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Abstract

Chikungunya virus is an arthropod-transmitted virus that causes chikungunya fever, a dis-

ease characterized by severe muscle and joint pain. In 2013, the virus was introduced to the

Americas and caused approximately 2.7 million cases of infection during the subsequent

two years. The lack of knowledge regarding the biological behavior of the viral strains circu-

lating during the outbreak motivated the characterization of an isolate from the Colombian

outbreak, starting from analysis of the complete genome to the biological behavior in vitro.

The full genome was retrieved using next-generation sequencing. The infective and replica-

tive capacities were evaluated in HEK293T, Huh-7, and MRC-5 cell lines. The infection

rates were determined by flow cytometry, and the cytopathic effect was assessed by a resa-

zurin fluorescent metabolic assay. The viral yield was quantified using the virus plaque for-

mation assay, while the viral proteins and genomic RNA kinetics were subsequently

evaluated by western-blot and RT-qPCR. The COL7624 isolate clustered with other Ameri-

can and Caribbean sequences in the Asian American lineage. The T669A substitution in E2

protein distinguished it from other Colombian sequences reported in 2014. After 48 h post

infection (hpi), the three cell lines analyzed reached infection percentages exceeding 65%,

generating a high load of infectious viral progeny. The infection kinetics indicated that the

replication peak of this CHIKV isolate is around 24 hpi, although gRNA is detectable in the

culture supernatant from 4 hpi onwards. The infection caused the overexpression of inter-

feron and pro-inflammatory cytokines, such as IL-1β, TNF-α, and IL-8. The COL7624

CHIKV isolate exhibited a high infective and replicative capacity as well as activation of cel-

lular immune responses, similar to isolates belonging to the other genotypes.

Introduction

Chikungunya fever is a viral infection that is caused by the chikungunya virus (CHIKV). The

virus was first detected in 1952 in Tanzania and it was restricted to sporadic outbreaks in other

countries, mainly across the African and Asian continents [1]. The first major epidemic of

Chikungunya fever was documented on the island of La Réunion between 2005 and 2006,
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affecting more than one-third of its population [2], and during 2007–2009 the virus spread to

European countries for the first time [3].

Between 2011 and 2013, the disease affected several countries in Central and West Africa,

Southeast Asia, and the South Pacific region [4–8]. At the end of 2013, the first cases were doc-

umented in Saint Martin Island and then spread throughout the Americas, affecting over 2.7

million people in 44 territories. Approximately 80% of the cases during the epidemic were con-

centrated in Brazil, the Dominican Republic, Colombia, Costa Rica, and Guadeloupe [9]. After

the large epidemic in the Americas, outbreaks were reported in Italy, India, Pakistan, Bangla-

desh, and Kenya during 2016–2017, and in Thailand during 2018–2019 [10–13].

CHIKV is an arbovirus transmitted by mosquitoes Aedes aegypti and Ae albopictus, belongs

to the Togaviridae family and the Alphavirus genus. It is a member of the old world arthrito-

genic alphaviruses, which cause febrile illness characterized by arthralgias and myalgias of

varying intensities [2]. The viral genome is a positive-sense, single-stranded RNA of approxi-

mately 11.8 kb with a methyl guanosine cap at the 5’ end and a poly adenine tail at the 3’ end.

It encodes for two open reading frames (ORFs) separated by a short, non-coding 76 nt region.

The first ORF encodes the four non-structural proteins (nsP1–nsP4), while the second ORF

encodes three structural proteins (capsid, E1, and E2) and two small peptides (E3 and 6K)

[14]. Additionally, the 5’ and 3’ non-translated regions and nsP1 contain conserved sequence

elements (ESCs) that give rise to structural elements essential for replication and genome pack-

aging [15].

So far, three CHIKV genotypes have been defined, i.e., the Asian, West African (WA), and

East, Central, and Southern African (ECSA), along with two lineages, i.e., the Indian Ocean

Lineage (IOL) and the Asian/American Lineage (AAL), which were derived from the ECSA

and Asian genotypes, respectively [16, 17]. The IOL was responsible for the 2004 and 2009 out-

breaks in La Réunion, Southeast Asia, India, Italy, and France [8, 18–20]. It is characterized by

an alanine to valine substitution at position 226 of the envelope glycoprotein E1 (A226V),

which has been attributed to the adaptation of the virus to the Ae albopictus mosquito [21].

The AAL was responsible for the 2013–2016 outbreaks in the American continents. It is

defined by two substitutions at E2 (V368A) and 6K (L20M), and duplication of 177 nucleotides

at the 3’ untranslated region (3’UTR) end that confers increased replication in mosquito cells

[7, 16, 22, 23].

In the Americas, the disease affected individuals of all ages and socioeconomic strata, with

clinical manifestations ranging from mild to severe, along with atypical manifestations such as

encephalitis, meningoencephalitis, myocarditis, nephritis, pulmonary edema, muco-cutaneous

lesions, purpuric lesions, necrosis, sepsis, and septic shock, among others [24–28]. Although

only 440 deaths were reported [9], an increase in mortality during the peak of CHIKV circula-

tion was reported in Brazil, Guadeloupe, Martinique, Puerto Rico, and the Dominican Repub-

lic [29–32]. In Brazil, a total of 236,287 cases and 120 deaths were reported in 2016; however,

Freitas et al. had estimated that 7,231 deaths were associated with the infection [30]. In the

Dominican Republic, a similar analysis indicated that 2,853 deaths could have been caused by

CHIKV in 2015; although only six were registered to the health system [29].

The rapid spread of the virus, the severity of infection, and the high number of fatal cases

associated with CHIKV observed in the Americas and the absence of knowledge regarding the

biological behavior of the American isolates motivated the characterization of a Colombian

isolate. This study analyzed the complete genome and evaluated the infective and replicative

capacities. The activation of the antiviral response in different human cell lines was also

investigated.
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Materials and methods

Virus, cells, and antibodies

CHIKV was isolated from a patient during the 2015 epidemic in Colombia and propagated by

four sequential passages in Vero cells. The supernatants were harvested and frozen at -80˚C

before titration and further use.

The consensus sequence of the whole genome was deposited in the GenBank with the

accession number MW656171.1, and accessible at https://www.ncbi.nlm.nih.gov/nuccore/

MW656171.1.

Adherent cells such as HEK 293T (ATCC1 CRL-11268G-1™), MRC-5 (ATCC1 CCL-

171™), Huh-7 (ATCC1 CRL-2117™), BHK (ATCC1 CCL-10™), and Vero clone E6 (ATCC1

CRL-1586™ cells) were grown in Dulbecco’s modified Eagle’s medium (DMEM) (Millipore-

Sigma., MO, USA) supplemented with 10% fetal bovine serum (FBS; Gibco, Thermo Fisher

Scientific Corp., CA, USA) at 37˚C and 5% CO2.

The following antibodies were used in this study: mouse polyclonal antibody directed

against E1/E2 protein (anti-E1/E2), which was provided by Anne Claire Brehin from Institut

Pasteur, Paris, France; mouse monoclonal anti-Chikungunya virus antibody [3585]

(ab155841; Abcam., Cambridge, UK); an in-house obtained rat anti-CHIKV polyclonal serum

against recombinant nsP1; an anti-actin mAb (D6A8, Cat. # 8457; Cell Signaling Technology,

MA, USA); and anti-Caspase-3 Rabbit mAb (D3R6Y, Cat # 14220; Cell Signaling Technology,

MA, USA).

Cell infection

Human cells were seeded in DMEM and incubated overnight. They were subsequently

infected at multiplicity of infection (MOI) values of 0.1, 0.5, and 1. After 1 h of incubation at

37˚C, the virus was washed off and DMEM supplemented with 2% FBS was added. After 24

and 48 hours post-infection (hpi), the supernatants were collected for viral titration.

CHIKV titration

The supernatants from infected cells were titrated following a standard procedure. Briefly,

10-fold dilutions of cell culture supernatants were added into 24-well plates seeded with

100,000 Vero cells and incubated at 37˚C under a 5% CO2 atmosphere. After 2 h, the virus was

removed, and the cell monolayers were overlaid with 1 mL of 2% FBS and 1.5% carboxymethyl

cellulose (Millipore-Sigma., MO, USA)/DMEM medium. Three days post-infection, the cell

monolayers were fixed and stained with 1% crystal violet. The titer was calculated and pre-

sented as the number of plaque-forming units (PFUs) per mL.

CHIKV detection by flow cytometry

CHIKV-infected and mock-infected cells were cultured for 24 and 48 h, trypsinized, and cen-

trifuged once (900 x g) for 5 min at 4˚C with cold phosphate-buffered saline (PBS). The

washed cell pellet was resuspended in 100 μL of a Cytofix/Cytoperm solution (BD Pharmin-

gen., CA, USA) and incubated at 4˚C for 20 min to improve the permeabilization. The cells

were then washed once with perm/wash (BD Pharmingen., CA, USA), and the pellet was

resuspended in 50 μL of anti-chikungunya virus antibody (ab155841; Abcam, Cambridge, UK)

diluted at a ratio of 1:50 in perm/wash and incubated for 1 h. The cells were again washed with

perm/wash, resuspended in 50 μL of labeled anti-mouse IgG-FITC (MilliporeSigma., MO,

USA), and incubated at 4˚C for 30 min under darkness. The samples were subjected to a wash-

ing step, and the final cell pellet was resuspended in 100 μL of PBS and stored at 4˚C until
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acquisition and analysis using a BD Accuri™ C6 Cytometer (BD Biosciences., CA, USA).

Acquired data were analyzed using FlowJo software.

CHIKV detection by immunofluorescence

CHIKV-infected and mock-infected cells were cultured for 24 h and then fixed with methanol:

acetone solution (v/v 1:1) for 20 min at 4˚C. Fixed cells were permeabilized for 30 min in

0.02% Triton X100 (MilliporeSigma., MO, USA), blocked in 5% goat serum (Vector Laborato-

ries) for 30 min, and then incubated with a 1:50 diluted anti-CHIKV monoclonal antibody

(ab155841; Abcam, Cambridge, UK) at 20˚C for 1 h. After removing the excess unbound anti-

bodies, goat anti-mouse IgG conjugated to Alexa Fluor 488 (diluted 1:500; Invitrogen, Thermo

Fisher Scientific Corp., CA, USA) was added for 30 min at 20˚C. The cells were then counter-

stained with Hoechst stain (Vector Laboratories., CA, USA) and imaged using an Axio

Observer microscope (Carl Zeiss AG., Jena, Germany). Images were captured using Axio

Vision 4.5 software.

CHIKV detection by western blot

The cells were lysed in RIPA buffer with a protease inhibitor cocktail (Cell Signaling Technol-

ogy, Inc., MA, USA) for 30 min at 4˚C. Cell lysates obtained by centrifugation for 15 min at

15,000 × g were quantified using the bicinchoninic acid assay. Equal amounts of protein

(20 μg) were loaded per lane, resolved on a 10% SDS polyacrylamide gel and, blotted onto a

PVDF membrane (Merck Millipore., MA, USA). After blocking with 5% non-fat milk in TBS

with 0.1% Tween-20 (TBST), the membranes were incubated for 2 h with rat antisera against

CHIKV nsP1 (diluted 1:1,000) or mouse antisera against E1/E2 (diluted 1:1,000) in TBST. A

mouse monoclonal antibody against β-actin was used as the loading control. After washing

with TBST, anti-mouse or anti-rat IgG conjugated with horseradish peroxidase (Kirkegaard &

Perry Lab Inc., MD, USA) was added for 1 h. The bound antibodies were then detected using

the West Pico Blotting Detection Reagent (Thermo Fisher Scientific Corp., MA, USA) with a

Gel Doc system (Bio-Rad Laboratories, Inc., CA, USA).

CHIKV RNA detection and quantification by Reverse Transcription-

Polymerase Chain Reaction (RT-qPCR)

Before the RNA extraction, RNase A treatment to remove free ssRNA and to assess only geno-

mic RNA to be amplificated was made. Viral RNA was extracted from the cell culture superna-

tants using the RTP1DNA/RNA Virus Mini Kit (STRATEC SE, Birkenfeld, Germany)

following the manufacturer’s instructions. The eluted RNAs were stored at -80˚C until use.

The CHIKV genomic copies were determined using the SYBR green-based assay Luna1

Universal One-Step RT-qPCR (New England Biolabs., MA, USA) and the E1F: ACGCAATTG
AGCGAAGCAC and E1R: CTGAAGACATTGGCCCCAC primers at a concentration of 0.2 μM.

All reactions were performed in a 20 μL reaction mix containing 5 μL of the RNA template,

with the amplification protocol consisting of an RT step at 55˚C for 15 min and RTase inacti-

vation at 95˚C for 3 min, followed by 40 cycles of PCR at 95˚C for 15 s and 60˚C for 45 s. The

RNA concentration, expressed as the number of genome copies per mL, was calculated using a

standard curve established using known concentrations of a plasmid containing an insert cor-

responding to the E1 gene.

Total RNA from infected cells was extracted using TRIzol reagent (Invitrogen, Thermo

Fisher Scientific Corp., MA, USA). Relative RT-qPCR was conducted using SYBR green-based

assay Luna1Universal One-Step RT-qPCR (New England Biolabs., MA, USA) and specific

primers for viral RNA (E1, nsP1), along with genes associated with antiviral (IFN-α) and pro-
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inflammatory responses (IL-1β, IL-6, IFN-γ, and TNF-α). The relative change in expression

for each gene was calculated following Pfaffl’s method and represented as the fold change as

compared to the mock-infected cells [33].

Cell viability assay

Briefly, cells were plated in 96-well plates and exposed to the indicated MOI. After 24 and 48

hpi, 10 μL of a 440 mM resazurin solution was added to 90 μL culture medium for 4 h and

incubated at 37˚C. The fluorescent signal of the resorufin was read using a Tecan Infinite 200

fluorometric reader (Tecan Trading AG, Männedorf, Switzerland) with excitation and emis-

sion wavelengths of 530 nm and 590 nm, respectively.

Genome sequencing and bioinformatic analysis

The sequences generated by Illumina NextSeq500 sequencing were trimmed to remove adap-

tors from each end using Trimmomatic, and reads shorter than 50 base pairs were discarded.

All remaining reads were mapped against the viral reference database using SPAdes [34].

The sequence generated was aligned using the ClustalW function of Bio-Edit 7.2.3 with 82

full-length CHIKV strains representing all major CHIKV genotypes. Owing to the ambiguous

alignment of the UTR, only the ORFs comprising 11,256 nucleotides were used to reconstruct

the phylogenetic tree and for subsequent analyses. A phylogenetic tree was constructed in

MEGA X 10.1.5 following the maximum likelihood method with a bootstrap value of 1,000

replicates [35].

CHIKV isolate H20235 from Saint Martin, collected in 2013 (GenBank ID MG208125.1),

was used as the reference strain for the Asian-American genotype. Both the nucleotide and

translated amino acid sequences were used for the comparison and mapping of the changes in

the Colombian CHIKV isolate.

Statistical analysis

The experimental data were analyzed by conducting a Kruskal-Wallis test, followed by a

Mann-Whitney U test or One Way ANOVA test using GraphPad Prism 7.0a software. The

results were presented as the median and interquartile range or mean and standard deviation.

Statistical significance was defined as p<0,05.

Results

Genomic characterization of the COL7624 CHIKV isolate

The virus used in this study was isolated from the plasma of an individual with febrile syn-

drome, who had tested positive for CHIKV and negative for dengue virus by RT-qPCR. The

sample was collected in Girardot, Colombia in February 2015 and inoculated and passaged

four times in Vero cells. The viral harvest was tittered in BHK cells following a plating method,

reaching a titer of 3 × 107 PFU/mL. The viral RNA extracted from this isolate named COL7624

was sequenced using Illumina technology, achieving coverage of 99.9%. Of the consensus

sequence generated, 11,224 nts corresponded to the coding region, 75 nts to the 5’ UTR end,

and 725 to the 3’ UTR. This sequence was 99.9% identical to other Colombian viruses isolated

in Santander de Quilichao-Cauca (MH329297.1) and Pereira-Risaralda (MH329298.1) in

November 2014 [36], with differences occurring at positions 5382 (nsP3 P1794L) and 10,972

(E2 T669A) on the coding regions. For both untranslated ends, we observed 99% similarity

with the Colombian sequence MH329298.1. In the 5’ UTR region, 59 out of the reported 60

nts along with 725 out of the 726 nts in the 3’ UTR were found to be identical.
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Phylogenetic analysis conducted on the coding region of 82 sequences belonging to the

three CHIKV genotypes confirmed that the isolate belonged to the Asian genotype, and clus-

tered with viruses isolated from America and the Caribbean in Asian-American lineage (Fig

1). Interestingly, V>A and L>M substitutions at positions 9,569 (GCG>GTG) and 9,793

(CTG>ATG), and two repeated segments in the 11,672–12,026 region of the 3’UTR were also

identified, which are characteristic of this lineage, as reported by Stapleford et al [22].

Sequence analysis indicated that the COL7624 isolate presented three non-synonymous

substitutions, with two in nsP2 and one in E2. Moreover, these changes were apparently not

the consequence of adaptation to Vero cells, as they have also been observed in viruses

obtained directly from patient serum [23] or after a single passage in c6/36 or Vero cells [36]

(Table 1).

Complete genome analysis of the Asian genotype revealed 28 differences between the iso-

lates collected before 2000 and viruses from more recent outbreaks, which led to the separation

into four clades by the presence of specific substitutions. The first clade consisted of viruses

recorded before 2000; the second contained sequences from the Malaysia outbreak in 2006,

with 18 substitutions compared to the predecessors. The third consisted of sequences obtained

in China, the Philippines, and Micronesia between 2010 and 2014 with eight additional

Fig 1. Phylogenetic analysis of Chikungunya virus. Full coding sequences of CHIKV were used. The maximum

likelihood tree was constructed using the general time-reversible model and inferred following bootstrap analyses

using 1,000 replicates. Strain names are in the format of: accession number/country /year of isolation. CHIKV

genotypes: West African, Asian, and East/Central/South African (ECSA) are indicated on the right.

https://doi.org/10.1371/journal.pone.0266450.g001
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mutations. The last one represented viruses isolated from the Americas with the two substitu-

tions typical of the AAL (Fig 1, Table 2).

Regarding the substitutions, 18 (64%) were identified in non-structural proteins, and ten in

structural proteins. The C-terminal end of nsP3 was the most variable region (Table 2) with

the deletion of four amino acids (1712–1715) and six mutations (1716; 1767; 1784–1785; and

1790–1792).

Phenotypic characterization of the COL7624 CHIKV isolate

As the biological behavior of the Asian genotype has been poorly analyzed and the virus that

was introduced and spread rapidly in the American continents belonged to a specific lineage

that cause more severe disease than its ancestor, we evaluated the infective and replicative

capacity of the COL7624 isolate in three human cell lines susceptible to infection. For this pur-

pose, HEK 293T, Huh-7, and MRC-5 cells were infected at MOI values of 0.1, 0.5, and 1 for 24

and 48 h. Viral antigen detection was then performed by flow cytometry and immunofluores-

cence, cell viability was also assessed, and the viral particles released into the supernatant were

quantified. For flow cytometry, cells were labeled with the antibody against the E1 structural

protein, and the percentage of infected cells was determined (Fig 2). At 24 hpi, significant dif-

ferences were observed between the cell lines at the three evaluated MOIs. At MOI 1, MRC-5,

Huh7, and HEK293T cells reached infection percentages of 75%, 50%, and 30%, respectively.

At 48 hpi, the three cell lines reached infection percentages close to 75% at MOI 1, and no sig-

nificant differences were observed between the different MOIs analyzed (Fig 2A).

A decrease in cell viability was observed after 24 h of infection; however, the cell viability

remained above 90% in HEK293 and Huh-7 cells, while it fell below 80% in MRC-5 cells. At

48 hpi, Huh-7 cells were the most affected cells, reaching a viability loss of 50–60% at MOIs of

0.5 and 1, while the viability of HEK293T and fibroblasts remained close to 80% (Fig 2B). The

impact of infection was also evident in immunofluorescence assays, where the loss in mono-

layer integrity and altered cell morphology were mainly observed in hepatocytes (Fig 3).

Assessment of the replicative capacity of the COL7624 isolate performed through the evalu-

ation of infectious progeny present in the supernatant revealed no significant differences

between the MOI values used for infection in MRC-5 cells. However, significant differences

were observed in HEK293T and Huh-7 cells between the MOI values of 0.1 and 1 at 24 hpi,

while there were no differences post 48 hpi (Fig 2C). Thus, using a higher viral inoculum did

not significantly affect the viral replication, contrary to the effect on infection percentage and

cell viability.

Evaluation of the differences between the cell lines revealed that Huh-7 cells released the

highest number of infectious particles, reaching titers between 1 and 6 × 107 PFU/mL, while

MRC-5 cells reached titers in the order of 106 PFU/mL, independent of the MOI or evaluation

Table 1. Amino acid substitutions distinctive of COL7624 Colombian CHIKV isolate.

Position (nt) Position (aa) Gene Sequences

3232 TAT > CAT Y 1078 H nsP2 MH329297.1 Colombia-Cauca (C6/36 / Vero)

MH329298.1 Colombia-Risaralda (C6/36 / Vero)

KY703969.1 Nicaragua 2014 (not passaged)

HM045804.1 Senegal 2010 (C6/36)

3764 GGC > GCC G 1255 A nsP2 MH329297.1 Colombia-Cauca

MH329298.1 Colombia-Risaralda

KY703969.1 Nicaragua

9496 ACA > GCA T 669 A E2 HM045821.1 Senegal 1963

AF490259.3 Tanzania 1953 Ross strain

https://doi.org/10.1371/journal.pone.0266450.t001
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time (Fig 2C). Despite the low percentage of infection observed at 24 hpi (30%) for HEK293,

the resultant infective viral progeny was similar to that of fibroblasts, in which the number of

infected cells was higher (70%).

Replication kinetics of the COL7624 isolate

The viral replication kinetics was evaluated in the three cell lines by infecting the cells at MOI

1 and collecting the supernatants as well as cells at 4, 8, 12, 24, and 48 hpi. The number of

genomic copies in the supernatants was quantified by RT-qPCR, and the levels of viral proteins

nsP1 and E1 in the cell lysates were determined by western blotting. Our results demonstrated

viral particle release into the supernatant as early as 4 hpi, which increased until 24 h, with a

significant increase between 12 and 24 h in the three cell lines. Interestingly, a slight decrease

was observed at 48 hpi (Fig 4A). The detection of viral antigen presented some differences;

nsP1, E1, and the 62 kDa E2 precursor were detectable from 8 hpi in HEK293T, while the

Table 2. Relevant amino acid substitutions identified between Asian genotype clades.

Position (aa) Protein Asian Asian Asian American 2013–17

<2000 2006 2010–14 B3

B1 B2 B3

Non-structural polyprotein 121 nsp1 A A E E

478 nsp1 T A A A

688 nsp2 V V V V/A�

808 nsp2 Q L L L

1303 nsp2 N S S S

1410 nsp3 S T T T

1546 nsp3 M V V V

1557 nsp3 T T I I

1665 nsp3 Q R R R

1669 nsp3 T M M M

1712–15 nsp3 LPTT LPTI/ ---- ----

1767 nsp3 L Q Q Q

1770 nsp3 A A T T

1784–85 nsp3 LQ LR FR FR

1790–92 nsp3 TTM ITV ITV ITV

1817 nsp3 E D D D

2132 nsp4 F F L L

2134 nsp4 K R R R

Structural polyprotein 55 C A A V V

280 E3 Q Q Q/R R

330 E2 N H H H

531 E2 N S S S

573 E2 L S F F

693 E2 V V V A

696 E2 V V L L

768 6K L L L M

793 6K T M M M

1113 E1 P S S S

Codon numbering from the first codon in each open reading frame.

Residues in boldface indicate critical aa changes in Asian American genotype.

�The amino acid substitution was unique to Colombian isolates.

https://doi.org/10.1371/journal.pone.0266450.t002
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same was detectable after 12 hpi in MRC-5 and Huh-7 cells. As for the genome, the levels of

two viral proteins increased markedly between 12 and 24 h (Fig 4B). Given the effect on cell

viability observed previously (Fig 2B), we evaluated if the observed effect was due to the activa-

tion of apoptosis. Accordingly, Caspase 3 activation by the proteolytic cleavage of procaspase

was evaluated by western blotting. The detection of Caspase 3 as a single 35-kDa band and

absence of the 17-kDa band in the cell lysates at the indicated time points demonstrated that

the activation of programmed cell death did not occur or was not significant; consequently,

the active caspase was not detectable (Fig 4C). However, in Vero cells, in which significant

cytopathic effect and higher infection ratios were observed (S1 Fig), Caspase 3 activation was

detected at 48 hpi (Fig 4D).

Evaluation of immune responses against the CHIKV infection by the

COL7624 isolate

The transcription levels of tumor necrosis factor-α (TNF-α), interferon α (IFN-α), and inter-

leukins (ILs) IL-1β and IL-8, which are involved in the pro-inflammatory response associated

Fig 2. Evaluation of the infective and replicative capacity of the COL7624 CHIKV isolate. Cells were infected at the

indicated MOIs. At 24 and 48 hpi, the cells were fixed, permeabilized, stained with anti-E1 CHIKV antibody, and

analyzed by flow cytometry (A). Cell viability was analyzed using a resazurin assay (B). Levels of infectious virions in

supernatants were measured by plaque assay on Vero cells and are expressed as the number of plaque-forming units

(PFU)/mL (C). Significant differences between the groups were evaluated considering the non-parametric Mann–

Whitney statistical test (�P< 0.05; ��P< 0.01; and ���P< 0.001). Data are representative of three independent

experiments (n = 3).

https://doi.org/10.1371/journal.pone.0266450.g002
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Fig 3. Assessment of CHIKV infection by immunofluorescence. Cells were exposed to CHIKV isolate at MOI 1. At

48 hpi, the cells were fixed, permeabilized, stained with anti-E1 CHIKV antibody.

https://doi.org/10.1371/journal.pone.0266450.g003

Fig 4. Kinetic analysis of the COL7624 isolate. Cells were infected at MOI 1 and harvested at the specified time

points. Supernatants were collected, and the gRNA content was quantified by RT-qPCR assay based on E1

amplification (A). The cells were lysed and analyzed by western blotting using antibodies against nsP1 and E1/E2

proteins (B) and anti-caspase 3 (C, D). β- actin was used as a loading control. Statistical comparisons were performed

using non-parametric Mann–Whitney tests (�P< 0.05; ��P< 0.01; and ���P< 0.001).

https://doi.org/10.1371/journal.pone.0266450.g004
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with the immuno-pathogenesis of CHIKV infection [37], were evaluated in cells infected at 24

hpi. Although the expression of these genes in all three assessed cell lines was higher than that

in the mock-infected cells, their upregulation was evident in fibroblasts, while it was low in epi-

thelial cells; as the fold change did not exceed 2 for any of the transcripts (Fig 5A). TNF-α was

the most upregulated cytokine, with increases of 1.7, 2.7, and 8.1 folds in HEK293T, Huh-7,

and MRC-5 cells, respectively, followed by IFN- α (1.6-, 2.5-, and 6.8-fold changes, respec-

tively). The degree of activation of the immune response was consistent with the levels of viral

RNA detected, with it being the highest in MRC-5 and the lowest in HEK293T cells. Further-

more, the expression of E1 was significantly greater than nsP1 in all the analyzed cell lines

(Fig 5B).

Fig 5. Gene expression levels of pro-inflammatory genes in CHIKV infected cells. Cells were infected at MOI 1 for

24 hpi and the RNA extracts were analyzed by RT-qPCR. Fold-change in mRNA levels of TNF-α, IFN-α, IL-1β, and

IL-8 were calculated using mock-infected cells as control (A). Viral RNA levels (B). Data were analyzed with the One-

way ANOVA test. Statistically significant differences are indicated: �� P< 0.01; ��� P< 0.001; and ���� P< 0.0001.

https://doi.org/10.1371/journal.pone.0266450.g005
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Discussion

From 2004 to 2011, the IOL lineage of the ECSA genotype was responsible for CHIKV fever

outbreaks in East Africa, the Indian Ocean islands, India, Southeast Asia, and Europe, which

spread rapidly and affected millions of people [8]. During 2005–2006, a large epidemic was

documented in La Réunion island [1, 3], in 2006–2007, over one million cases were reported

in India [8, 18] and through 2007–2009 the first cases of autochthonous transmission in

Europe [19, 20]. Meanwhile, most outbreaks related to the Asian genotype were limited and

geographically concentrated in Southeast Asia, China, and the Pacific islands, such as New

Caledonia and Micronesia [4–7]. However, by the end of 2013, the Asian genotype reached the

Caribbean and the Americas and promptly spread throughout the continents in a few months.

This burst transmission was accompanied by an increase in atypical and severe manifestations

of the disease [24, 25, 29–32]. Phylogenetic studies conducted with the complete genomic

sequence of these viruses coincided with their grouping in the American lineage [7, 16, 22, 23].

Our analysis of the Asian genotype with sequences reported from 1953 to 2016 revealed

numerous changes in the genome accumulated over the last 15 years, which led to a clear sepa-

ration of the sequences into four clades whose members coincided geographically and tempo-

rally, in addition to detection of a close relationship between AAL and the virus that caused

the 2012 Philippines outbreak (Fig 1, Table 2). Similar results were reported by Tan et al. in

2015; the viruses circulating in the Philippines and Indonesia from 1985 to 2014 were grouped

into subclades denominated as B1, B2, and B3, and the sequences isolated in the Philippines in

2012 and the Caribbean in 2013 were classified under the subclade B3 [7].

According to our results, the Colombian isolate is a typical member of the AAL, with just

three changes on the coding region as compared to other 46 American genomes, therefore,

similar biological behavior in vitro could be expected for the other members. Our assays

revealed that at 48 hpi, all the tested cell lines reached an infection proportion of over 65%,

independent of the MOI used. However, as previously reported for other CHIKV genotypes

[38–41], the COL7624 isolate also caused cell death as the infection progressed, being more

deleterious at higher MOI values.

Previously, the isolate SZ1239 had shown good replicative capacity in five human cell lines,

including HEK293T and HepG2 (hepatocyte carcinoma similar to Huh-7) wherein the infec-

tion at MOI 0.1 yielded 107 to 108 PFU/mL at 24 to 72 hpi [40]. Given that isolate SZ1239 clus-

tered with other strains of the Asian genotype in the B3 subclade, which has been considered

as a predecessor of the AAL lineage, we hypothesized that there are no apparent differences in

the biological behavior between the Asian genotype causing CHIKV outbreaks in Indonesia

and the Philippines (2010–2012) and the AAL, at least in mammalian cells under in vitro con-

ditions [7, 40].

Similar findings were reported by Stapleford et al. (2016), wherein viral replication assays

were performed with an infectious clone that was generated from a Caribbean sequence and

an Asian genotype isolate from New Caledonia (NC2011) in Vero and BHK-21 cells showed

both the viruses reached similar titers during the first 48 hpi. Strangely, the infectious clone

(AAL) presented a replication 10 times higher than the Asian strain in C6/36 mosquito cells.

These findings prompted them to suggest that the duplication at the 3’UTR end confers an

adaptive advantage for replication in mosquito cells but does not affect replication in mamma-

lian cells [22].

CHIKV replication occurs rapidly in susceptible cells, and infection induces apoptosis and

an immune response involving the production of antiviral IFNs and pro-inflammatory cyto-

kines [38, 39, 42–45]. Consequently, we evaluated the replication pattern of COL7624 CHIKV

isolate, the activation of apoptosis pathways, and the expression of certain cytokines associated
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with activation of the immune response during the early phase of infection. Our results

revealed the detection of viral particles at 4 hpi in the supernatants of all three cell lines, which

progressively increased up to 24 hpi. Furthermore, the E1/E2 and nsP1 proteins reached

detectable levels at 12 hpi and higher signal at 24 hpi, which coincides with the release of an

elevated number of infectious particles into the cell culture supernatant, and no significant loss

of cell viability. Remarkably, the Caspase-3 activation triggered by CHIKV infection was not

observed in any of the tested cells even at 48 hpi, although we did not rule out a low percentage

of apoptotic cells that could not be detected by western blotting.

Viral replication analyses conducted with the ECSA genotype have indicated earlier detec-

tion of viral proteins and a peak of viral progeny release after 12 hpi [42, 44, 45]. As replicative

fitness depends on different variables, such as cell type, viral strain, and immune response acti-

vation; our results might not be comparable with those of previous reports. However, Teo

et al. had reported a lower replicative capacity of a Caribbean isolate as compared to the one

from La Réunion, as reflected in a lower percentage of infected cells, lower viral load, and

minor viral titer at 12 hpi, but without significant differences at 24 hpi [42]. These findings are

consistent with our observation of a later replication peak at 24 hpi for the COL7624 isolate.

Our results have demonstrated an increase in the transcription of IFN-α and TNF-α as well

as a relationship between viral load and mRNA upregulation with immune response activation.

Strikingly, the highest levels of intracellular viral RNA and upregulation in the five evaluated

transcripts were observed in fibroblasts (Fig 5). The association between increased production of

pro-inflammatory cytokines and the CHIKV viral load has been reported previously in both in
vitro and in vivo studies and during the acute phase of infection in humans [36, 42, 46, 47]. IFNα
is an essential mediator of the anti-CHIKV immune response [38], and its increased expression

at 24 hpi potentially explains the decrease in viral replication observed at 48 hpi (Fig 2).

The over-expression of pro-inflammatory cytokines, including IL-1β, TNFα, IL8, and

IFNs-α, that was observed in this study has been described in other in vitro cell models, such

as the neuroblastoma line SHSY-5Y, primary human fibroblast-like synoviocytes (HFLS),

monocyte-derived macrophages, and phorbol 12-myristate 13-acetate (PMA)-differentiated

U937 macrophages [41, 47–49].

In conclusion, our study demonstrates that the Colombian isolate COL7624 is an Asian-

American lineage member. It exhibited a high infective and replicative capacity, as indicated

by the high production of infectious particles at 24 hpi. Infection with this isolate also induced

an early and robust anti-inflammatory response in the cells, similar to the changes in the

inflammatory mediators seen in cases with severe disease.

Supporting information

S1 Fig. Vero cells infection. Vero cells were exposed to CHIKV at MOI 0.5. At 48 hpi, the

cells were fixed, permeabilized, stained with anti-E1 CHIKV antibody, and analyzed by flow

cytometry. Dot plots based on CHIKV detection are shown and the results for three indepen-

dent experiments. Upper panel: Bright-field image from the cell cultures.

(TIF)

S1 Raw images.
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