following optimization is solved subject to

Eq. 3:

min
~FF

ðtf
0

(~RRT Q~RRzr~FFT ~FF)dt ð4Þ

Since the protein tends to move downhill on the energy landscape,

the first term under the integral represents the potential to be

minimized as it is shown below.

The contact map of a protein is an nxn matrix defined by:

C~
C(i,j)~1 if i=j and Rij

�� ��ƒrc

C(i,j)~0 if i=j and Rij

�� ��wrc

( )
ð5Þ

where Rij~Rj{Ri denotes the pair distance vector from residue i

to residue j.

The parameter rc is the cut-off distance (e.g. 7 Å) for a contact

to be established between two residues. The Laplacian matrix [23]

is an nxn matrix constructed from the contact map C as follows:

L~

L(i,j)~{C(i,j) for i=j

L(i,i)~
P

k,k=i

C(i,k)

8<
:

9=
; ð6Þ

When Q is equated to the above Laplacian matrix excluding the

covalent bonds (i.e. L(i,i)), one gets [4]:

~RRT Q~RR~~RRT
ij

~RRij ð7Þ

which is in the form of an ‘‘harmonic pair potential’’ centered at

the native state [24]. Minimization of this potential over the

folding time horizon tf generates the optimal force field that folds

the backbone of the protein. At the same time, energy cannot

decay to zero infinitely fast by using an unrealistic, unbounded

force field which would violate the principle of minimum entropy

loss. Thus, a second term is included in the objective function (4) to

avoid such trajectories. The parameter r associated with this term

acts like a Lagrange multiplier to penalize entropy losses. Typically

it is used as a tuning parameter to reflect the relative significance of

the two terms under the integral.

It is well known that the folding mechanism is encoded in the

topology of the native state and the Hamiltonian function of the

protein [6,25]. For these reasons numerous unfrustrated models

Coarse-Grained Optimization and Molecular Dynamics
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have been built based on the topology of the native state. As a

zeroth order approximation, these models ignore the nonnative

interactions [26]. Recognizing that the nonnative interactions can

play a role in the earlier stages of folding, [27] has introduced a

minimalist model which includes the nonnative interactions

through a nonlocal potential. In our method we compute the

contacts made at each folding step and update the contact matrix

C , Laplacian L and Q accordingly. Thus nonnative contacts are

incorporated into the CG model and optimization, if they happen

to form temporarily during folding.

In Eq. 3 the connectivity matrix C has all negative eigenvalues

but one zero eigenvalue. This zero eigenvalue needs to be

stabilized by the optimal controller so that the protein asymptot-

ically can reach its native state. To do so Q must be positive

definite. However when Q is set equal to the Laplacian, it becomes

nonpositive definite since the Laplacian matrix has all positive

eigenvalues but one zero eigenvalue by definition. Therefore Q is

modified accordingly:

Q~LNBzaI ð8Þ

where LNB is the Laplacian excluding the covalent bonds; the

parameter a is a small positive number, and aI is added to make Q
positive definite and guarantee stability.

As the terminal time tf approaches infinity, the optimal solution

to the above optimization problem is given by a negative constant

feedback control law:

~FF tð Þ~{K ~RR tð Þ ð9Þ

where K is a constant matrix that is easily computed using the

algebraic Riccatti equation [22].

Note that when a random force j tð Þ in the form of white noise is

added to the right hand side of the CG model i.e. Eq.3, the

equation of motion follows the Langevin dynamics. In this

stochastic case, the feedback law given by Eq. 9 is still optimal

as it now minimizes the expected value of the objective function.

Synthesis of the Optimal Harmonic Potential for the CG
Model

The above structure of Q imposes a similar structure on the

optimal feedback gain matrix K . In other words, the optimal K
can be decomposed similarly to Eq. 8:

K~ �KKzkI ð10Þ

�KK is the ‘‘harmonic spring constant matrix’’ with its row sums

equal to zero. The entries of �KK represent the springs connected

between the residues and their values are the corresponding spring

constants. These values are not a priori selected but are optimally

assigned by the optimal controller. The second term kI represents

the springs that connect the residues directly to their native states.

For these connections, spring constant values are all the same and

equal to k. These additional connections are necessary to stabilize

the translational motion due to the zero eigenvalue.

Since the optimal force field ~FF tð Þ~{K ~RR tð Þ and ~FF~{
LU

L~RR
,

the optimal controller has effectively synthesized the following

optimal harmonic potential:

U(~RR)~
1

2
~RRT K ~RR ð11Þ

This potential is a CG approximation of the true potential energy

surface around the native state as shown in Fig. 1. It is

parametrized through Q since K depends on Q.

When the optimal force field ~FF tð Þ~{K ~RR tð Þ is implemented,

the CG dynamical model i.e. Eq. 3. becomes:

d ~RR

dt
~ (c{1C{c{1K)~RR

~RR(t~0)~~RR(0)

ð12Þ

It is this dynamical manifold that governs the motion of the alpha

carbons.

Interfacing the CG Model Based Optimization with MD
The novel aspect of the proposed method and the main

contribution of this paper is the concerted use of CG dynamic

optimization and MD. CG optimal folding trajectory guides the

MD simulations. In return the results from MD are used to refine

the CG trajectory by making the necessary adjustments. The block

diagram representation of the method with the information

exchange between CG optimization and MD tasks is shown in

Fig. 2. Implementation of the method is explained next.

For an initial unfolded structure the position vector for all the

atoms i.e. RAA(0) is available (see Fig. 3). The position vector for

Ca atoms i.e. R(0) is extracted from this RAA(0) . The Laplacian

for the initial structure is computed from its contacts and Q is

initialized as in Eq.8. Next LQR computes the first optimal CG

trajectory for the Ca atoms. Denote this trajectory by R�(t), where

‘‘*’’ indicates that it is optimal for the CG model.

Now pick a particular time t~tk, and sample a conformation

R� tkð Þ from the first optimal CG trajectory R� tð Þ. This

conformation is the first ‘‘target’’ structure for MD. It is supplied

to MD as shown by the first arrow going down in Fig. 3. Next

targeted molecular dynamic (TMD) simulation, which has the Ca

positions of the optimal target structure R� tkð Þ as its target, is

performed. In order to relieve any stress/strains that may have

occured by forcing the Ca positions to the CG predicted positions

via TMD, a succesive short equilibration (Conventional MD) to

the TMD simulation is performed. It has to be noted that

Figure 1. One dimensional schematic of potential energy
surfaces. U is the harmonic CG potential; E is the protein’s true
potential. Native values are subtracted from both.
doi:10.1371/journal.pone.0029628.g001
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continuity in the all atom simulations is achieved by starting the

TMD simulations from the final structures of the previous

equilibration simulations.

In essence the following type of minimization is solved (see MD

block in Fig. 2):

min

ðtf
0

R(t){R�(tk)k kdt ð13Þ

This is implemented by performing targeted molecular dynamics

(TMD). TMD has been used in the past to accomplish large

conformational changes by using a bias potential or harmonic

restraint in addition to the usual MD force field [28,29]. We have

implemented TMD within NAMD software package [30]. At each

time step, NAMD computes the force on each atom from the

gradient of the bias potential given by

UTMD~
k

2N
½RMSD(t){RMSD�� ð14Þ

where RMSD(t) is the root mean square deviation of the current

conformation from the native structure and similarly RMSD� is

the the root mean square deviation of the target conformation

from the native structure. k is the spring constant and N is the

number of targeted atoms.

TMD is followed by equilibration of potential and kinetic

energies. The resulting structure RAA tkð Þ is an all-atom stable

structure whose Ca positions are closest to the CG optimal

structure that was targeted.

After MD simulation, two pieces of information are supplied to

CG optimization. This feedback information includes the new Ca

position vector R tkð Þ and the new matrix Q tkð Þ. This is shown by

the arrow up (feedback) from MD to CG optimization blocks in

Fig. 2. By definition the entries of Q are determined by Ca atoms

that make contact. Since these contacts change during the course

of folding, Q must be updated after each MD. Next, time is

advanced to tk, and CG optimization is repeated with the new

initial state vector R tkð Þ and the new Q tkð Þ. This cycle of CG

dynamic optimization and MD feedback correction is repeated

until the end of folding. At the end one obtains an optimal folding

trajectory that consists of N conformations with full atomic details:

RAA 0ð Þ,RAA tkð Þ,RAA tkz1ð Þ, . . . . . . ,RAA tkzN{2ð Þf g:

CD optimization-MD cycle generates the folding trajectory by

‘‘hopping’’ between the approximate CG harmonic potential i.e.

Eq. 11 and the true potential surface. During this hopping, the CG

harmonic potential guides MD by providing the target conforma-

tions to explore in full detail. At the same time the local

information from MD updates the CG potential. When this

learning cycle is repeated over time, convergence to the native

state is accomplished. The ‘‘hopping’’ between the potential

surfaces is schematically illustrated in Fig. 3. Dashed parabolas

represent the CG potentials U ~RR
� �

. These potentials get updated

after each MD simulation. As more contacts are established, the

potentials get narrower as shown. This enhances the convergence

to the native state. The solid curve represents the true MD

potential. Arrows show the hopping between potentials that occurs

at different sampling times tk, tkz1, etc. until the native state is

reached. The CG minimizer-the Linear Quadratic Regulater itself

has a global minimum since the model is linear and the objective

function is quadratic. But the folding energy landscape has many

local minima and global search over this multi-dimensional surface

is problematic. For this reason this surface is approximated by the

CG optimization and this approximation is repeated along the

folding trajectory. In this sense the trajectory is a collection of local

optimums.

The chicken Villin headpiece, Protein Data bank code

1VII.pdb, was selected as an example to demonstrate the proposed

method. Villin has 36 residues and it is one of the fastest folding

and stable proteins. Due to its small size and short folding time,

Villin has been the subject of several theoretical and experimental

Figure 2. Block diagram representation of the method.
doi:10.1371/journal.pone.0029628.g002

Figure 3. Exchange between the updated CG potentials and
the true all-atom MD potential. Dashed parabolas are the CG
potentials that are updated. Arrows show the hopping between
potentials at different sampling times tk , tkz1, etc. until the native state
is reached. Triangle represents the initial state in each CG optimization.
Square represents the optimal target Ca conformation. Circle represents
the all-atom structure reached after MD refinement. Triangle-square-
circle sequence is one computational cycle of CG optimization and MD
refinement.
doi:10.1371/journal.pone.0029628.g003
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investigations [31–36]. Unfolded starting structures were con-

structed in Hyperchem by first generating the whole structure as a

beta sheet and then geometrically optimizing the structure using

the the Polack-Ribiere Conjugate Gradients algorithm. Folded

native structures on the other hand were selected from the pdb

bank. All molecular dynamics (MD) simulations were performed

for an NVT ensemble in explicit solvent (water) using NAMD 2.7b

package with CHARMM27 force field at 310 K. Villin, both in its

folded and unfolded form, was aligned with the x-axis using the

transformation matrix required to bring the vector between the

first Ca atom and the last Ca atom to the x-axis. Folded Vilin was

solvated in a waterbox of 45 Å cushion in the x- direction, 15 Å

cushion in the y- direction and 15 Å cushion in the z- direction.

Unfolded Villin was solvated in a waterbox of 7 Å cushion in the

x-direction, 15 Å cushion in the y- direction and 15 Å cushion in

the z-direction. Ions were added in order to represent a more

typical biological environment. Periodic boundary conditions were

applied and Langevin dynamics was used. All atoms were coupled

to the heat bath. A time step of 1 fs was used. No rigid bonds were

used in order to keep all degrees of freedom.

Two minimization-equilibration cycles were applied to the

unfolded and folded structures. The purpose of the first

minimization is to relax the water and it is performed under

NPT conditions. For that purpose the protein was kept fixed

throughout the 20000 steps of minimization and 0.5 ns of

equilibration. The second cycle was applied under NVT

conditions to find a local minimum of the whole system’s energy.

Again 20000 steps of minimization were performed which was

followed by equilibration. In this second cycle the Ca positions of

the unfolded structure was fixed throughout the whole simulation

so that the structures stayed unfolded. For the folded structures on

the other hand the protein was set free to move.

The Ca coordinates of the equilibrated unfolded structure

(which are essentially the same with the non-equilibrated one)

were selected as the starting structure and the Ca coordinates of

the NMR structure, 1VII.pdb, were selected as the final structure

to compute the first optimal CG folding trajectory. Dynamic

optimization was solved and the resulting CG optimal folding

trajectory for Ca positions was recorded and divided into 50 time

steps. The first of these 50 recorded structures was selected as the

first target conformation for MD. A 0.01 ns long TMD simulation,

starting from the equilibrated unfolded structure, was performed

to bring the actual Ca positions of the all-atom conformation to the

targeted values. An elastic spring constant of 2000 kcal=mol:A2
� �

was used in TMD. After TMD simulation, a 0.05 ns long

conventional molecular dynamic (CMD) simulation was per-

formed for equilibriation. The final structure was recorded as the

first all-atom MD structure along the folding trajectory. Using this

recorded structure as the starting structure of the CG model, a

new CG optimal folding trajectory was obtained; a new target

structure was chosen and TMD simulation followed by consec-

utive MD equilibration was performed. These optimization-TMD

simulation-MD equilibration cycles, named folding steps, were

repeated until enough convergence to the native state was

achieved. The final structure to generate all of the CG optimal

folding trajectories was selected to be the NMR structure of villin

as it was the case for the first dynamic optimization.

Results

Table 1 summarizes the evolution of the selected target

structures as time progresses. Each step in the table corresponds

to one of the CG predictions and the successive MD relaxation

cycle. In CG optimization we obtain a prediction of the CG

folding trajectory. Our aim is to find the closest all atomistic

conformations to these predictions. In order not to loose accuracy,

steps taken by the CG model should be chosen as small as possible

whereas they must be large enough so that the system does not

return to its previous state. Initial structures exhibit significant

differences as they fold while this difference diminishes as the

native state is approached. In other words the RMSD between the

starting structure and final structure of the CG folding trajectory

decreases with each folding step. Therefore, during the early stages

of folding, one should choose the target structures from the

beginning structures predicted by the CG optimal trajectories.

However, in the later stages, the target structures should be chosen

from the structures near the end of the CG optimal trajectories so

that large enough RMSD from the starting structure can be

obtained to derive the TMD. This is confirmed by the structures

noted in Table 1. For the first 4 time steps the first predicted CG

optimal structure is used to evolve the conformation in MD.

However for advanced steps a further predicted structure is taken

which is, for example, the 50th predicted structure for all folding

steps after 51.

Villin has 3 short helices, H1, H2 and H3 surrounding a closely

packed hydrophobic core. These helices contain the residues 4–8,

15–18 and 23–30, respectively. They are held together by a loop

and a turn. Fig. 4 shows sampled conformations from the folding

trajectory obtained by our method. At the early stages of folding,

helix H3 is the first one that begins to form which is followed by

H1. After an hydrophobic collapse, helices H1, H3 continue to

form concurrently. Helix H2 is the last and most difficult one to

form which is consistent with the observations made in [34].

At the end of folding, the final MD structure comes very close to

the NMR native structure as shown in Fig. 5(b). The RMSD from

the NMR native structure for the Ca atoms monotonically

decreases towards the native state as shown in Fig. 5 (a). After

the folding step 150, the RMSD values fluctuate around 1.49 Å,

exhibiting a minimum of 1.16 Å. Among different techniques and

folding simulations studied in the literature, most of the reported

Ca- RMSD values for Villin are .3.0 Å [33]. As an example [35]

presents a 200-ns fast folding simulation using the implicit solvent

method and reports an RMSD value greater than 3.46 Å.

However, more recently, lower RMSD values were obtained.

The authors in [33] used the replica exchange MD method and

showed that Villin folded consistently to the native state. The

lowest Ca- RMSD from the X-ray structure was given as 0.46 Å

Table 1. Evolution of targeted CG structures.

Step
Target structure selected from the CG folding
trajectory

1–4 1

5–9 2

10–14 3

15–19 5

20–24 7

25–29 11

30–34 15

35–39 23

40–44 31

45–50 47

51--- 50

doi:10.1371/journal.pone.0029628.t001
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[33]. In [34] the action-derived molecular dynamics method

(ADMD) was applied and the Ca- RMSD from the X-ray crystal

structure fell below 1.0 Å. Ca- RMSD values given in Fig. 5 (a) are

close to these improved values reported in the literature. Also our

RMSD values with respect to the backbone atoms are similar to

the Ca- RMSD values which indicates that the backbone motion

of the protein follows the CG optimal trajectory of the Ca positions

further justifying the use of CG optimization.

The initial rapid decrease in radius of gyration Rg (see Fig. 5(a))

is indicative of the initial hydrophobic collapse and compaction of

protein. The slower decay of RMSD in later stages of folding is

due to the completion of local secondary structures and the tertiary

contacts. The contacts which exist between two residues which are

seperated more than two residues in sequence and have a Ca-Ca

distance smaller than 6.5 Å are shown in Fig. 5(b). Similar to the

behavior of RMSD, the number of contacts converges after folding

step 150. These trends and numbers are similar to those given in

[34].

All components of the internal energy of the protein (i.e.bonds,

angles, dihedrals, impropers, Van der Waals, and electrostatic)

were evaluated using the NAMD Energy Plugin in VMD. In Fig. 6

the internal energy profile of Villin for the computed trajectory

that consists of 200 folding steps is shown. The sampled

conformations seen in Fig. 4 are marked on Fig. 6 by circles.

Different energy components are compared in Fig. 7. It is the

nonbonded energy (Van der Waals and electrostatic in particular)

that determines the general trend of the total energy profile.

Conformational changes during folding have a direct effect on

the internal energy. Therefore Fig. 6 shows the protein’s internal

energy only. The plot does not include solvent-protein ineractions

and solvent energies. The internal energy profile exhibits many

short time-scale local fluctuations which persist throughout

folding. These fluctuations reside on a slower time-scale trajectory

(shown by dashed curve) which follows a downward trend towards

the native state. In order to explain the energy fluctuations in

Fig. 6, we have compared their magnitudes with the magnitude of

the equilibrium fluctuations of the native state. For this purpose,

we performed a 2.62 ns equilibration of the native structure of

Villin headpiece using NAMD, and from the last 0.5 ns of data we

computed the root-mean-square fluctuation of energy:

DERMS~(SE2T{SET2)1=2 ð15Þ

This gave a value of 34.1 kcal/mol. Next we computed DERMS for

the local energy fluctuations directly from the simulated folding

trajectory of Fig. 6. The results are listed in Table 2. It is seen that

the internal energy fluctuations DERMS along the folding

trajectory are about the same order of magnitude as the value

calculated from MD equilibration of the native state (i.e.

34.1 kcal/mol). In the early stages of folding, fluctuations exceed

the native state’s equilibrium value (see steps 1–124 in Table 2)

and as the protein folds to its native state, fluctuations approach

the native state’s equilibrium fluctuation of 34.1 kcal/mol as

shown in the later folding steps (126–200). It can be concluded that

fluctuations in Fig. 6 are, almost half of the time, around the same

value as the equilibrium value. In addition it is important to note

that internal energy fluctuations larger than the equilibrium value

can occur along the folding trajectory because folding is an out of

equilibrium process during which there is not enough time for all

the conformational rearrangements to complete at each folding

step. All these factors contribute to the magnitudes and general

trend of the MD energy fluctuations along the folding trajectory.

When moving average is applied over time to the internal

energy data, the local dynamic fluctuations can be filtered and a

slower time-scale folding trajectory is revealed as shown by the

dashed curve in Fig. 6. In the early stages of folding we see that the

Figure 4. Some sampled conformations on the folding
trajectory. Numbers indicate the folding step. H1 (red), H2 (purple)
and H3 (green) denote the three helices of Villin headpiece.
doi:10.1371/journal.pone.0029628.g004

Figure 5. Evolution of radius of gyration, RMSD and contacts during folding. Evolution of radius of gyration Rg , and RMSD of Ca during
folding are shown in panel (a). Evolution of number of contacts and comparison of the final MD structure with the native structure appear in panel
(b).
doi:10.1371/journal.pone.0029628.g005
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internal energy decays sharply on the average. Here the energy

decrease is associated with the significant conformational changes

of the backbone (see early structures in Fig. 4.) and this dominates

the local events and their energy fluctuations. This result is also in

agreement with the initial decay of RMSD and Rg plots in Fig. 5

(a). During the later stages of folding (after step 90), conformational

changes become more incremental as the native state is

approached while the local fluctuations persist as expected. Finally

the energies of our attained conformations at the end of folding

were found to be within the energy fluctuations of the native state.

For example the energy value of the structure at the 192th folding

step is equal to 221.2 kcal/mol. We have performed MD

equilibriation on the NMR native structure and found that

221.2 kcal/mol falls within the internal energy fluctuations of the

equilibriated NMR native structure.

Above results illustrate the workings of the proposed method

and show that the method has successfully produced a folding

trajectory that has reached a reasonable neighborhood of the

native state for a particular protein. Additional MD simulations

can now be afforded to fine-tune, allow for further local

rearrangments, and improve the folding, if deemed necessary.

Discussion

It is now well-recognized that the long term folding dynamics of

proteins is governed by a reduced order manifold that is built from

the correlated motion of its residues. For this reason low

dimensional, simplified CG models have proven to be useful to

advance our understanding of folding dynamics while demanding

modest computational power. On the rugged and funnel-shaped

energy landscape, there exist many alternative folding routes that

bridge the denatured and native protein configurations. Among

these folding routes, the protein prefers to follow the folding routes

that minimize its energy and its entropy-loss. However generation

of these folding routes from first principles and computation of the

optimal folding routes is not a trivial task. Direct search for the

optimal pathway by a dynamic optimization based on a detailed

atomistic model is computationally prohibitive for most typical

problems at present. Therefore, in this paper, we have introduced

a method that makes use of a CG optimization which guides the

MDs in search of the optimum folding routes. CG optimization

minimizes an harmonic approximation of protein’s true potential

and constructs the optimal trajectory for the positions of Ca atoms.

Subsequently MD refines this optimal folding trajectory at the

atomistic level. To this end, we have performed TMD to follow

closely the optimal pathway generated by the CG optimization.

The positions of Ca atoms from the CG optimal trajectory are

targeted and TMD is able to make the necessary conformational

changes. This CG dynamic optimization and all-atom MD

refinement cycle is repeated at each sampled folding time until

the protein reaches its native state. In doing so the folding route is

continuously reoptimized and updated by incorporating the local

information obtained from MD. In particular, at each sampled

folding time, the contact map of the protein and its harmonic CG

potential are updated, and CG optimization is repeated with this

new data. The method is computationally attractive and easy to

interface with the available MD simulation packages. The method

is based on a general conceptual framework which permits the use

of different types of CG models and potentials. Different ways to

update the CG grain model during folding is open to further

research.

We show in our simulation example that the Villin headpiece

can be successfuly folded to its native state by the method. Results

are consistent with those in the literature. For the proof of concept,

Figure 7. Components of the internal energy. Conformational
energy (bonds, angles, dihedrals, and impropers), nonbonded energy
(vdW and electrostatic energy), and total energy are compared.
Nonbonded energy determines the general trend of the total energy.
doi:10.1371/journal.pone.0029628.g007

Table 2. The internal energy fluctuations along the folding
trajectory.

Folding Step Interval in Fig. 5. DERMS (kcal=mol)

0–56 61

57–100 48

101–124 56

126–170 28

171–185 36

195–200 32

doi:10.1371/journal.pone.0029628.t002

Figure 6. The internal energy of protein during its folding. The
dashed curve is obtained by taking moving average of the data and it is
included to mark the general trend. Circles correspond to the structures
shown in Fig. 4.
doi:10.1371/journal.pone.0029628.g006
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we delibaretly chose a small ‘‘benchmark’’ protein such as Villin

since it is the most widely studied system in the literature where

folding trajectories are available. This allowed us to make

comparisons and validate our results. Otherwise the method is

widely applicable to larger proteins.
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