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Abstract: In the current context of green mobility and sustainability, the use of new generation natural
fillers, namely, α-cellulose, has gained significant recognition. The presence of hydroxyl groups on
α-cellulose has generated immense eagerness to map its potency as filler in an elastomeric composite.
In the present work, α-cellulose-emulsion-grade styrene butadiene rubber (E-SBR) composite is
prepared by conventional rubber processing method by using variable proportions of α-cellulose
(1 to 40 phr) to assess its reinforce ability. Rheological, physical, visco-elastic and dynamic-mechanical
behavior have clearly established that 10 phr loading of α-cellulose can be considered as an optimized
dosage in terms of performance parameters. Morphological characterization with the aid of scanning
electron microscope (SEM) and transmission electron microscopy (TEM) also substantiated that
composite with 10 phr loading of α-cellulose has achieved the morphological threshold. With this
background, synthetic filler (silica) is substituted by green filler (α-cellulose) in an E-SBR-based
composite. Characterization of the compound has clearly established the reinforcement ability
of α-cellulose.

Keywords: natural filler; α-cellulose; E-SBR; reinforcement; physico-mechanical properties; morphology

1. Introduction

Retrospection of polymer usage in the rubber industry clearly reveals that during
the 1930s styrene butadiene rubber (SBR) was developed as a replacement of natural
rubber (NR) and rapidly became one of the most common synthetic rubber [1]. SBR is a co-
polymer of styrene and 1,3-butadiene. On industrial scale, it is synthesized by two methods,
emulsion (E-SBR) and solution (S-SBR) [2] with butadiene to styrene in the proportion (in
wt) of 3:1. Micro structurally, butadiene can be observed in cis/trans/vinylic position [2]
and formation of micro-structure in E-SBR is un-controllable. As a result, it is formed with
broader molecular weight distribution (MWD) and long chain branching. SBR possesses
enhanced abrasion resistance, resistance to thermal aging and is lesser prone to mechanical
cleavage of chain compared to NR, whereas it has lower resilience, fatigue resistance and
lower cut growth resistance with respect to NR [3]. In the rubber industry, E-SBR emerged
as one of the majorly used polymers.

Usage of E-SBR would be impossible without the reinforcement of fillers, because re-
inforcement improves tear and rupture strength of rubber [4]. Till last decade, carbon black
(CB) was the sole filler used in different applications due to its better rupture resistance
and improved durability [5,6]. Rubber and CB both are hydrophobic, thus mixing of them
is generally physi-sorption. In case of silica, strong interaction among surface –OH groups
results in poor dispersion which cannot be overcome even by higher mixing energy. Silane
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coupling agents (SCAs) aid to disperse silica in a rubber matrix through physi-sorption
and chemi-sorption mechanisms [7–10].

In recent times, research on alternative fillers emerging from green sources is gain-
ing importance. Agricultural wastes, like coconut fiber, maize stalks, cherry seed shell,
rice husk etc., are explored as fillers by many researchers. For instance, Chigondo et al.
modified maize stalks by chemical means and investigated its reinforcement effect in NR
composites [11]. Razif et al. examined the impact of rice husk on different mechanical
properties of polypropylene composites [12]. Similarly, the footprint of modified linen fiber
waste on physico-mechanical properties of polar and non-polar rubber was explored by
Hussain et al. [13]. Jacob et al. found that modified sisal fiber imparts superior mechanical
properties of NR compounds [14]. Osabohien et al. reported the effect of cherry seed shell
as filler in NR composites [15]. Egwaikide et al. explored the effect of coconut fiber as filler
on the rheological, physico-mechanical properties of a NR vulcanizate [16].

Cellulose, a complex carbohydrate or polysaccharide, is the most abundant naturally
occurring organic compound, having a molecular formula of (C6H10O5)n [17,18]. It pro-
duces a 95–96% yield of D-glucose unit after hydrolysis with fuming hydrochloric acid.
Its structure is based on a D-glucose unit linked by β-1, 4 glycoside bonds. Cellulose
comprises about 33% of all vegetable matters. It is the basic structural component of plant
cell walls. The chemical structure of α-cellulose is mentioned in Figure 1. Fifty percent
of wood and 90% of cotton consists of cellulose. α-cellulose, one of the three classes of
cellulose, has the highest degree of polymerization and stability. The other two classes of
cellulose are β-cellulose and γ-cellulose. Cellulose has both amorphous and crystalline
regions [18]. Removal of the amorphous region by acid hydrolysis increases the strength
and stiffness of cellulose. This is due to the presence of only the crystalline region, that
helps α-cellulose to act as filler [18].

Figure 1. Chemical structure of α-cellulose.

In this article, potency of α-cellulose as filler and the volume percentage at which
optimal reinforcement occurs in the E-SBR matrix is investigated. Fourier transform
infrared spectroscopy (FTIR) and scanning electron microscope (SEM) are employed for
detailed morphological characterization of α-cellulose. Thermal reactivity as well as degree
of purity is measured by thermo-gravimetric analysis (TGA) and differential scanning
calorimeter (DSC). Physico-mechanical properties, visco-elastic behavior along with flow
characteristics are scrutinized. Scanning electron microscope (SEM) and transmission
electron microscopy (TEM) are employed to understand the micro-dispersion of filler at
different filler volume fractions. Physico-mechanical and morphological characterizations
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of the composites are compiled to assess reinforcement behavior as well as optimal volume
threshold of α-cellulose (Figure 1) in the E-SBR–α-cellulose composite. Finally, substitution
of silica by α-cellulose (10 parts) and subsequent evaluation of mechanical properties
establish its reinforcing ability in E-SBR composite.

2. Results and Discussion
2.1. Characterization of α-Cellulose

The thermo-gravimetric (TG) and differential thermo-gravimetric (DTG) profile of
α-cellulose is shown in Figure 2a. It shows double-stage degradation at 350 and 604 ◦C,
respectively. The first stage is due to loss of bound moisture and the second stage is
associated with the main chain degradation. This main chain degradation at very higher
temperature suggests high thermal stability of α-cellulose and ensures minimum defection
during mixing and consequent processing. Fourier transform infrared spectroscopy (FTIR)
is used to characterize structure and chemical composition of α-cellulose [17]. An FTIR
spectrum of α-cellulose is presented in Figure 2b.

Absorbance maxima at 3345 cm−1 is the characteristic feature of -OH stretching vibra-
tion, whereas the band around 2902 cm−1 is attributed to the symmetric and asymmetric
stretching vibration of C-H bonds present in -CH2 of aliphatic chains and end –CH3 groups.
The signal at 1637 cm−1 can be associated with the C=O stretching vibration. Distinct trans-
mittance at 1430 cm−1 confirms H-C-H and -O-C-H in-plane bending vibration, whereas
in-phase -OH bending vibration results in transmittance at 1372 cm−1. Peak at 1032 cm−1

may be contributed by C-C, C-OH, C-H ring and side group vibration. Presence of hydroxyl
(-OH) groups in α-cellulose is the key structural feature that has created enthusiasm to
map its potency as a reinforcing filler in the E-SBR matrix.

Thermal reactivity of α-cellulose is studied by using differential scanning calorimeter,
Figure 2c. An endothermic peak was observed at 85 ◦C, which corresponds to the loss of
moisture. The experiment is conducted up to 280 ◦C. No physical change is observed up to
heating at that temperature (at a heating rate of 10 ◦C/min.). In accordance with the fact,
the moisture loss at 85 ◦C has not caused any cure defects while preparing tensile slabs for
the α-cellulose compounds.

α-cellulose exhibits small aggregates due to the presence of strong Van der Waals
interaction between surface hydroxyl groups. In addition to that, it also revealed that the
presence of individualized and crystalline structures with L/D ratio is more than 1. Some
tubular structures are also observed at higher magnification with length value ranging
from 7 to 127 µm (Figure 2d). This typical dimension of α-cellulose generates keenness
to understand its potential as filler in a rubber matrix. Absence of strong aggregates is
expected to facilitate easy dispersion and distribution of α-cellulose particles in rubber
matrix. The compositions of the α-cellulose containing rubber compounds are shown in
Table 1 where the amount α-cellulose is increased progressively in an E-SBR matrix.

Table 1. Formulation (in phr) used for α-cellulose-E-SBR composite. Here ‘phr’ stands for parts per
hundred of rubber.

Control C1 C5 C10 C20 C40

SBR 100 100 100 100 100 100
ZnO 3 3 3 3 3 3

Stearic
acid 1 1 1 1 1 1

α-cellulose 0 1 5 10 20 40
Sulfur 1.75 1.75 1.75 1.75 1.75 1.75
TBBS 1 1 1 1 1 1

ZnO: Zinc oxide; TBBS: N-tertiarybutyl-2-benzothiazolesulfenamide.
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Figure 2. (a) Thermo-gravimetric (TG) and differential thermo-gravimetric (DTG) profile of α-cellulose, (b) Fourier transform
infrared (FTIR) spectrum of α-cellulose, (c) heat flow curve of α-cellulose, (d) scanning electron microscopic (SEM) images
of α-cellulose at 500× and 1000×magnification.
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2.2. Characterization of E-SBR-α-Cellulose Composites
2.2.1. Investigation on Morphological Threshold

The most critical parameter for evaluation of α-cellulose is its dispersibility and
distribution in the polymeric matrix. Characterization of filler morphology ranging from
micro- to macro-scale determines reinforcing ability of α-cellulose. Microscopic analysis
involving different instruments, namely SEM and TEM, are important to understand spatial
resolution and orientation of filler particles throughout the matrix. SEM and TEM images
of cured compounds are shown in Figure 3. It represents dispersion as well as distribution
of α-cellulose in the elastomeric matrix. The images represented here are from cured stocks
and captured at 2500×magnification for SEM and at 8600×magnification in the case of
TEM. From TEM images, in the case of C1, C5 and C10, α-cellulose is well distributed
throughout the E-SBR matrix. The increased dosage of filler (α-cellulose) leads to re-
agglomeration of α-cellulose, which is very much evident from TEM images (Figure 3).
Representative images of C20 and C40 clearly demonstrates agglomerated sites in the
polymer matrix.

Figure 3. Scanning electron microscopy (SEM) images of cured stocks at 2500× magnification; transmission electron
microscopy (TEM) images of cured stocks at 8600×magnification.
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SEM images also designated C10 as the morphological threshold amongst all. Non-
uniformly distributed large clusters of α-cellulose are visible in higher dosage compounds,
namely C20 and C40. These aggregated sites can induce flaw within the matrix. Therefore,
the SEM images confer that 10 phr dosage of α-cellulose is the optimum one with regard to
dispersion in the emulsion-grade SBR matrix.

2.2.2. Filler Dispersion and Filler Networking

Introduction of filler within an unfilled elastomeric matrix is a conglomerate phe-
nomenon. Hydrodynamic reinforcement provided by filler particles can be predicted by
Guth and Gold equation when unfilled elastomers get reinforced [19]. An increase in the
filler volume fraction instigates additional reinforcement to the matrix in the form of bound
or occluded rubber. Further addition to the filler proportion results in cross over of “filler
network percolation threshold”. This actually introduces a flocculated filler network which
is susceptible to strain. With a small amount of strain application, this percolated network
gets broken down, which is known as the Payne effect [20].

Breakdown of the filler network under a small strain (~0.1% strain) is negligible
because the external stress is small enough to rupture the cluster of filler [21]. The filler
network starts collapsing with the application of strain. This is evident from the rapid
decrease in storage modulus (G’) values with increasing strain [22].

Figure 4a represents the storage modulus (G’) against strain (%) of the control gum
compound and α-cellulose-containing compounds. It is obvious from the Figure 4a that as
filler quantity increases, initial G’ also increases. ∆G’ is proportional to the filler volume
fraction. This may be due to the presence of an increasing amount of -OH groups which
re-agglomerates further to increase ∆G’.

Figure 4. (a) Payne effect measurement, G’ (in Pa) against % strain; (b) rheological graph of all compounds; (c) stress–strain
curve of all compounds; (d) Plot of tanδ with respect to temperature scan(−60 to +100 ◦C) of all compounds (Inset: Magnified
view of tanδ peak).
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This phenomenon of re-agglomeration of α-cellulose in the SBR matrix can be well
explained by SEM images of cured stocks at different filler volume fractions (Figure 3).

For low filler concentration, isolated filler clusters reinforce the rubber matrix by
hydrodynamic effect. The Guth and Gold proposed model is universally accepted to
understand hydrodynamic effect for spherical particles. The Guth and Gold equation [19] is:

G’/G’0 = 1 + 2.5 φ + 14.1 φ2 (1)

where, G′ is the initial storage modulus of the filled vulcanizate, G′0 is the initial storage
modulus of unfilled or gum vulcanizate and φ is the filler volume fraction. As anisotropic
non-spherical filler was used in this work, the modified Guth–Gold equation [23,24] is
introduced to explain the rubber–filler interaction [25]:

G’/G’0 = 1 + 0.67 fφ + 1.62 f2φ2 (2)

where shape factor f is elucidated as the length to width ratio of cellulose filler aggregates.
It is perspicuously evident from Figure 5 and Table 2 that considering f = 2.8,

Equation (2) is well in agreement with the experimental G′/G’0 values. This can be
attributed to the incorporation of shape factor as the cellulose particles are found to be
non-spherical. The increased filler volume fraction in the rubber matrix develops extensive
hydrogen bonding among abundant -OH groups. Increasing α-cellulose dosage in the
rubber matrix increases the formation of a larger cluster of filler networks (Figure 3) and
showed lesser reinforcement in the E-SBR matrix. Thus, 10% dosage of α-cellulose can
be designated as the optimum one with respect to filler networking and dispersion in
the matrix.

Figure 5. G′/G′0 vs. φ (filler volume fraction)—actual vs. theoretical.

Table 2. Actual and theoretical values of G′/G’0 at different filler volume fractions.

φ φ2 G′/G′0
Theoretical

G′/G′0
Actual

0.01 0.0001 1.020 1.066
0.05 0.0025 1.126 1.180
0.1 0.01 1.315 1.356

0.17 0.0289 1.686 1.658
0.29 0.0841 2.612 2.531
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2.2.3. Vulcametric Characterization of the Composites

Figure 4b and Table 3 illustrate the rheological properties of all the composites. Maxi-
mum torque (MH) as well as minimum torque (ML) both increases as α-cellulose is added
as filler in the E-SBR matrix. Upsurge of ML values can be attributed to improved rubber–
filler interaction. Scorch safety or ts2, which is an important parameter for the processing
of rubber compounds, is found to increase up to an addition of 10phr of α-cellulose, but
after that, for compounds containing 20 and 40 phr of filler, ts2 of the system decreases.
This phenomenon can be ascribed by the fact that hydroxyl (-OH) groups present in the
system adsorb ZnO [11] and undergo complex formation. As a result, accelerator acti-
vation efficiency diminishes and scorch safety (ts2), consequently, increases. After C10,
profound re-agglomeration of α-cellulose forms filler clusters (Figure 3) and, as a result,
reinforcement ability of α-cellulose gets reduced in the E-SBR matrix. Poor dispersion
and distribution of α-cellulose emanates re-agglomeration of -OH groups in the matrix.
Thus, adsorption of ZnO on -OH groups increases effectively (due to increase in α-cellulose
in the system). In addition to that, adsorption of the accelerator also takes place on the
surface of remaining -OH groups. As a result, ts2 reduces significantly at a higher dosage
of α-cellulose. Therefore, from a rheological as well as a processibility point of view, 10 phr
addition of α-cellulose in the E-SBR matrix may be considered as optimal filler quantity
that invokes optimized rheological behavior and process ability.

Table 3. Rheological properties of the composites.

Curing Parameters
Parameters Control C1 C5 C10 C20 C40

ML(lb.in) 0.62 0.66 0.71 0.79 0.93 1.28
MH(lb.in) 7.36 7.58 7.82 8.1 9.08 10.86
MH–ML 6.74 6.92 7.11 7.31 8.15 9.58
ts2 (min) 10.78 11.1 11.57 12.04 11.87 11.03

tc50 (min) 12.31 12.82 13.35 14.02 14.24 14.16
tc90 (min) 18.95 19.99 20.36 21.34 22.06 22.67

CRI (min−1) 12.2 11.2 11.4 10.8 9.8 8.6

2.2.4. Physico-Mechanical and Dynamic Mechanical Characterization of the Compounds

Figures 4c and 6 represent the stress–strain behavior of the compounds. Low surface
area of α-cellulose instigates agglomeration of filler particles at higher filler loading. The
occluded rubber within the agglomerates or aggregates forms a higher modulus rubber
shell near the filler surface. Thus the segmental mobility of polymer chains gets seized and
the immobilized rubber attached to filler surface leads to an increase in dynamic stiffness.
But the polymer chains which are not adsorbed on the filler surface move a distance away
from the filler aggregates. Therefore, the static modulus decreases gradually or remains
at the same level, as that of the polymer matrix, with increase in filler volume fraction.
Similarly, with increase in α-cellulose volume fraction, a significant increase in modulus
is not observed. The presences of strong inter and intra molecular H-bond among the
-OH groups of low surface area α-cellulose made it difficult for the filler to disperse and
distribute throughout the polymer matrix. This phenomenon of re-agglomeration among
α-cellulose particles increased with increase in filler volume fraction. Irrespective of that,
there is a reinforcement effect of α-cellulose which is evident through the trend analysis
of modulus.
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Figure 6. Physico-mechanical properties of the E-SBR-cellulose composites.M5, M50, M100, M200 and M300 denotes
modulus at 5% elongation, modulus at 50% elongation, modulus at 100% elongation, modulus at 200% elongation and
modulus at 300% elongation, respectively.

Morphological analysis has already enunciated the agglomeration of filler above
10 phr dosage. Thus combining this with ultimate property analysis has clearly established
the mentioned dosage as the optimized one.

Therefore, from the above review, it is clear that in the E-SBR matrix, α-cellulose can be
used up to 10% level as filler. Compared to gum compound, C10 has shown improvement
in ultimate properties. Thus, 10 phr α-cellulose inclusions as filler maybe considered as the
optimized dosage with respect to reinforcement in a SBR-based matrix.

Correlation of glass transition temperature (tg) with α-cellulose concentration is one
of the important parameters that is captured in this article. This positive shift in tg may be
explained by the mobility of the polymer chains. SBR has lower entanglements compared to
NR. Thus, interaction of filler with SBR reduces structural relaxation time of SBR, resulting
in an increase in tg [26]. But the shift is not significant in comparison to the inclusion
of filler volume fraction. This phenomenon may be attributed to the fact that the local
molecular dynamics of SBR superimposes the interaction between the filler surface and the
polymer matrix [26]. Therefore, even if there is a positive shift in tg with increase in filler
volume, the change itself is not noteworthy.

Figure 4d and Table 4 clearly depict the peak of tan delta for different composites. This
representative figure denotes that, except C20 and C40, other peaks are similar in height.
The smaller peak heights of composites having higher filler volume may be attributed to
the increased concentration of inter and intra hydrogen bonding among hydroxyl groups
present on the α-cellulose surface. This leads to comparatively higher increase in viscous
modulus than the storage one. Thus, peak height reduces.

Dynamic mechanical properties of a composite depend on the filler phase characteris-
tic present in the elastomeric matrix. Volume fraction of the filler, filler–polymer interaction,
shape of filler particles, and state of agglomeration and mechanical strength of agglom-
erates are the important parameters that determine the dynamic mechanical properties
of an elastomeric composite [27]. The increase in elastic modulus (E’) of a composite is
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a combination of the above mentioned factors. Here, Table 4 represents the elastic mod-
ulus (E′). Increase of E′ may be an indication of polymer–filler interaction but here, in
this case, increase of E′ at higher filler volume (particularly for C20 and C40 compound)
may be an additional impact of filler–filler interaction (due to presence of a high number
of -OH groups on α-cellulose). Nielson et al. has already shown that agglomeration of
filler particles largely increases the dynamic modulus of a filled polymer [27]. The filler
agglomerates are not wetted by polymers and remain filled with air. This phenomenon
induces an increase in the Einstein co-efficient and lowering of the maximum packing
fraction (m) of the filler agglomerate [27].

Table 4. Dynamic-mechanical properties of the compounds.

Dynamic Mechanical Properties

30 ◦C

Control C1 C5 C10 C20 C40

E′ (MPa) 2.79 2.85 3.07 3.46 4.18 6.43
E” (MPa) 0.28 0.3 0.32 0.39 0.48 0.85

Tanδ 0.101 0.104 0.104 0.113 0.115 0.132

70 ◦C

Control C1 C5 C10 C20 C40

E′ (MPa) 2.56 2.61 2.78 3.09 3.65 5.32
E” (MPa) 0.21 0.23 0.24 0.3 0.36 0.65

Tanδ 0.082 0.087 0.087 0.098 0.1 0.123

100 ◦C

Control C1 C5 C10 C20 C40

E′ (MPa) 2.28 2.38 2.63 2.8 3.38 4.71
E” (MPa) 0.14 0.16 0.17 0.21 0.25 0.46

Tanδ 0.062 0.065 0.064 0.075 0.075 0.097

The lowering of φm may be characterized by the Krieger-Dougherty equation [28].
The presence of strong interaction of surface -OH groups might result in an increase in E′

with higher filler volume. From the Krieger-Dougherty equation, it is very much evident
that an increase in filler volume fraction results in the increase in matrix viscosity. φm of
filler agglomerates proportionately lowers viscosity of the medium.

To reinforce the occurrence of re-agglomeration of α-cellulose aggregates at a higher
filler volume fraction (C20 and C40), dynamic modulus (G′) at shear mode is plotted
against filler volume fraction (φ) in Figure 7. The figure demonstrates that G’ increases
abruptly as we move from C10 to C20 and further. This indicates that, as we move towards
higher α-cellulose dosage, simultaneous agglomeration of filler was obtained which results
in lowering of φm. This representative graph clearly depicts the optimum filler (α-cellulose)
level in the C10 compound. Therefore, the C10 compound can be designated as the
optimized one (with respect to dispersion and distribution of filler in polymer matrix),
where storage modulus and loss tangent both has increased in the tune of ~20% from the
control one.
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Figure 7. Plot of dynamic modulus (G′) vs. filler volume fraction (φ) in shear mode.

2.2.5. Rubber–Filler Interaction

Adsorption of elastomeric chains within the filler aggregates invokes reinforcement
to the matrix. Researchers have employed several methods to ascertain rubber–filler in-
teraction. Lorenz and Park equation is one of the universally accepted equations which
are applied here to understand the reinforcement potency of α-cellulose in the compos-
ite through rubber–filler interaction [29]. The toluene-based swelling test is engaged to
measure the interaction. Free spaces present in the matrix are occupied by toluene. Thus,
cross-linked sites are proportional to the rubber–filler bonding and inversely related to the
amount of toluene absorption [30].

Table 5 represents the rubber–filler interaction pertaining to the ratio of Qf and Qg.
Elastomeric cohesion with filler aggregates reinforces the matrix. As a result, occluded
rubber is developed and, consequently, cross-linking sites get generated. When a compos-
ite is immersed in toluene, solvent uptake by sample proportionately decreases with an
increase in cross-linked sites induced by the bound rubber. Thus, Qf/Qg is proportional
to the amount of solvent uptake by the composite. As a result, the higher the Qf/Qg,
the lower the polymer–filler interaction. Here, C10 has the least Qf/Qg, which demon-
strates that the composite with 10 phr filler contains the highest polymer–filler interaction
amongst all the composites. Although C20 and C40 compounds contain higher levels
of α-cellulose, the 10 phr dosage of α-cellulose has emerged as the optimal one in the
E-SBR-α-cellulose composite.

Table 5. Rubber-filler interaction (Qf/Qg).

Compound C1 C5 C10 C20 C40

Qf/Qg 1.02 1.09 0.91 0.97 0.95

The studies so far have established that 10 phr α-cellulose can be considered as the
optimized dosage in E-SBR composites. With this background, a typical formulation
having synthetic filler (Silica) is evaluated against 10 phr substitution with natural filler
(α-cellulose). Table 6 denotes the evaluated recipe and corresponding properties.
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Table 6. Formulation, rheological, physico-mechanical and dynamic properties of silica-
containing composites.

Ingredients Unit Control Experimental

SBR phr 100 100
Zinc oxide phr 3 3
Stearic acid phr 1 1

Silica phr 50 40
α-cellulose phr 0 10

Sulfur phr 1.75 1.75
TBBS phr 1 1

Rheological Properties

Parameters Unit Control Experimental

Minimum torque ML lb.in 1.70 1.51
Maximum torque MH lb.in 19.21 18.95
Max-min. Torque MH-ML lb.in 17.51 17.44

Time corresponding to two units
torque rise ts2 min 4.84 4.29

Time corresponding to 40% cure tc40 min 6.19 5.42
Time corresponding to 90% cure tc90 min 10.18 9.00

Cure Rate Index CRI min−1 18.73 21.23

Physico-mechanical properties

Parameters Unit Control Experimental

Modulus at 5% elongation M5 MPa 0.5 0.4
Modulus at 20% elongation M20 MPa 1 1
Modulus at 50% elongation M50 MPa 1.5 1.5
Modulus at 100% elongation M100 MPa 2.3 2.2
Modulus at 200% elongation M200 MPa 5.2 5
Modulus at 300% elongation M300 MPa 9.6 9.4

Tensile strength TS MPa 18.4 18.2
Elongation at break EB % 465 472

Hardness Shore A 68 67

Dynamic-mechanical properties

Parameters Unit Control Experimental

Storage modulus at 30 ◦C E′ at 30 ◦C MPa 17.21 14.15
Storage modulus at 70 ◦C E′ at 70 ◦C MPa 11.47 9.96
Storage modulus at 100 ◦C E′ at 100 ◦C MPa 9.19 8.38

Loss modulus at 30 ◦C E′′ at 30 ◦C MPa 2.98 2.23
Loss modulus at 70 ◦C E′′ at 70 ◦C MPa 1.77 1.33

Loss modulus at 100 ◦C E′′ at 100 ◦C MPa 1.23 0.90
Loss tangent at 30 ◦C Tanδ at 30 ◦C 0.173 0.158
Loss tangent at 70 ◦C Tanδ at 70 ◦C 0.154 0.134

Loss tangent at 100 ◦C Tanδ at 100 ◦C 0.134 0.107

Table 6 shows the mapping of rheological, physico-mechanical and dynamic mechani-
cal properties of composite containing silica as sole filler against the composite containing
10 phr silica substituted by cellulose. Introduction of α-cellulose increases the abundance
of hydroxyl groups (due to its presence on cellulose surface) which results in an increase
of the cure rate. Additionally, more adsorption of accelerator results in reduced scorch
safety with simultaneous increase in CRI of the substituted composite. Physico-mechanical
properties of both the composites are close enough with increased amplitude of storage
modulus. Agglomeration of silica particles may be the enunciated as the attributed cause.
Introduction of α-cellulose in the experimental compound has increased the inter-aggregate
distance among silica particles, which has improved the dispersion as well as distribution
of silica in the polymer matrix (Figure 8). Thus, it can be concluded that silica may be
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substituted by 10 phr of α-cellulose in an E-SBR composite, as this can be designated as the
morphologically and physico-mechanically optimized dosage.

Figure 8. SEM (a,b) and TEM (c,d) images of silica-filled control and experimental compounds.

3. Materials and Methods
3.1. Chemicals

E-SBR (SBR 1502) with 23.9% styrene (measured as per ISO 21,561 method) was pro-
cured from Asahi Kasai, Tokyo, Japan. Ash content and volatile matter of this E-SBR is
0.13% (ASTM D5667) and 0.23% (ASTM D5668), respectively. Mixed organic acid, soap
content and acetone extraction were also measured in the laboratory as per ASTM D5774
method. ML (1 + 4) @ 100 ◦C of the E-SBR (massed) was 52.9 MU. Other compound-
ing ingredients used were as follows: Silica (Specialties silica ltd., Alwar, India), zinc
oxide (POCL enterprises ltd., Pondicherry, India), stearic acid (Godrej industries ltd.,
Gujarat, India), α-cellulose (Suhal cellulose llp, Kolkata, India), TBBS (N-tertiarybutyl-2-
benzothiazolesulfenamide) (National organic chemicals industries ltd., Mumbai, India),
soluble sulfur (The standard chemical co. pvt. Ltd., Chennai, India).

3.2. Characterization of α-Cellulose

α-cellulose mentioned in this work is used as received from supplier. It is an odorless,
off-white free flowing powder with the mentioned chemical characteristics: Nitrogen
surface area of 1.60 m2/g (ASTM D1993); 4.19% of heat loss at 70 ◦C (ASTM D4571); ash
content of 0.33% (ASTM D4574); pour density of 356.2 kg/m3(ASTM D1513) with 4.05 pH
(ASTM D6739). Silica used in this work had the following characteristics—5.5% heat loss
at 105 ◦C for 2 h (ASTM D 6738); pH of 6.3 (ASTM D 6739); 4.5% ignition loss at 950 ◦C for
2 h and nitrogen surface area of 170 cm2/gram.
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In order to detect the functional groups associated to α-cellulose, Fourier transform
infrared (FTIR) spectroscopy is employed. α-cellulose mixed with spectroscopy grade
potassium bromide (KBr) powder underwent scan ranging from 400 to 4000 cm−1 at
a resolution of 4 cm−1 in FTIR 2000 system from Perkin-Elmer (Norwalk, CT, USA).

Thermal stability of α-cellulose is analyzed by Thermo gravimetric analysis (TGA)
using Pyris-1 TG analyzer of Perkin-Elmer (Shelton, CT, USA). The sample is scanned at
a heating rate of 10 ◦C/min. Initially nitrogen is used as the heating medium to increase
temperature from room temperature to 580 ◦C and then shifted to oxygen and further
heated up to 850 ◦C.

Thermal reactivity of α-cellulose is studied by using differential scanning calorimeter
(DSC) with diamond DSC system (Perkin Elmer, Waltham, MA, USA), at a heating rate of
10 ◦C/min.

3.2.1. SEM Topography

Surface topography of α-cellulose and SBR composites are captured by field emission
scanning electron microscope (ApreoS, FEI, Hillsboro, OR, USA). It is operated in secondary
electron (SE) modeat an accelerating voltage of 20 kV after coating the samples with
platinum using a sputter coaterQ150T ES (Quorum Technologies, Lewes, UK)

3.2.2. TEM Imaging

Dispersion of α-cellulose in SBR composites is further confirmed by taking images
under HRTEM, 200 kvTalos-S (FEI, Hillsboro, OR, USA). All the images are captured at
fixed magnification. Thin specimen of around 100 nm is prepared by ultra-microtomy
(Leica Ultracut UCT) at −100 ◦C to acquire high resolution images.

3.3. Preparation of Composites

As per Table 1, a gum rubber compound is selected as control formulation. In ex-
perimental compounds, α-cellulose is used as filler at different dosages starting from 1 to
40 phr, to understand its reinforcement effect in E-SBR-based formulation and to optimize
its dosage in similar compounding recipes. Master, re-pass and final mixing of compounds
are done in a laboratory-scale Haake mixer (Thermo-fischer, Dreieich, Germany) of 300 cc
chamber volume, maintaining fill factors of 0.72, 0.75 and 0.75, respectively. This mixer
is two-wing rotor based. The temperature control unit (TCU) is set at 90 ◦C for master
and re-pass, and at 70 ◦C for final compound mixing. For master and re-pass, rotor speed
was maintained at 50–55 rpm and the discharge temperature of the batch is maintained at
160 ◦C, whereas for final compound mixing, rotor speed was maintained at 30 rpm and
batch discharge temperature was in between 95 and 100 ◦C. During master compound
mixing, initially at 0 s, rubber was introduced to mixer and carbon black along with all
master chemicals were added after 15 s. The total master mixing cycle was for 225 s. Repass
and final mixing cycle was of 180 s each.

3.4. Measurement of Payne Effect

Payne effect [21] indicates the dispersion of filler in rubber matrix. Storage modulus
(G′) is measured in the rubber process analyzer (model RPA 2000, Alpha technologies,
Akron, OH, USA) under a strain sweep from low strain (0.1%) to high strain (100%).
Preheating is done for ~5 grams of sample at 50 ◦C within the closed cavity of the equipment
for 5 min, with 0.1% strain at 1.67 Hz frequency to release the stress developed during the
closing time of the instrument. Strain sweep from 0.1% to 100% was applied at a constant
temperature of 50 ◦C and 1.67 Hz frequency.

Payne effect is calculated by using Equation (3):

∆G′ = G′ at 0.1% strain − G′ at 100% strain (3)
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3.5. Determination of Cured Characteristic

Rheological properties of the compounds are ascertained using a moving die rheome-
ter (model Premier MDR, Alpha technologies, Akron, OH, USA). The tests are performed at
145 ◦C for 60 min using 0.5◦ arc in RPA. Rheological properties are generated by complying
with ASTM D5289. Optimum cure times (tc90) of the compounds are calculated from the
graph by using Equation (4).

tc90 (min) = 0.9 (MH−ML) + ML (4)

where, MH and ML are corresponding maximum and minimum torque respectively.
Cure rate index (CRI) was determined by using Equation (5):

CRI =
100

(tc90− ts2)
min−1 (5)

where ts2 corresponds to the time to raise 2 unit torques above the minimum torque.

3.6. Preparation of Molded Slabs and Measurement of Physico-Mechanical Properties

Complying with ASTM D3182, rubber compounds are molded in an electrically heated
hydraulic press (Hind hydraulics, New Delhi, India) using compression molding technique.
Tensile slabs are cured at 160 ◦C and time corresponding to 2×tc90 min under 150 kg/cm2

molding pressure. The dimensions of the cured slabs were 15 cm × 15 cm × 2 mm
(length × width × thickness).

Tensile properties are determined by punching specimens from cured slabs. Dumbbell
shaped tensile samples are cut and tested as per ASTM D412 using Z010 universal testing
machine (UTM) procured from Zwick (Ulm, Germany).

3.7. Measurement of Dynamic Mechanical Properties

Storage modulus (E′), loss modulus (E′′) and loss tangent (tan δ) are determined at 30,
70 and 100 ◦C, respectively, using dynamic mechanical testing. Tension–relaxation mode is
employed by using the visco-analyzer VA4000 Metravib, R.D.S, France. In this experiment,
a sample having the thickness of 2.7 ± 0.2 mm is tested under a temperature scan from
−60 to +100 ◦C. Frequency and strain values are 11 Hz and 1%, respectively. Loss tangent
at different temperatures are measured as per the relation of

Tan δ =
E′′

E′

3.8. Measurement of Rubber-Filler Interaction

Cured specimens of 30 × 5 × 2 mm are immersed in toluene and, after specific
intervals, samples are taken out of toluene to measure the weight. It was observed that
after 48 h at 25 ◦C, the specimens achieved equilibrium weight [29]. Then the following
Equation (6) is employed to determine the solvent uptake (Q):

Solvent uptake (Q) =
Weq −W0

W0
× 100 (6)

where, Weq is the equilibrium weight of the sample and W0 is the initial weight of the solvent.
Then, the rubber-filler interaction is measured by Qf/Qg ratio [30], where f and g

stand for filled and gum vulcanizate, respectively.

4. Conclusions

The chemical characterization and morphological uniqueness of α-cellulose has gener-
ated immense enthusiasm to assess its behavior as filler in a rubber matrix. In this article,
E-SBR is chosen due to its lower gum strength where the reinforcing ability of filler can
be well understood. Microscopic analysis by SEM and TEM are performed to understand
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the morphological threshold. Both studies revealed that C10 compound with 10 phr filler
can be designated as the optimal one with respect to dispersion and distribution in E-SBR
matrix. Rheological and physico-mechanical evaluation of the composites also reinforces
C10 as the optimal composite. Visco-elastic, flow and dynamic mechanical behavior of
the composites clearly depicts an increasing trend with increased volume fraction of filler.
These characteristic features have been further analyzed by interpreting the trend of dy-
namic modulus and its slope with respect to filler volume. This is to understand and
estimate filler agglomeration threshold and, further to this, its impact on the visco-elastic
and dynamic behavior. The previous observations pertaining to C10 compound as the
optimized one were further established. Accordingly, the reinforcement study using the
Guth and Gold equation and the investigation of the rubber–filler interaction clearly sub-
stantiates that C10 is the optimal E-SBR-α-cellulose composite amongst all. This optimized
dosage is further examined by substituting silica with α-cellulose. Rheological, physico-
mechanical and dynamic mechanical properties clearly establish the reinforcing ability and
silica replacement capability of α-cellulose.
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