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Abstract

Recent sequencing projects have provided deep insight into fungal lifestyle-associated genomic adaptations. Here we
report on the 25 Mb genome of the mutualistic root symbiont Piriformospora indica (Sebacinales, Basidiomycota) and
provide a global characterization of fungal transcriptional responses associated with the colonization of living and dead
barley roots. Extensive comparative analysis of the P. indica genome with other Basidiomycota and Ascomycota fungi that
have diverse lifestyle strategies identified features typically associated with both, biotrophism and saprotrophism. The
tightly controlled expression of the lifestyle-associated gene sets during the onset of the symbiosis, revealed by microarray
analysis, argues for a biphasic root colonization strategy of P. indica. This is supported by a cytological study that shows an
early biotrophic growth followed by a cell death-associated phase. About 10% of the fungal genes induced during the
biotrophic colonization encoded putative small secreted proteins (SSP), including several lectin-like proteins and members
of a P. indica-specific gene family (DELD) with a conserved novel seven-amino acids motif at the C-terminus. Similar to
effectors found in other filamentous organisms, the occurrence of the DELDs correlated with the presence of transposable
elements in gene-poor repeat-rich regions of the genome. This is the first in depth genomic study describing a mutualistic
symbiont with a biphasic lifestyle. Our findings provide a significant advance in understanding development of biotrophic
plant symbionts and suggest a series of incremental shifts along the continuum from saprotrophy towards biotrophy in the
evolution of mycorrhizal association from decomposer fungi.
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Introduction

Plants in natural ecosystems often display a high degree of

colonization by endophytic fungi. Since these fungi colonize their

hosts without causing visible disease symptoms, they have often

been overlooked and little attention has been paid to their impacts

on plant communities. Endophytes exhibit a broad range of

lifestyles along the saprotrophy-biotrophy continuum, depending

on the fitness benefits conferred to their host, secondary

metabolites production and their colonization strategies [1], [2],

[3], [4], [5]. The filamentous fungus Piriformospora indica belongs to

the order Sebacinales which represents the earliest diverging

branch of the Agaricomycetes and the most basal basidiomyce-

teous order with mycorrhizal abilities [1], [6], [7]. Taxa within this

fungal group are either facultative or, as in the more derived

species, obligate biotrophs. P. indica, which was originally isolated

from soil of the Indian Thar desert [8] is the asexual model

organism for experimental studies in the Sebacinales. P. indica

displays an endophytic lifestyle and has the ability to colonize the

roots of a wide range of mono- and dicotyledonous plants,

including members of the Brassicaceae (e.g. Arabidopsis thaliana)

which are known as non-host plants for ecto- and arbuscular

mycorrhiza [9]. Plants colonized by P. indica display a wide range

of beneficial effects including enhanced host growth and resistance

to biotic and abiotic stresses [10], [11], [12], [13], promotion of

adventitious root formation in cuttings [14] and enhanced nitrate

and phosphate assimilation [15], [16]. P. indica extensively

colonizes the differentiation and the root hair zones inter- and

intracellularly, while it is rarely detectable in the elongation and

meristematic zones [17]. This colonization pattern distinguishes it

from ecto- and arbuscular mycorrhizal fungi, which either grow

only intercellularly or colonize predominantly the deeper cortex

layers of younger parts of the root [18]. An additional difference

between mycorrhiza fungi and P. indica is its dependence on host
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cell death for successful colonization [17]. In barley, the host cell

death related growth phase is associated with the down regulation of

the endoplasmic reticulum membrane-localized cell death regulator

BAX INHIBITOR-1 (BI-1). Consistent with this, transgenic barley

plants that express the barley BAX INHIBITOR gene under a

constitutive promoter, show increased cell viability and reduced

colonization [17]. Recent studies revealed a complex interplay

between the plant root and P. indica, involving suppression of

microbe-associated molecular pattern (MAMP)-triggered root

innate immunity, modulation of secondary metabolism (including

plant hormone biosynthesis), induction of cell death, and elicitation

of systemic resistance responses [19], [20], [21], [22], [23], [24].

However little information is available on the fungal genes and

pathways involved in the establishment and maintenance of the

symbiosis [15], [25]. In this study we report on the genome of P.

indica and provide a global characterization of fungal transcriptional

responses to colonization of dead and living root tissues. Data from

recent sequencing projects have provided novel insights into

genomic traits associated with various lifestyles in fungi, including

ectomycorrhizal fungi [26], [27], [28], [29], [30]. Cytological

investigation and comparative analysis of P. indica genomic traits

and gene expression profiles revealed substantial differences in

colonization strategies compared to known ectomycorrhizal fungi

providing first insights into root endophytic life strategies in the

Basidiomycota.

Results and Discussion

Barley root colonization by P. indica
A detailed knowledge about the fungal colonization strategy is a

prerequisite for the interpretation of transcriptome changes in

response to endophytic root colonisation. To generate this

information, roots from 3-day-old barley seedlings and autoclaved

roots of the same age were inoculated with 500,000 chlamydo-

spores/ml under sterile conditions and the colonization pattern

was documented over a period of 7 days by fluorescence and

confocal microscopy. Fungal growth in autoclaved barley roots,

which retained their macroscopic structure and texture, was

characterized by a massive intracellular development with highly

branched hyphae from 3 days post inoculation (dpi) onwards

(Figure 1). Newly produced chlamydospores were detected on the

root surface at 5 dpi whereas intracellular chlamydospores were

observed at 7 dpi. The early extensive intracellular hyphal

development in dead cells resembled the colonization pattern of

cells in living roots at later stages (.7 dpi), which prompted us to

assess the viability of host cells during the symbiotic colonization.

Colonized living roots were treated with both the fungal cell wall

Author Summary

Plant-associated fungi comprise a wide range of lifestyles,
such as biotrophy, necrotrophy and hemibiotrophy.
Biotrophic fungi require actively metabolizing plant tissues
and avoid extensive damage while keeping their host alive.
They include pathogenic as well as mutualistic forms.
Necrotrophic fungi, which kill host cells in advance of their
own growth and obtain nutrients from the dead cells,
comprise only pathogenic forms. An intermediate category
is represented by the hemibiotrophic fungi. These require
living host cells during part of their life cycles, but switch
to necrotrophy at later colonization stages with detrimen-
tal effects on host survival and fitness and have therefore
so far been classified as pathogens. Our study reveals that
the mutualistic symbiont Piriformospora indica possesses
biotroph-associated genomic adaptations, such as lack of
genes involved in nitrogen metabolism and is therefore
predicted to suffer from some metabolic deficiencies. In
line with biotrophy, P. indica has a limited potential for
damage and destruction shared by symbiotic fungi and
obligate biotrophic pathogens, i.e. absence of genes
potentially involved in biosynthesis of toxic secondary
metabolites and cyclic peptides. On the other hand, P.
indica shares genomic traits with saprotrophic and
hemibiotrophic phytopathogenic fungi, such as the
presence of an expanded enzyme arsenal which is weakly
expressed during the initial biotrophic phase. Cytological
evidence for biotrophic growth followed by a cell death-
associated phase that results in a mutually beneficial
outcome, supports the idea that P. indica represents a
missing link between decomposer fungi and obligate
biotrophic mutualists.

Figure 1. P. indica colonizing autoclaved barley root cells at 5 dpi. Fungal structures were stained with WGA-AF488 (green), plant cells were
stained with propidium iodide (red). A) Cortex cells from autoclaved barley roots with fungal hyphae inside (5 dpi). B) Hyphal constriction at
penetration site. C) Hyphae on and in the root tip. Images were taken with a Zeiss Axioplan fluorescence microscope with standard settings for WGA-
AF488. The bars represent 10 mm.
doi:10.1371/journal.ppat.1002290.g001

Lifestyle Lesson from the Genome of an Endophyte
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stain WGA-AF488 and the membrane stain FM4-64 that is

commonly used for dissecting vesicles trafficking in living plant

cells [31], [32], [33]. In agreement with a previous study [17], P.

indica was confined to the cortex layer whereas the root tips and

the central meristematic tissue were free of hyphae. Living cells,

identified by the internalization of FM4-64 into endomembrane

structures, were intracellularly colonized by a single hypha with no

or limited branching from 3 dpi onwards (Figure 2). The failure of

the WGA-AF488 to stain the hyphae inside living cells (Figure 2)

strongly suggests that the fungus remained enveloped in an intact

plant-derived membrane throughout intracellular growth. Forma-

tion of cell wall appositions (papillae) was observed sporadically

during penetration attempts of living cortex cells. Presence of

papillae, visualized with ConA-AF633 staining, correlated with the

biotrophic phase of this fungus (Figure S1A). Closer inspection of

the papillae showed accumulation of plant vesicles and glycopro-

teins at the penetration zone (Figure 3). These papillae were not

always effective in stopping fungal penetration, indicating that P.

indica is able to overcome plant cell wall-mediated defense in

barley. At later colonization stages (.4 dpi) P. indica was more

frequently detected in moribund or dead host cells which were

extensively colonized by fungal hyphae. This cytological analysis

revealed a mixture of colonized dead and living cells from 4 dpi

onwards (Figure S1C and 1D).

P. indica genome survey
Pyrosequencing of the P. indica genome was performed in

parallel to RNA-Seq of cDNA pooled from different fungal

developing stages. The genome was assembled into 1,884 scaffolds

(size: .1 kb; N50: 51.83 kb) containing 2,359 contigs with an

average read coverage of 22 and a genome size of 24.97 Mb.

11,769 gene models were identified using various ab-initio gene

prediction programs and the open reading frames were validated

by mapping unique expressed sequence tags (EST) to the scaffolds

(Table S1). To assess the genome completeness of P. indica a blast

search was performed with highly conserved core genes present in

higher eukaryotes [34], [35]. From the expected 246 single-copy

orthologs extracted from 21 genomes [35], 245 are present in the

P. indica genome draft, indicating that .99% of the gene space is

covered by the assembly. Protein blast searches (eVal: 1023)

showed that a large number of P. indica’s predicted genes have

closest matches for the ectomycorrhizal fungus Laccaria bicolor

(3,109, 26.42%) and the saprotrophic fungus Coprinopsis cinerea

(2,381, 20.23%), which therefore represent the closest related

organisms sequenced at the present time. In addition a large

number of genes have no orthologs in other genomes (3,286,

27.92%) (Figure S2). Synteny analysis showed only a minor

number of conserved syntenic gene blocks between the genome of

P. indica and those of L. bicolor, C. cinerea and Ustilago maydis (Figure

S3). In comparison to the genome of related fungi P. indica has a

significantly higher gene density with 471 ORFs/Mb (39% more

ORFs/Mb than the average gene density of 338 ORFs/Mb

calculated from 9 genomes, Table 1; S2), a low number of

transposable elements (4.68%), and an absence of LTR gypsy

elements in the repeat library, which are frequently found in other

fungal genomes (Table S3). A specific identification of the reverse

transcriptase 1 (RVT1) found in LTR gypsy confirmed that this

elements are rare in the P. indica genome since only three RVT1

sequences were identified (data not shown). A relative abundance

of 24 simple sequence repeats (SSRs)/Mb was identified in the P.

indica draft genome which is in the lower range of fungal genomes.

Additionally, with only 58 identified genomic tRNA genes P. indica

has an unusual low number of these genes (Table S4). The codon

usage preference of P. indica is comparable to that of other fungi

(Figure S4).

Determination of ploidy
P. indica possesses multinucleate hyphae, but the failure to detect

clamp connections or sexual reproduction has impaired the

determination of ploidy [36]. We detected two allelic mating type

loci with two genes encoding for homeodomain proteins in the P.

indica genome (Figure S5). This finding is consistent either with a

diploid nucleus or with a dikaryotic mycelium. To determine

ploidy level, P. indica nuclei were stained with the DNA

intercalating dye syto9 and fluorescence intensity (measured by

CLSM) was compared to that of known DNA content from

haploid and diploid forms of the reference organism Saccharomyces

cerevisiae. The estimated DNA content of P. indica nuclei ranged

from 15.3 to 21.3 Mb (Figure S6). This range is consistent with the

genome size estimated by the pyrosequencing approach (Table 1),

Figure 2. Biotrophic growth of P. indica in barley root cortex cells. Living root cortex cell with fungal hyphae inside (4 dpi). Fungal structures
were stained with WGA-AF488 (green), plant membranes were stained with the endocytosis marker FM4-64 (red). A) FM4-64 and WGA-AF488, B)
bright field, C) overlay. In contrast to extracellular hyphae, intracellular hyphae were not stainable with WGA-AF488, indicating that the hyphae
remained enveloped in a plant-derived membrane throughout intracellular growth. Internalization of FM4-64 in the form of endomembrane
structures after 20 min of incubation are visible inside the plant cell, indicating viability of the cells. Images were taken with a CLM, Leica TCS SP5
(Leica, Bensheim, Germany). The bar represents 10 mm.
doi:10.1371/journal.ppat.1002290.g002
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suggesting that P. indica nuclei are haploid. Single nucleotide

polymorphisms (SNP) with two variants, were identified in about

92% of the contigs (23.15 Mb) with a frequency of 2.6 SNPs per

kb and a total of 60,493 polymorphisms for the entire genome

(Table S5). This value is similar to that observed in the diploid

genome of Candida albicans [37]. Based on DNA content and SNP

analysis, we conclude that P. indica is most likely a heterokaryon

containing two genetically distinct nuclei. Average read coverage

analysis of the contigs highlighted the presence of a group of

genomic segments with half as many reads compared to the rest

(Figure S7). A correlation between the occurrence of polymor-

phisms and sequence depth was found with no SNP observed for

the contigs with an average read coverage of about 10 (Table S5

and Figure S8). These contigs probably represent highly

polymorphic regions in the genome and account for 1.87 Mb

sequence data with 1,056 predicted ORFs (Table S5 and Figure

S8). The occurrence within these regions of the two highly syntenic

contigs representing the two putative allelic mating type loci,

which were not homologous enough to be assembled in one

scaffold, further supports this conclusion (Figure S5).

Domain and gene family expansion and contraction in
the P. indica genome

To gain an overview of the biological processes and pathways

that contribute to symbiosis, we compared the presence and

abundance of individual protein functional regions in the P. indica

predicted ORFs with the corresponding domain number in a

broad range of fungal species using the Pfam database [38] (Table

S6). The overall number of different domains represented in the P.

indica genome (2,785) is comparable to that of other fungi (with an

average value of 2,840 calculated from 10 genomes), but marked

differences are present in terms of protein abundance per

functional domain. Thirty-two protein domains are significantly

expanded in the P. indica genome with fourteen of these exhibiting

greater abundance than in any other genome analyzed in this

study (Table S6). Expanded domains include proteins that are

predicted to be involved in plant cell wall degradation (e.g.,

glycoside hydrolase families GH10, GH11 and GH61); proteolysis

(e.g., metallopeptidases families M36 and M43); carbohydrate

binding (e.g. protein containing LysM, WSC or CBM1 domains);

Figure 3. Penetration of hyphae in living root cortex cells. The upper panel shows vesicle transport at fungal penetration site. Fungal
structures were stained with WGA-AF488 (green), plant membranes were stained with the endocytosis marker FM4-64 (red). The lower panel shows
the presence of glycoproteins at the fungal penetration site. Fungal structures were stained with WGA-AF488 (green), a-mannopyranosyl and/or a-
glucopyranosyl residues around the hyphal adhesion and penetration sites were stained with Concanavalin A (ConA-AF633, red) indicative of
presence of glycoproteins. In barley leaves, papillae display a different composition from the adjacent cell wall and contain exosomes, H2O2, cell-wall
cross linked proteins, thionins, callose, iron (Fe3+) and cell-wall cross linked phenolics but not cellulose and pectin [109], [110]. Less information is
available on the papillae composition in barley root. From left to right: WGA-AF488 channel; FM4-64/ConA-AF633 channel; bright field; overlay.
Images were taken with a CLM, Leica TCS SP5 (Leica, Bensheim, Germany). The bars represent 10 mm.
doi:10.1371/journal.ppat.1002290.g003

Table 1. Main features of P. indica genome.

Genome size (Mb) 24.98

GC-content (%) 50.68

Repeat rate (%) 4.68

Protein coding genes 11,769

Average exons per gene 5.16

Gene density (number of genes per Mb) 471

Secreted proteins 867

Small secreted proteins (SSP) 386

Unique gene models 3,134

Unique SSP 197

tRNA genes 58

More details can be found in Table S2.
doi:10.1371/journal.ppat.1002290.t001

Lifestyle Lesson from the Genome of an Endophyte
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protein binding (WD domain, G-beta repeat - WD40; NACHT

domain; tetratricopeptide repeat - TPR_4 domain) together with

proteins most probably involved in signaling and regulation of

cellular responses to stress and nutrient availability (NB-ARC, G-

alpha protein, F-box, RAS and RHO families) (Table S6 and S7).

The expansion of protein binding motifs together with domains

involved in signaling is evidence that P. indica owns a complex

regulatory machinery that helps to sense and couple signals

received from the external environment with the intracellular

signaling pathways. These traits are shared by the ectomycorrhizal

fungus L. bicolor but not by the saprotrophic fungus C. cinerea (Table

S6), supporting the contention that some of these proteins are

candidates for the regulation of a complex communication system

between the mycobiont and its host [30]. In particular, the

expansion of genes encoding NWD proteins, associating the

NACHT and the WD-repeat domains (with 99 ORFs) in the P.

indica genome (Table S6) is significant. WD-repeat proteins are

found in all eukaryotes and coordinate multi-protein complex

assemblies. Their combination with the NACHT NTPases, which

share similarities in domain architecture with AP-ATPases, is

found in a variety of proteins controlling programmed cell death,

known as the incompatibility reaction, ensuring innate immunity

in plants and animals towards microbial pathogens. It is therefore

possible that this expansion of NWD genes might reflect the

evolution of systems that function in non-self recognition and

fungal innate immunity [39], [40].

Additional analyses included clustering of protein families using

Tribe-MCL [41] and the estimation of evolutionary changes in the

size of these families using CAFE [42] (Table S8 and Figure 4). A

total number of 4,458 multigene families were identified in the P.

indica genome by Tribe-MCL analysis with an average of 2.26

proteins per family, which is in the expected range for the

Basidiomycota (with average size of 4,488 and 2.2, respectively)

and which correlated with the genome size (Table S2 and Figure

S9; [30]). From the CAFE analysis, 421 families proved to be

expanded in P. indica, 2,711 showed no change, and 529 had

undergone contraction (Figure 4). In general, the domains

identified by the Pfam analysis as being significantly expanded

were found to be predominant in the expanded protein families,

showing an overall good congruence of both methods (Table S6

and S8).

Gene families that had undergone contraction account for

proteins coding for amino acid and ABC transporters (e.g. nitrate

transporters, amino acid permeases, transmembrane amino acid

transporter proteins, nucleobase cation symporters, ABC-2 type

transporters, and CDR ABC transporters) (Table S6) and proteins

involved in primary and secondary metabolism such as those for

nitrate and nitrite reductase, polyketide synthase and non-

ribosomal peptide synthetase (PKS, NRPS) (Table S9). Based on

this data P. indica is predicted to experience nitrogen deficiency

during growth on nitrate as sole N source. In order to test this

hypothesis P. indica was grown on buffered minimal medium either

containing no nitrogen or supplemented with N in the form of

nitrate, ammonium or glutamine (Figure S10). As anticipated P.

indica growth on nitrate is comparable to its growth on medium

without N source. How the nitrogen sources impact the interaction

of P. indica with the host is unknown and needs to be analyzed in

the future.

Carbohydrate binding domains expansion in P. indica
Altogether, 121 P. indica proteins contain either one or a

combination of the following carbohydrate binding motifs: LysM,

WSC or CBM1. Of these, 94 proteins are predicted to be secreted,

with 21 proteins smaller than 300 aa in size. The LysM domain is

a widely distributed peptidoglycan/chitin binding motif present in

secreted proteins, membrane proteins, lipoproteins or proteins

bound to the cell wall [43]. In bacteria the majority of the LysM

containing proteins are peptidoglycan hydrolases involved in cell

surface adhesion and virulence. In plants the LysM containing

proteins have been found in pattern recognition receptors (PRRs)

that enable the plant to identify microbial symbiotic partners or

pathogens [43]. In fungi, the LysM domains are mainly associated

with hydrolytic enzymes acting on fungal cell wall, but they are

also present in proteins lacking other conserved domains. A lectin-

like LysM protein from Cladosporium fulvum was found to inhibit

chitin oligosaccharide triggered and PRR-mediated activation of

host immunity [44]. In contrast, little information about the

functions of WSC containing proteins is available [45], [46], [47].

They are thought to bind glucan and were first described in yeast

as cell wall integrity sensors involved in mediating intracellular

responses to environmental stress [47]. The CBM1 domain has

cellulose-binding function and is almost exclusively found in fungal

hydrolytic enzymes acting on plant cell walls [48]. A lectin-like

CBM1 containing protein, named CBEL, was described to be

involved in cell wall deposition and adhesion to cellulosic

substrates in Phytophthora parasitica [49], [50]. The majority of P.

indica’s LysM (11 of 18), WSC (28 of 36), and some of the CBM1

(14 of 67) containing proteins are devoid of other conserved

Figure 4. Neighbor joining (NJ) phylogenetic tree of 98
concatenated single copy genes (50,402 characters), construct-
ed with PAUP [104]. Genes were selected from 245 eukaryotic core
genes identified in Piriformospora indica, Laccaria bicolor, Coprinopsis
cinerea, Cryptococcus neoformans and Ustilago maydis by blastp
comparisons (eVal: 10-3) against the FUNYBASE [92]. The bootstrap
confidence level was 100 at each internal node. Numbers indicate the
amount of gene families found to be expanded/contracted by CAFE
analysis [42] at the specific node as described in material and methods.
doi:10.1371/journal.ppat.1002290.g004
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domains, resembling lectins. The rest of them are associated with

different domains, which are predicted to possess plant or more

rarely fungal cell wall hydrolytic activities. Figure 5 shows a

schematic representation of domain combinations for the P. indica

LysM, WSC and CBM1 containing proteins. LysM, WSC and

CBM1 are short domains, containing consensus cysteine residues

([43] and Figure S11), and they are present as single or multiple

repeats. Most of these proteins are predicted to be secreted, yet

forms that lack a signal peptide sequence and/or have one

predicted transmembrane domain were identified in the P. indica

genome (e.g. PIIN_02781 and PIIN_07931, Figure 5). Phyloge-

netic analysis of concatenated LysM domains shows a strong P.

indica-specific expansion, which include 15 of the 18 LysM proteins

(Figure 6, clade D), symptomatic of a rapid evolution. Genes

coding for proteins from this clade are found in clusters (of 2 to 6

genes) within the genome. The remaining 3 LysM containing

proteins are distributed in 3 different clades containing Basidio-

mycota (A and C) and Ascomycota taxa (B). All of the LysM

proteins from clade C contain one LysM domain and one

transmembrane domain with no SP predicted, strongly suggesting

similar functionality. Phylogenetic analysis of single LysM domains

suggests that some of the domain repeats were created by

sequential duplications of an ancestral domain or by the

duplication of a tandem repeat (Figure 7). P. indica predicted

ORFs containing LysM domains could be amplified by PCR from

cDNA showing that all of these proteins are expressed, while

pseudogenes were not found in the genome (data not shown).

Furthermore transposable elements were not found in the

proximity of these proteins, suggesting that unequal recombination

events have contributed to gene duplication in this family. The

occurrence of a protein that combines 4 WSC and 2 LysM

domains (PIIN_06786) supports the hypothesis of domain

reshuffling in P. indica (Figure 5). This domain combination is

not found in closely related fungal genomes (one such protein was

found in Chaetomium globosum, uniprot entry Q2HEN7_CHAGB)

and the LysM and WSC domains present in PIIN_06786 are more

closely related to other P. indica LysM or WSC domains

respectively. These observations suggest that the most recent

common ancestor of both LysM and WSC proteins most likely did

not possess a protein with a combination of both domains, and the

structural similarities between these proteins in bacteria, green

algae, and fungi are likely due to convergent evolution.

Assessment of P. indica gene expression during
colonization of barley roots

An Agilent customized microarray was designed to monitor P.

indica gene expression during colonization of living and autoclaved

barley roots from seedlings grown on sugar-free plant minimal

medium (PNM) from 36–48 hpi, 3 and 5 dpi. Fungal mycelium

grown on complete medium (CM) was used as a control, because

P. indica grew poorly on the PNM medium. Despite the fact that in

young barley roots a mixture of living and dead cells were

colonized by P. indica (Figure S1D), we found 579 genes in the pre-

penetration phase (36–48 hpi), 397 genes in the early colonization

phase (3 dpi), and 641 genes at 5 dpi that were differentially

regulated compared to autoclaved roots (Figure 8; Table 2 and

S10). These differences in gene expression are consistent with a

diversified colonization strategy for living and dead roots

(supported by enrichment analysis, Table S11). An interesting

observation based on results from blastx searches against the

NCBI nr-database (eVal: 1023) emphasizes the existence of

transcriptionally defined gene sets for biotrophic and saprotrophic

lifestyles. Genes induced during symbiosis exhibited higher amino

acid sequence similarity to those of L. bicolor (18% of the total

induced genes). In contrast, genes induced during colonization of

autoclaved roots exhibited higher amino acid similarity to those of

C. cinerea (23%). Additionally, most of the symbiosis induced genes

(40%) were non orthologous to either species but specific to P.

indica (Table 3).

Genes predicted to be involved in plant cell wall degradation

were highly expressed at 3 dpi and remained induced or showed

an even higher induction at 5 dpi on autoclaved roots (Figure 9).

The high number of up-regulated genes encoding hydrolytic

enzymes (including a pectin lyase, PIIN_04321, a pectin esterase,

PIIN_04734 and a pectate lyase, PIIN_00890) during sapro-

trophic growth is consistent with the observation that colonized

autoclaved roots were macerated at later stages (in contrast to non-

colonized dead material). This suggests that dead tissue is

subjected to intense hydrolytic activity which is not observed in

colonized living roots. Nineteen genes encoding putative hexose

transporters are annotated in the P. indica genome. Many of these

genes were induced during colonization of dead roots, including a

physical cluster of 3 hexose transporters with closest homology to

C. cinerea (PIIN_03367, PIIN_03368, PIIN_03369; Figure 10). The

up-regulation of genes related to carbohydrate transport and

Figure 5. Different architecture of P. indica LysM and WSC containing proteins. Protein domains in the genome of P. indica were identified
using the PfamScan perl-script (ftp://ftp.sanger.ac.uk/pub/databases/Pfam/Tools/PfamScan.tar.gz; [38]). Results were validated with SMART [101].
Domains were grouped based on their structure and visualized using DOG (version 1.0; [102]). Frequency of each domain is specified by the numbers
below the brackets. A) Lectin-like LysM: 11 ORFs; LysM + polysaccharide deacetylase: 3 ORFs; LysM + peptidase M36 (fungalysin metallopeptidase): 2
ORFs; LysM + WSC: 1 ORF; LysM + glycoside hydrolase 88 (d-4,5 unsaturated b- glucuronyl hydrolase): 1 ORF; LysM + transmembrane domain (TM): 1
ORF. B) Lectin-like WSC: 28 ORFs; WSC + glyoxal oxidase: 3 ORFs; WSC + DUF 1996: 3 ORFs; WSC + LysM: 1 ORF; WSC + glycoside hydrolase 71 (a-1,3-
glucanase): 1 ORF. C) Lectin-like CBM1: 14 ORFs; CBM1 + glycoside hydrolases: 32 ORFs; CBM1 + other catalytic enzymes: 15 ORFs.
doi:10.1371/journal.ppat.1002290.g005
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metabolism together with the induction of plant cell wall

degrading enzymes (Table S10) indicate that a state of glucose

depletion exists during growth of P. indica on dead root tissue at 5

dpi. Consistent with the existence of this state is the observation

that genes for lipid metabolism were induced at this later time,

while those for mitochondrial activity and biogenesis were

repressed (Table S11).

Enzymes predicted to be involved in proteolysis are well

represented in the P. indica draft genome. In particular two families

of metallopeptidases, M36 (fungalysin) and M43 (cytophagalysin),

are present in expanded forms. Members of these two families,

together with members of the M28 (aminopeptidase Y) and M35

(deuterolysin) families, were greatly induced upon colonization of

dead roots (Figure 11). The presence of a great number of

metalloproteases that closely match the M36 peptidase family in C.

cinerea ([51] and Table S6) suggests that these enzymes are involved

in plant tissue degradation for nitrogen assimilation. Fungal

transporter genes, involved in the uptake of different nitrogen

forms, such as a urea permease (DUR3), uracil permeases, purine

permeases, a high-affinity ammonium transporter, and amino acid

transporters displayed a similar expression profile with increased

induction over time (Figure 10). Stress response to C and N

depletion may therefore be responsible for the high number of

hydrolytic enzymes (CWDE and peptidases) induced at 5 dpi on

dead root material.

During colonization of living roots, genes predicted to be

involved in plant cell wall degradation were induced at the pre-

penetration stage with a reduction in number and expression

intensity at 3 and 5 dpi (Figure 9). These results suggest a tightly

controlled expression of a defined set of symbiosis-related CWDE

at the onset of the biotrophic phase. Production of cell wall

degrading enzymes (CWDE) by plant colonizing fungi is often

inhibited by glucose or other simple sugars in a well studied

metabolic process known as catabolite or glucose repression [52],

[53], [54]. The opposite trends observed in the expression profiles

of the hydrolytic enzymes in living and in dead roots could,

therefore, be partially explained by plant carbon allocation during

symbiosis. Members of the expanded glycoside hydrolase GH61

Figure 6. P. indica-specific expansion of genes encoding LysM domain containing proteins. Phylogram showing the relationships of
concatenated LysM domains (left) and physical clusters of P. indica LysM domain containing proteins (right). MrBayes [111] analyses were conducted
with the fixed (Wag) aamodel and a sample frequency of 50 with 1,000,000 generations starting the tree randomly. Split frequency was 0.0058 and
PSRF 1.00. Arabidopsis thaliana (Athal) and Vitis vinifera (Vitis) were used as out-group. Bootstrap values above 70% are shown at the nodes
supported. Colors in the physical clusters represent LysM proteins with similar domain architecture. Lectin-like LysM (light blue); LysM +
polysaccharide deacetylase (dark yellow); LysM + peptidase M36 (red); LysM + WSC (orange); LysM + glycoside hydrolase 88 (dark blue); neighboring
proteins without a LysM domain are shown in black.
doi:10.1371/journal.ppat.1002290.g006
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enzyme family were almost solely responsive to living roots at the

pre-penetration stage. Expression of GH10, GH11, GH18, and

GH62 was induced at all 3 time points and may be involved in the

local secretion of enzymes at the penetration site in living roots.

Differences in expression of genes coding for CWDE between

living and dead roots may also be explained as response to papillae

formation (Figure 3 and S1A).

Expression of genes involved in protein degradation and

nitrogen transport showed an increased induction over time.

The expression profile for these genes resembled that observed

during colonization of dead roots, although lower gene inductions

were recorded for the peptidases in response to colonization of

living roots (Figure 10, 11, S12 and S13). The increasing number

of non-vital plant cells over time in living roots could account for

this similarity in expression profile between living and autoclaved

root substrate. In general, expression levels of various key genes

affected by starvation, such as those involved in autophagy or

coding for metacaspases, acetyl-CoA synthetase and enoyl-CoA

hydratase [55], [56], were unaffected or even down regulated

during symbiosis (Table S10) consistent with nutrient availability

during early biotrophic interaction.

Fungal genes annotated in the functional categories of cell

rescue and stress response were prevalent among those induced in

living roots (Figure 12). An increased expression of genes involved

in oxidative stress, flavonoid and phenolic compounds reduction

(including a dj-1 family protein putatively identified as a catalaseA-

like) and an extracellular dioxygenase was observed at the pre-

penetration phase. Genes for siderophore transcription factors and

a thaumatin-like protein were also up-regulated. In contrast, at

later time points the fungus appears to be engaged in chemical

detoxification, which involved the increased expression of genes

for DHA14 and other ABC transporters, cytochrome P 450,

glutathione S-transferase, isoflavone-, thioredoxin- and quinine-

reductases. In addition genes with strong amino acid sequence

similarity to the gliotoxin biosynthetic gene cluster of Aspergillus

fumigatus were identified as responsive to the living substrate (e.g.

gliotoxin biosynthesis protein, gliK, PIIN_08979 and thioredoxin

reductase, gliT, PIIN_07313; Figure 12 [57]). Closer inspection of

Figure 7. Relationship between individual P. indica LysM domains from 11 proteins. MrBayes and PAUP phylogenetic analyses of individual
LysM domains (left); and LysM domains architecture (right) of P. indica proteins. MrBayes analysis was conducted with the fixed (Wag) aamodel and a
sample frequency of 50 with 500,000 generations starting the tree randomly. Split frequency was 0.06 and PSRF 1.001. Arabidopsis thaliana (AT) and
Vitis vinifera (Vitis) were used as out-group. NJ tree was constructed using PAUP [104] where ties (if encountered) were broken randomly, and the
distance measure was the mean character difference. NJ cladogram was produced after a bootstrap analysis using maximum parsimony. MrBayes and
NJ bootstrap values above 70% are shown at the nodes supported (right and left from the solidus respectively). Phylogenetically related LysM
domains are shown in the same color in the tree (left) and in the schematic representation of the protein architectures (right). Signal peptides are
shown in dark gray and non-LysM domains are shown in light gray. Numbers in the domains represent the number of amino acid residues of the
domain as predicted by Pfamscan.
doi:10.1371/journal.ppat.1002290.g007
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the microarray data showed that four additional genes

(PIIN_10069 related to aflatoxin efflux pump, PIIN_10416 related

to cytochrome P450, PIIN_05842 related to methyltransferase,

and PIIN_08304 related to cytochrome P450) with amino acid

sequence similarity to gliA, gliF, gliN, and gliC from the Aspergillus

gene cluster were induced in colonized living roots (Figure 12).

These genes were not clustered in the P. indica genome and the

absence of a NRPS related to gliP, the key enzyme for gliotoxin

production in A. fumigatus [57] (Table S9), suggest that the

respective P. indica genes are involved in protection against host

antibiotic compounds rather than in production of mycotoxins.

Small secreted proteins and the identification of a novel
effector family ‘‘DELD’’

It is accepted that most phytopathogenic fungi are able to

reprogram plant defense and cell metabolism through the

secretion of small proteins called effectors (for review see [58],

[59], [60]). Recently it has been shown that effector-like proteins

exist also in mutualistic fungi [61], [62]. About 10% of the genes

induced during P. indica colonization of living barley roots encoded

putative small secreted proteins (SSP, ,300 aa; Table 2).

Increased expression of these SSPs suggests that they are likely

to play a role in determining the success of endophytic interactions

that involve penetration, suppression of plant immunity and

growth within living cells. Intriguingly, some of the lectin-like

proteins identified in P. indica genome were represented within this

group (Figure 13). Yet, the role played by these lectin-like proteins

during symbiosis remains unclear. Since these proteins are

expressed at a higher level in living roots at the pre-penetration

stage, we can speculate that they are involved in modulating

recognition in host-microbe interaction. This could be achieved

either through mediation of adherence to host cells or,

alternatively, by masking of microbe-associated molecular patterns

(MAMPs) and thus avoiding recognition by the host plant. Beside

these proteins, other P. indica-specific plant responsive SSPs with

no known domains were found. A search for motifs (Table S12

Figure 8. Venn diagrams showing P. indica genes regulated during root colonization. (A) P. indica genes induced during symbiosis; (B)
P. indica genes induced during growth on dead roots at different time points of the interaction. Diagrams were created using gnuplot (version 4.4
patchlevel 2; Williams and Kelley; www.gnuplot.info).
doi:10.1371/journal.ppat.1002290.g008

Table 2. Summary of induced genes during barley root colonization.

Living vs Dead total number of induced genes induced secreted proteins Induced small secreted proteins

pre-penetration1 488 57 40 (8.2%)

early colonization2 290 30 23 (7.9%)

late colonization3 398 40 27 (6.8%)

Living vs CM

pre-penetration1 800 127 82 (10.3%)

early colonization2 546 90 51 (9.3%)

late colonization3 567 77 40 (7.1%)

136 to 48 hours post infection;
272 hours post infection;
3120 hours post infection.
doi:10.1371/journal.ppat.1002290.t002
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and S13) in the amino acid sequences of these heterogeneous

proteins identified a group of 25 proteins with a highly conserved

pattern of seven amino acids ‘‘RSIDELD’’ at the C-terminus

(named DELD) (Figure 14). Extension of this search to the genome

draft recognized 4 truncated ORFs. Three of these putative genes

were predicted to be pseudogenes (PIIN_10706; PIIN_10879 and

PIIN_10960) and they had a higher mutation rate compared to

the other DELD-encoded genes. We therefore assume that most, if

not all of the DELD proteins are secreted. In total, 17 proteins

containing a RSIDELD motif showed increased expression during

symbiosis (Figure 15 and S12). All DELD proteins have a similar

size ranging between 101 and 135 aa with no known functional

protein domain. A multiple protein sequence alignment identified

a conserved and regular distribution of histidine and alanine

residues within the DELD proteins (Figure 14). Searches of public

fungal genome databases revealed that the RSIDELD motif is

present at the C-terminus in other fungal proteins but, when

present, the proteins bearing this motif are not highly enriched in

histidine and alanine residues (Table S12). Interestingly, two

ectomycorrhiza-regulated small secreted proteins from L. bicolor

possess a DELD motif at the C-terminus but lack a high content of

histidines. This observation supports the notion that the central

part of the protein and the C-terminal tail are functionally distinct

entities. Secondary structure prediction shows that the DELD

proteins most probably form a two-helix bundle interrupted by a

central conserved glycine residue (Figure 14). Amino acid

sequence similarity searches with the central part of the DELD

proteins revealed a ,30% sequence identity with HRPII, a

protein family from Plasmodium falciparum. This similarity was

primarily due to the high histidine and alanine content (Figure

S14). HRPII is an abundant protein released during erythrocyte

infection by the malaria parasite and was reported to be localized

in several cell compartments including the cell membrane and the

cytoplasm of the host cells [63]. HRPII has been implicated in the

detoxification of heme [64], in cytoskeleton modification by actin

binding [65] and in inhibition of antithrombin (AT) by selectively

binding to coagulation-active glycosaminoglycans (such as derma-

tan sulfate, heparin sulfate and heparin) in a Zn2+ dependent

manner [66]. Further this protein was shown to be able to bind to

phosphatidylinositol 4,5-bisphosphate (PIP2) and erythrocyte

ghosts by undergoing a coil-to-helix transition [65]. Although

the function of the HRPII seems to be still controversially

discussed, this is one of the best studied histidine rich protein at the

present time. The function of histidine and alanine rich proteins in

fungi is not known.

We investigated the association between the DELD gene family

and transposable elements by assessing the extent to which they

occurred together in the P. indica draft genome sequence. In

contrast to the LysM protein-coding genes, the occurrence of

DELD sequences strongly correlates with the presence of flanking

transposable elements in gene-poor genomic regions (Figure S15).

Similar to effectors found in other filamentous organisms [67],

[68], [69], the expansion of DELD genes in P. indica may be

accounted for by transposition activity. These findings suggest that

the DELDs represent a new gene family with a conserved domain

of unknown function secreted during symbiotic root colonization.

Conclusions
P. indica possesses a small genome that is gene dense with few

repetitive DNA sequences. Despite the unusual low number of

transposable elements in the P. indica genome compared to known

plant pathogens and symbionts [28], [67], [30], a high number of

expanded gene families exist, which are typically present in

clusters (of 2 to 7 genes) within the genome. Expansion of these

families is likely to be due to local duplication events caused by

unequal recombination, rather than retrotransposition. An

exception to this is the expansion of the P. indica-specific DELD

protein-coding gene family. All members of this novel family

occurred in the proximity of transposable elements strongly

suggesting a significant co-expansion between DELD paralogs

and transposon sequences that benefited P. indica in some way

during adaptation to the endophytic growth. This gene family

expansion together with the combined rapid evolution of different

types of plant responsive lectin-like proteins and different classes of

secreted CWDE must have provided important functional

advantages in the colonization of different plant hosts, e.g. by

overcoming host inhibitors and by minimizing MAMP-triggered

immunity (MTI) induction. Consistent with this hypothesis, recent

work has shown that P. indica has evolved an extraordinary

capacity for plant root colonization that has been attributed to its

potential to suppress host MTI [19]. Future research is required to

elucidate the contribution of these protein families to P. indica’s

colonization strategy.

The facts that P. indica can grow readily on synthetic media and

can colonize a wide range of mono- and dicotyledonous plants,

indicate that its genome did not undergo host driven specialization

as observed in typical obligate biotrophs [28]. Further, the

observed dual ability of P. indica to colonize living and dead

cortex cells point to a widening of the symbiotic lifestyle, i.e.

implementing, maintaining or enforcing properties of biotrophy

and saprotrophism, which maybe a reason leading to a broader

host range. In agreement with this hypothesis, extended

comparative analysis of P. indica genomic and transcriptomic traits

with those of other Ascomycota and Basidiomycota taxa with

different lifestyles decoded features typically associated with

biotrophism [26], [28]. These were the presence of small secreted

proteins during symbiosis and the absence of genes encoding for

nitrate uptake and reduction, as well as those for secondary

metabolism, such as polyketide synthase and non-ribosomal

peptide synthetase. On the other side, the genome sequence

uncovered saprotrophic features uncommon to symbionts, i.e.

expansions in cell wall degrading enzymes and metallopeptidases

[70]. The tightly controlled expression of CWDE and the

identification of different lifestyle-associated genomic traits argue

for a biphasic lifestyle. This interpretation of the genomic

information is supported by microscopic data that revealed an

early biotrophic growth followed by a cell death-associated phase.

In contrast to hemibiotrophic pathogens, such as Magnaporthe

oryzae, where the switch from an initial biotrophic growth to

necrotrophy leads to disease symptoms [31], [55], the interaction

of P. indica with plant roots has a beneficial outcome for its host. It

remains to be clarified whether the beneficial effects produced by

Table 3. Best blast hits for the induced genes during
symbiosis or saprotrophism.

Best blast hit
n6 of induced genes
in living roots

n6 of induced genes
in dead roots

L. bicolor 163 (18%) 68 (18%)

C. cinerea 119 (13%) 85 (23%)

No known ortholog 365 (40%) 101 (27%)

Others 259 (29%) 121 (32%)

Total* 906 375

*Number of genes induced at least at one time point.
doi:10.1371/journal.ppat.1002290.t003
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P. indica on its host are merely attributable to the biotrophic phase

or to a yet unknown mechanism associated with the lifestyle

switch.

The finding of a mutualistic symbiont with a biphasic lifestyle

support the idea that the evolution of diverse mycorrhizal

associations present in the order Sebacinales have begun with

saprotrophic fungi that became endophytic, and then progressed

to obligate biotrophic forms. Genome sequencing of other

sebacinoid species is ongoing and will help clarifying, at least for

this group of fungi, the evolutionary steps involved in mycorrhizal

symbiosis. The availability of the genome and the genetic

tractability of P. indica will provide powerful experimental

advantages for investigating fundamental aspects of symbiosis,

including functional analyses of the effector-like proteins and

symbiosis determinants, identification of novel symbiosis/patho-

genicity genes by genome comparison, population genomics, and

SNP polymorphism of symbiosis-regulated genes.

Materials and Methods

RNA-Seq, genome sequencing and assembly
Total RNA was extracted with TRIzol reagent (Invitrogen,

Darmstadt, Germany) from germinating Piriformospora indica (DSM

11827, DSMZ, Braunschweig, Germany) chlamydospores (24h)

and from 3 days old mycelium grown in liquid complete medium

(CM) [36] and pooled together. Messenger RNA (mRNA)

containing poly-A tails were isolated from 500 mg of this pool

using MN-Nucleotrap mRNA Kit (Macherey-Nagel, Düren,

Germany). After a precipitation step with isopropanol and dilution

in milliQ water, first strand cDNA was prepared using a SMART

RACE cDNA amplification Kit (Clontech/Takara Bio Europe,

Saint-Germain-en-Laye, France) according to the manufacturer’s

protocol. SMART oligo II and 39 RACE CDS primers (Clontech)

were used for first strand cDNA synthesis. The cDNA reaction

mixture was precipitated with isopropanol and dissolved in milliQ

water to a final concentration of 100 ng/ml. A 1.5 ml aliquot was

used for first strand cDNA normalization using the Evrogen JSC

Kamchatka crab duplex specific nuclease, DSN (BioCat GmbH,

Heidelberg, Germany) as described before [71]. After DSN

inactivation long distance PCR with primers compatible to the

adapters using a proofreading taq polymerase was performed as

follows: 95uC for 1, min, twenty-seven PCR cycles at 95uC for

15 s, 65uC for 30 s, 72uC for 3 min and one cycle at 72uC for

7 min. Finally 40 ml of the solution (255 ng/ml) were sent to Roche

Diagnostics Corporation (454 Life Sciences) for pyrosequencing

using the 454 platform.

Genomic DNA was extracted from 10 g fungal material grown

in CM liquid culture using the CTAB protocol of Doyle and Doyle

[72]. Sequencing of the genome of P. indica was performed by

Eurofins MWG operon, Ebersberg, Germany, using the 454 GS

FLX Titanium platform. The performed paired-end pyrosequenc-

ing resulted in 1.406.954 reads with 45.392 mate pair candidates.

Assembling of the data was accomplished by using the Celera

Figure 9. Differentially regulated P. indica hydrolytic enzymes.
Shown are expression data from 61 (38%) of the total 160 identified
hydrolytic enzymes that are at least at one time point differentially
regulated in the performed microarray experiments. Heatmaps were
produced using R (www.R-project.org) and are based on significant
expression fold changes calculated versus complete medium (CM)
control. Gene sets were manually sorted into predominantly induced in
living roots; predominantly induced in dead roots; induced in both,
living and dead roots to similar extent; and down regulated compared
to CM.
doi:10.1371/journal.ppat.1002290.g009
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Assembler (version 5.3, [73]) and the CABOG pipeline [74] to

reduce assembly problems caused by long homopolymeric

stretches in the reads. An additional assembly of these contigs

was performed by making use of the mate pair information. The

final genome set consists of 1.884 scaffolds. 7945 degenerate

contigs were excluded from the assembly because they failed

different quality criteria, e.g. they had low sequence support (high

proportion of bases with low PHRED value [75]) or a length

below 1 kb.

Raw sequence analysis
GC-content, length and average coverage of both scaffolds and

contigs were analyzed by plotting GC-content and average

coverage against the contig length using gnuplot (version 4.4

patchlevel 2, Williams and Kelley, Figure S7). Most of the contigs

share a coverage of about 22 fold (21.74 for contigs) and a GC-

content of about 50% (49.78% for contigs, 50.68% for scaffolds).

Additionally, 15 contigs had a high coverage of 200 fold and a low

GC-content of about 26%. These contigs could be assembled into

the circular mitochondrion of P. indica (see material and methods,

analysis of the mitochondrion). Contigs with a lower coverage of

about 10 fold were also identified. The high number of scaffolds

despite use of deep sequencing and the differences in the coverage

of the contigs resemble the assembly challenges and coverage

differences in the genome project of the diploid human pathogen

Candida albicans [37] giving a first indication for the presence of two

genomes in P. indica.

Identification of single nucleotide polymorphisms
The presence of two haploid genomes was bioinformatically

verified by searching for single nucleotide polymorphisms (SNPs)

using the swap454 program from the Broad Institute [76].

According to the protocol (http://www.broadinstitute.org/sci-

ence/programs/genome-biology/computational-rd/454-help) a

new standard flowgram format (SFF) file was created from the

raw read sequence fasta and quality files. For the creation of a

coverage map the Celera-assembled contig sequences were used as

reference. The SNP calling parameters were chosen in such a way

that at least 10% of the reads had to differ from the reference

sequence in order to be counted as a SNP. With this procedure a

total of 61.532 SNPs could be identified in the genome (Table S5)

of which 1.039 (1.7%) were identified on degenerate contigs and

therefore discarded from further analysis. For the validation of the

prediction, the number of SNPs per contig was plotted against its

size using gnuplot 4.4.2. (Figure S8). The plot shows a

proportional relation between the number of SNPs in a contig

to the size of the contigs (R2 = 0.8625) which is a first hint of a

good reliability of the prediction. Additionally, the predicted

number and position of SNPs in the contigs was manually

validated in ,100 randomly chosen contigs using the assembly

viewer eagleview [77] with a high degree of consistency (,95%).

Further, the SNP prediction from the contigs was mapped onto

the scaffolds. By doing so, few problems were encountered. First,

small contigs without SNPs were occasionally assembled together

with contigs with SNPs resulting in a mixture of both datasets.

Second, the scaffolds contain a significantly higher number of

unknown nucleotides (‘‘N’s’’) than contigs (212090 vs 270) because

of the performed mate pair assembly. These nucleotides could not

be considered in the SNP calling. These data are therefore not

shown.

From all genes that were predicted from the P. indica genome,

1056 (8.97%) were found in contigs that did not contain any SNPs.

110 of these genes (10.42%) had a signifcant hit against the NCBI

nr-database (eVal: 1023).

P. indica Transposable Elements (TEs)
RepeatScout [78] was used to identify de novo repetitive DNA in

the P. indica genome draft. The default parameters (with l = 15)

were used. RepeatScout generated a library of 913 consensus

sequences. This library was then filtered as follows: 1) all the

sequences less than 100 bp in size were discarded; 2) repeats

having less than 5 copies in the genome were removed (as they

may correspond to protein-coding gene families) and 3) repeats

having significant hits to known proteins in Uniprot [79] other

than proteins known as belonging to TEs were removed. The 227

consensus sequences remaining were annotated manually by a

tblastx search [80] against RepBase (http://www.girinst.org/

repbase/index.html). Five sequences have homologies with Class

1 retrotransposons LINE and three with Class 1 LTR retro-

transposons copia. Since Class 1 retrotransposons gypsy was not

identified in the RepeatScout repeat library and such elements are

largely represented in fungi, a rpsblast search [80] with the reverse

transcriptase 1 (RVT1) motif (pfam00078) found in Class 1

retrotransposons gypsy was preformed. The 21 putative RVT1

sequences obtained with the rpsblast search were compared by a

tblastn search against RepBase. Sixteen sequences have homolo-

gies with Class 1 retrotransposons LINE, three with Class 1

retrotransposons Gypsy, one with Class 1 retrotransposons copia

and one did not have homology. To identify full length LTR

retrotransposons, a second de novo search was performed with

LTR_STRUC [81]. No full length LTR retrotransposons were

identified. The number of TE occurrences and the percent of

genome coverage were assessed by masking the P. indica genome

assembly using RepeatMasker [82] (www.repeatmasker.org) with

the 227 consensus sequences coming from the RepeatScout

pipeline. RepeatMasker masked 4.68% of the P. indica genome

assembly. 4.12% of the genome was masked by repeated elements

belonging to unknown/uncategorized families (Table S3).

P. indica SSR
MISA (http://pgrc.ipk-gatersleben.de/misa/download/misa.

pl) was used to identify mono- to hexanucleotide Simple Sequence

Repeat (SSR) motifs using default parameters. A total of 602 SSRs

have been identified in the P. indica genome corresponding to

213 mono-, 154 di-, 218 tri-, 4 tetra-, 2 penta- and 11

hexanucleotide motifs. The relative abundance of SSRs was

calculated as the number of SSRs per Mb. For all 602 SSRs, the

relative abundance was 24 SSRs/Mb.

Transfer RNAs / codon usage
For the prediction of tRNAs the program tRNAscan-SE

(version 1.23, [83]) was used. The prediction was performed on

Figure 10. Plant responsive transporters in the genome of P. indica. Shown are expression data from 64 (41%) of the 262 identified
transporters that are at least at one time point differentially regulated. Identification of transporters was performed manually and a comparison
against the transporter classification database (TCDB) (http://www.tcdb.org/) was done. Heatmaps were produced using R (www.R-project.org) and
are based on significant expression fold changes calculated versus complete medium (CM). Gene sets were manually sorted into predominantly
induced in living roots; predominantly induced in dead roots; induced in both, living and dead roots to similar extent; and down regulated compared
to CM.
doi:10.1371/journal.ppat.1002290.g010
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the nucleotide sequences of scaffolds and contigs with the default

search mode and eukaryotic gene model. In total 52 standard

proteinogenic tRNAs could be identified from which 37 contained

introns. Additionally, 2 tRNAs of an unknown isotype and 4

pseudo-tRNAs were predicted by tRNAscan (Table S4).

Codon triplets and a corresponding codon table of A. bisporus, A.

nidulans, C. cinerea, C. neoformans, F. oxysporum, H. annosum, L. bicolor,

M. larici populina, P. crysoporium, P. indica, P. ostreatus, P. placenta, P.

graminis, S. commune, S. lacrymans, S. roseus, T. atroviride, T. mesenterica,

T. reesei and U. maydis were calculated from nucleotide sequences of

the predicted genes using the programming language JAVA

(http://www.java.com/en/). The codon triplets were then used to

calculate frequency plots using WebLogo [84]. The plots show

which nucleotide is preferred in each position of the codon triplets

and indicate that despite the low number of tRNAs P. indica has

very similar codon-usage preferences to those of C. cinerea, P.

ostreatus, T. atroviride and A. nidulans. (Figure S4). A list of all

reference genomes used in this study can be found in Table S14.

Gene modelling
Gene modelling for P. indica was done by applying 3 different

gene prediction programs: 1) Fgenesh [85] with different matrices

(trained with Aspergillus nidulans, Neurospora crassa and a mixed

matrix based on different species); 2) GeneMark-ES [86] and 3)

Augustus [87] with P. indica ESTs as hints and default gene models

for C. neoformans, U. maydis, C. cinerea and L. bicolor. In addition, 857

yeast proteins from CYGD [88] were mapped to the P. indica

contigs using Exonerate [89] to help define genes. The mapped

genes were used to retrain Augustus (starting with parameters from

the default L. bicolor model) and subsequently predict new genes.

Putative genes were also considered by first mapping annotated

proteins from U. maydis, L. bicolor and C. cinerea onto the P. indica

genome using Exonerate and then accepting only those P. indica

genes that could be mapped back to the original gene structure

from the homologous organism. The different gene structures were

displayed in GBrowse [90] allowing manual validation of all

coding sequences (CDSs). Annotation was aided by blastx hits

between the P. indica genome and those from L. bicolor, C. cinerea

and U. maydis, respectively. The best fitting model per locus was

selected manually and gene structures were adjusted by manually

splitting them or redefining exon-intron boundaries based on EST

data where necessary. A final set of 11769 protein coding genes

were predicted from the P. indica genome.

Evaluation of gene modelling
10350 ESTs were assembled from 454 generated RNA-Seq

reads. ESTs were mapped onto the genome using Blat [91].

Evaluation of annotated introns was done against introns defined

by ESTs. For 100% identity mapped ESTs without gaps, the

sensitivity is ,89% and specificity is ,97%. The performance

drops to 87 and 95% sensitivity and specificity, respectively for

imperfectly mapped ESTs (Table S1). Furthermore, the predicted

protein set was searched for highly conserved single (low) copy

genes to assess the genome completeness. Ortholog genes to 245 of

246 single copy genes could be identified by blastp comparisons

(eVal: 1023) against the single-copy families from all 21 species

available from the FUNYBASE [92]. Additionally, 245 of 248

core-genes commonly present in higher eukaryotes (CEGs) could

be identified by blastp comparisons (eVal: 1023) [34], [35].

Annotation of predicted open reading frames and
comparative analysis

The 11769 protein coding genes of P. indica were analyzed and

functionally annotated using the PEDANT system [93], accessible

at http://pedant.helmholtz-muenchen.de/genomes.jsp?category =

fungal. The corresponding GBrowse set is located at http://mips.

helmholtz-muenchen.de/gbrowse/fungi/cgi-bin/gbrowse/piindica/

. The genome and annotation was submitted to the EBI (http://

www.ebi.ac.uk/GOA/RGI/index.html) and can be found under the

accession numbers listed in Table S17.

For comparative analysis the P. indica proteome and those of

four related basidiomycetes, L. bicolor, C. cinerea, U. maydis and C.

neoformans, were analyzed using the following tools. 1) Secreted

proteins were predicted using TargetP and SignalP as described in

material and methods, amino acid motifs in P. indica; 2) Gene

ontologies (GO) were assigned using Blast2GO [94]; 3) The

percentages of assigned GOs in level 4 of molecular function were

calculated for the secretome of each of the four related fungi and

used for comparative analysis.

Sub cellular localization of predicted proteins
Cellular targets of the P. indica proteins were predicted by WoLF

PSORT (version 0.2, [95]). To improve the accuracy of the

program the final output was filtered by allowing predictions only

if the ‘‘first neighbour’’ was more than 50% higher than the

‘‘second neighbour’’. A putative subcellular localization could be

assigned to 6.341 proteins (Table S15).

Prediction of secreted proteins
The prediction of secreted proteins was performed by using the

TargetP software package v1.1 [96] (including cleavage site

predictions by SignalP, [97]) with standard settings for non-plant

networks. 1.846 proteins were predicted to contain a signal peptide

which targets them to the secretory pathway. This set was further

refined by excluding all proteins with a low reliability class from

the TargetP prediction (3–5) as well as proteins which contain

more than one transmembrane domain according to TMHMM

v2.0 [98] prediction with standard settings. In total 867 proteins

were assigned to the secretome of P. indica.

Amino acid motifs in P. indica
In order to screen the genome of P. indica for known and

unknown motifs in the amino acid sequence, a self-written JAVA

program based on regular expressions was used which was initially

trained on the frequently described oomycetes effector motif

‘‘RXLR…EER’’ [99]. Including three different derivatives of this

motif 321 (309 degenerated) RXLR-like motifs could be found in

the genome of P. indica. However, only 5 proteins with a

degenerated motif possess a signal peptide and none of them

were found to be up-regulated during colonization of barley roots

(Table S13 and S10).

Further a yet undescribed C-terminal motif with the strongly

conserved consensus sequence ‘‘RSIDELD’’ motif could be

Figure 11. Differentially regulated P. indica peptidases. Shown are expression data from 40 (28%) of the total 144 identified peptidases that
are at least at one time point differentially regulated in the performed microarray experiments. Heatmaps were produced using R (www.R-project.
org) and are based on significant expression fold changes calculated versus complete medium (CM). Gene sets were manually sorted into
predominantly induced in living roots; predominantly induced in dead roots; induced in both, living and dead roots to similar extent; and down
regulated compared to CM.
doi:10.1371/journal.ppat.1002290.g011
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identified in 29 proteins annotated in P. indica. All of these proteins

are less than 135 amino acids in size and contain a significantly

increased number of regular distributed alanines and histidines but

no cysteines (compared to the whole proteome; p,0.01). To

confirm the uniqueness of this motif to P. indica, a psi-blast [100]

against the NCBI nr-database as well as a screening against all

reference genomes was performed (Table S12).

While the blast search produced only a few hits of low reliability,

the motif search identified 43 putative RSIDELD motifs in all

genomes of the reference set within 20 bp of the C-terminal

region. However, several of the identified motifs differ, in contrast

to those from P. indica, significantly from the consensus and none

of the proteins showed the regular histidine/alanine distribution or

even the increased concentration of these amino acids compared

to the DELD proteins from P. indica (Table S12).

LysM and WSC proteins in P. indica
LysM and WSC protein domains were identified in the genome

of P. indica and all other fungi from the reference set by using the

PfamScan perl-script [38], ftp://ftp.sanger.ac.uk/pub/databases/

Pfam/Tools/PfamScan.tar.gz) and the results were validated with

the SMART [101] analysis pipeline using standard settings. The

18 LysM and 36 WSC proteins from P. indica were grouped based

on their domain structure and visualized using DOG (version 1.0,

[102], Table S7, Figure 5). Because the combination of LysM with

other domains is unusual in P. indica the prediction of all 18 genes

was verified by PCR on genomic DNA and cDNA.

For phylogenetic analysis the LysM and WSC domains of each

protein were extracted and concatenated by a self-written JAVA

program. LysM and WSC nucleotide (nt) and deduced aa

sequences were aligned in 4 datasets together with publicly

available sequences obtained from GenBank (http://www.ncbi.

nlm.nih.gov), PFAM (http://pfam.sanger.ac.uk/) or individual

genome sequencing projects. All alignments were constructed at

the nt and aa level using ClustalX version 1.83 [103] and then

manually corrected as needed using BioEdit (http://www.mbio.

ncsu.edu/bioedit/bioedit.html). Phylogenetic analyses were per-

formed in two steps. First all available sequences were included in

neighbour joining (NJ) (nt and aa) and maximum parsimony

analysis (nt) using the program PAUP [104]. The LysM

alignments contained data from 186 taxa whereas the WSC

alignments contained data from 126 taxa. Parsimony search

consisted of 1,000 rounds of random stepwise sequence addition

with all changes weighted equally and bootstrap analyses

consisting of 1,000 replicates in heuristic search with random

sequence addition (10 replicates). Heuristic searches were

performed using random sequence addition (up to 50 replicates)

and the tree-bisection reconnection (TBS) branch-swapping

algorithm. A consensus of multiple trees was performed by

majority role and collapsed when conflict present. NJ (nt and aa)

analyses were conducted utilizing the GTR + I + G model with

parameters estimated by the program and 10,000 bootstrap

replicates or mean character difference. A selection of the closest

related sequences was done based on the results obtained from the

PAUP phylogenetic analysis of nt and aa alignments. Selected aa

sequences were used in a final analyses of single and concatenated

domains performed with MrBayes with the fixed (Wag) aamodel

and a sample frequency of 50 with 500000 and 1000000

generations starting the tree randomly (Figure 6 and 7). The aa

alignment of concatenated LysM sequences contained data from

40 taxa and a data matrix of 306 characters whereas the aa

alignment of individual LysM domains contained data from 50 P.

indica domains and 3 plant domains and a data matrix of 59

characters. The aa alignment of concatenated WSC sequences

contained data from 50 taxa and a data matrix of 794 characters,

whereas the aa alignment of individual WSC domains contained a

selection of 44 domains and a data matrix of 93 characters.

Cluster analysis, MCL
Clustering of proteins was performed using mcl (version 10–201,

[41]) according to the online available workflow protocol (http://

micans.org/mcl/man/clmprotocols.html#blast). The inflation

parameter was defined by clustering with increasing inflation

parameters going from 1 to 4 in steps of 0.2. All results were

compared with respect to their ability to group LysM and WSC

proteins seperately while clustering only P. indica proteins. Based

on these results an optimal inflation parameter of 1.4 was used for

all further clustering procedures.

To identify P. indica specific protein families in the basidiomy-

cetes group, a blastp (eVal: 1023) ‘‘all vs all’’ comparison of the

proteomes of P. indica, L. bicolor, C. cinerea, U. maydis and C.

neoformans was performed and used as input for the mcl workflow.

Within this group, 6704 protein families were identified containing

at least two proteins. 355 of these clusters were P. indica specific.

The P. indica specific protein families containing 10 or more

proteins were manually revised in terms of secretion, regulation

during colonization of barley roots and amino acid composition.

Almost all of these protein families consisted of moderately to

strong plant responsive genes. All 29 DELD proteins occurred in

cluster 144 (37 proteins in total). Additional analysis of the

remaining 8 proteins in the group showed either a similar

expression pattern or a similar amino acid composition in

comparison to the DELD proteins but they did not possess the 7

aa conserved motif. It is still possible that these proteins have a

similar function as the DELD proteins and share therefore a

certain degree of similarity which groups them together.

Cluster analysis, protein domains
Clustering of proteins was performed based on predicted

functional domains. Protein domains were predicted on the

proteomes of C. cinerea, L. bicolor, U. maydis, C. neoformans, P.

graminis, T. reesei, A. nidulans, F. oxysporum and T. melanosporum

using the PfamScan perl-script. To determine decreased/

increased number of proteins in comparison to the other

genomes, chi-square-statistics were applied using R (http://

www.R-project.org) and the whole dataset was filtered for

domains with an adjusted significance value of p,0.005 (Table

S6). All clusters with a domain number below 5 were discarded.

In the resulting data set P. indica protein domains were

considered to be enriched when they had the highest number

in comparison to the other genomes or to a subset of genomes

grouped by lifestyle or phylum. On the contrary, P. indica protein

domains were considered to be constraint when P. indica had the

lowest or second lowest number of protein members in

comparison to the other genomes (Table S6).

Figure 12. P. indica genes involved in stress response and secondary metabolism. Shown is a selection of 44 manually identified genes.
Heatmaps were produced using R (www.R-project.org) and are based on significant expression fold changes calculated versus complete medium
(CM). Gene sets were manually sorted into predominantly induced in living roots; induced in both, living and dead roots to similar extent; and down
regulated compared to CM.
doi:10.1371/journal.ppat.1002290.g012
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Evolutionary analysis of protein families (CAFE)
Evolutionary changes in protein family size were analyzed using

CAFE (version 2.2, [42]). For the identification of protein

expansions/contractions, all protein families from the MCL

analysis were used that contained at least 5 proteins. From this

set, all protein families that are unique to one of the analyzed

genomes were excluded. A phylogenetic tree was constructed

based on 98 single copy genes from P. indica, L. bicolor, C. cinerea, C.

neoformans and U. Maydis, predicted as described in material and

methods, evaluation of gene modelling.

The CAFE analysis included 3,661 protein families (from

4,458). From these, 421 families were expanded in P. indica, 2,711

showed no change and 529 families had undergone contraction.

Table S8 shows the 62 largest expanded protein family clusters in

P. indica. A comparison of the CAFE results to those from the

Pfam domain clustering shows the overall good agreement of

both methods but reveals also the drawbacks and the necessity to

use both methods. The Pfam domain clustering uses no

phylogenetic information and counts proteins with different

domains multiple times. The MCL/CAFE approach used

phylogenetic information and protein similarities but is unable

to successfully cluster all functionally related proteins into distinct

families.

Analysis of the mitochondrion
For the assembly of the P. indica mitochondrion, all contigs with

either a high coverage or a low GC-content (Figure S7) were

assembled in a single scaffold with a length of 63.682 bp and a

GC-content of 26.29%, using the contig assembler seqMan [105].

Circularity was verified by PCR with primers designed at the

beginning and at the end of the scaffold. Genes on the

mitochondrion were predicted using a program pipeline with

different bioinformatical tools. 1) Different in silico sheared

fragments were analyzed by Blast2GO to identify all genes on

the mitochondrion of P. indica. The exon/intron structure of these

genes was then refined by building consensuses from multiple

sequences alignments produced by the program protein2genome

of the Exonerate package. A manual revision of the predictions

resulted in a full set of proteins that are commonly present in

fungal mitochondrions (Figure S16).

Microarray experimental design
P. indica is able to colonize living plant roots as well as dead plant

material. In order to address the fungal gene expression in these

two unequal environments, experiments were performed with P.

indica growing on living and dead barley roots. P. indica was

cultivated on complete medium agar plates or liquid medium as

Figure 13. Differentially regulated P. indica lectin-like proteins. Shown are expression data from 23 (19%) of the total 121 identified
carbohydrate binding proteins. All 23 proteins are putatively secreted and are devoid of other conserved domains, resembling lectins. Heatmaps
were produced using R (www.R-project.org) and are based on significant expression fold changes calculated versus complete medium (CM). Gene
sets were manually sorted based on fold changes (high to low) in living plant material at the pre-penetration stage and separated into 3 groups of
lectin-like proteins: LysM (predicted to bind to chitin); WSC (predicted to bind to glucan) and CBM1 (predicted to bind to cellulose).
doi:10.1371/journal.ppat.1002290.g013

Figure 14. Conserved residues positions and schematic representation of the P. indica DELD protein structure. Regions with regularly
distributed histidine (blue) and alanine (black) residues are visible in the consensus alignment (upper panel). The DELD proteins are predicted to
produce two helices that are interrupted by a less conserved central region but with a conserved glycine (at position 65 in the consensus alignment).
The sequence logo was created using WebLogo (version 2.8.2; [84]) based on a multiple sequence alignment of 29 DELD proteins without the
predicted signal peptides using MUSCLE [112]. Secondary protein structure prediction was performed using Phyre (Protein Homology/analogY
Recognition Engine) (http://www.sbg.bio.ic.ac.uk/˜phyre/ version 2.0; [113]) and is exemplary shown for PIIN_05872.
doi:10.1371/journal.ppat.1002290.g014
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described before [36]. Barley seeds (Hordeum vulgare L. cv. Golden

Promise) were surface sterilized with 3% sodium hypochlorite,

rinsed in water and pregerminated for 3 days in dark. For

inoculation of barley roots with P. indica, the roots were dipped in a

chlamydospore suspension (500,000/ml in 0.05% Tween water) or

mock inoculated and grown in sterile culture on a minimal

medium (1/10 PNM) and under same growth chamber conditions

as described in [22]. To address the experimental design four

different treatments were done (P. indica on barley roots on 1/

10 PNM medium, P. indica on autoclaved barley roots on 1/

10 PNM medium, P. indica on 1/10 PNM medium and P. indica on

CM medium), each in three independent biological replications.

Root and fungal material was harvested in liquid nitrogen after 24,

36, 48, 72, 120 and 168 hpi. For each time point roots from 15 to

20 living plants or 21 to 36 autoclaved plants were pooled. Total

RNA was extracted with TRIzol (Invitrogen, Karlsruhe, Ger-

many) following the manufacturer’s instructions. RNA quality was

analyzed with a 2100 Bioanalyzer (Agilent, Santa Clara, USA).

Two independent biological replicates for each treatment were

labelled for microarrays analysis. RNA from the time points 36

and 48 hpi of P. indica colonizing roots were pooled together and

referred to as the pre-penetration sample. Two more time points

were selected for the hybridization, 72 hpi (early colonization) and

120 hpi (late colonization). Further RNA from 36, 48, 72 and

120 hpi of P. indica grown on CM or PNM were pooled together

and used as controls, giving a total of 16 samples. The labelling

preparation was performed according to Agilent’s One-Color

Microarray-Based Gene Expression Analysis (Quick Amp Label-

ing) with Tecan HS Pro Hybridization protocol (version 6.0). For

each reaction 500 ng of total RNA from each experiment was

used. Cye-3-labeled probes were afterwards hybridised to 26105k

custom-designed Agilent microarrays according to Agilent’s One-

Color Microarray-Based Gene Expression Analysis (Quick Amp

Labeling) protocol (version 5.7). The microarray design was

performed using eArray (https://earray.chem.agilent.com/ear-

ray/). Up to six 60-mer probes were calculated with the best

distribution methodology. Additionally, probes for 265 barley

genes (including genes involved in defense and transport), 158 A.

tumefaciens genes (bacterial control) and 11 P. indica housekeeping

genes (positive control) were generated. To evaluate the hybrid-

ization efficiency within one array, probes from 10 P. indica genes

were hybridised randomly in 10 replicates.

Microarray image files were analyzed using Agilent’s Feature

Extraction software v. 10.5. For each spot, signal and background

intensities were obtained. To allow for comparison of expression

levels across experiments, the raw data were standardized by

quantile normalization. To assess the quality of the slides

diagnostic plots were generated. Intensities from same-nucleotide

probes were averaged. In each group-comparison the log2-ratio

between corresponding intensities was calculated and averaged

over all probes of an ORF. The Students t-statistic was applied to

test ORF signal averages for significant differences between

groups. Probes with low reproducibility in the two experiments

were discarded from further analysis. The selection of differentially

expressed genes is based on a fold change of 2 and an absolute t-

statistic of 1.96. Preliminary analysis of the microarrays data

Figure 15. P. indica DELD proteins induced during colonization
of barley roots (shown are 17 from the 29 identified DELD
proteins). Heatmaps were produced using R (www.R-project.org) and
are based on significant expression fold changes calculated versus
complete medium (CM). Gene sets were manually sorted into
predominantly induced in living roots; and induced in both, living
and dead roots to similar extent.
doi:10.1371/journal.ppat.1002290.g015
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indicated that P. indica grown on 1/10 PNM was under conditions of

severe starvation, therefore the data from this control were not

further used in our study. Gene annotations and expression data

from P. indica grown on complete medium and from living and

autoclaved barley roots colonized by P. indica are stored in Gene

Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/) under

the accession number GSE31266 (http://www.ncbi.nlm.nih.gov/

geo/query/acc.cgi?token = hdabzwmswaqkmxs&acc = GSE31266),

which complies with MIAME (minimal information about a

microarray experiment) guidelines. The R environment and the

Bioconductor package ‘Limma’ was used for quality control and

normalization of the data.

Verification of microarray results
Microarray data were verified by quantitative real-time PCR

(qRT-PCR) (Figures S12 and S13). 1 mg of total RNA from all

time points (24, 36, 48, 72, 120 and 168 hpi) and all three

independent biological replications was transcribed into cDNA

with the First Strand cDNA synthesis kit (Fermentas, St. Leon-

Rot, Germany). 10 ng of cDNA was used as template for qRT-

PCR using specific primers (Table S16). Primer design of all

primers used in this study were based on Primer3. Specific primers

for the constitutively expressed P. indica Tef gene [106] were used

as reference gene. qRT-PCRs were performed in 20 ml iQ SYBR

Green Super Mix (Bio-Rad, München, Germany) using a iCycler

(Bio-Rad, München, Germany) and the following amplification

protocol: initial denaturation for 10 min at 95uC, followed by 40

cycles with 30 s at 95uC, 30 s at 60uC, 30 s at 72uC and a melt

curve analysis. Ct values were determined with the software

supplied with the cycler. Relative expression values were

calculated using the 22DDCt method [107] as described previously

by [22]. The absence of contaminating genomic DNA was

confirmed by performing a control PCR on RNA not reverse

transcribed.

Enrichment analysis
To identify significantly enriched gene ontology (GO) terms

from the microarray hybridization experiments the Gene

Ontology Enrichment Analysis Software Toolkit (GOEAST) was

used (http://omicslab.genetics.ac.cn/GOEAST/index.php) with

settings for customized microarray platform. For the enrichment

analysis the probe annotation file for gene ontology terms

produced by Blast2GO was used. Induced genes during symbiosis

or during growth on autoclaved root material were analyzed using

the recommended parameter settings. A table summarizing all

enriched GO terms was prepared from the GOEAST output and

is shown in Table S11.

Microscopy
To visualize the papillae and the hyphal adhesion zone the

carbohydrate binding lectin concanavalinA (ConA) coniugated

with Alexa Fluor 633 (ConA-AF633, Molecular Probes, Karls-

ruhe, Germany), was used. ConA selectively binds to a-

mannopyranosyl and a-glucopyranosyl residues found in various

sugars, glycoproteins, and glycolipids and it is generally used to

visualize glycoproteins. Barley seeds (Hordeum vulgare L. cv. Golden

Promise) were surface sterilized as described in microarray

experimental design. Three days old roots were inoculated with

3 ml of P. indica spore suspension (500,000 chlamydospores/ml).

Incubation was performed in a Conviron phytochamber (8 h 18uC
dark, 16 h 22uC light). Two, three, four, five, seven and ten days

post inoculation the second cm of the roots below the seed

(differentiation zone) was excised and stained by infiltration (two

times 4 minutes at 260 mbar) with ConA-AF633 and wheat germ

agglutinin (WGA) Alexa Fluor 488 conjugate (WGA-AF488,

Molecular Probes, Karlsruhe, Germany) each 10 mg/ml in 1x PBS

buffer. 661 cm root fragments of independent biological material

were analyzed for the presence of ConA stained papillae.

Counting of papillae was performed by confocal microscopy

(TCS-SP5 confocal microscope, Leica, Bensheim, Germany).

Excitation of ConA-AF633 was done at 633 nm and detection

at 650–690 nm.

Root colonization and barley cortex cells viability were analyzed

by confocal microscopy. Colonized roots were stained by

infiltration for 10 min with 10 mg/ml WGA-AF488 to visualize

fungal structures and 1 mg/ml propidium iodide (Sigma) for plant

cells in PBS buffer. Membranes were stained with 3 mM FM4–64

(Molecular Probes, Karlsruhe, Germany) for 5 min. For imaging

of living cells with fluorescein diacetate (FDA, Sigma) roots were

incubated for 15 min in 1 mg/ml FDA. Root samples were imaged

with a TCS-SP5 confocal microscope (Leica, Bensheim, Germany)

using an excitation at 488 nm for WGA-AF488 and FDA and

detection at 500–540 nm. propidium iodide and FM4-64 were

excited at 561 nm and detected at 580–660 nm.

To determine the nuclear ploidy level of P. indica, chlamydo-

spores were collected from 4-week-old CM-agar plates with

0.002% Tween water. Chlamydospores were washed 3 times with

0.002% Tween water and resuspend in 0.9% NaCl to the final

concentration of 1010 spores/ml. The haploid Saccharomyces

cerevisiae genotype BY4741, MATa (ACC. No. Y02321, Euroscarf,

Frankfurt), and the diploid S. cerevisiae genotype FY1679, MATa/

MATa (ACC. No. 10000D, Euroscarf, Frankfurt) were used as

standards. Yeast cells were collected by centrifugation from 4 days

old liquid culture, washed three times with 0.9% NaCl and

resuspended in the same buffer to a final concentration of 1010

cells/ml. The same volume (approx. 250 ml) of P. indica spore-

suspension and 1n or 2n S. cerevisiae cells suspensions were mixed

together and incubated for 15 minutes in darkness on ice with

0.5 ml of Syto 9 and propidium iodide. Excess stain was removed

by washing 3 times with 0.9% NaCl. Fungal spores and cells

suspensions were spread onto glass slides, covered with cover glass

and analyzed under confocal laser scanning microscope, Leica

TCS SP2 (Leica, Bensheim, Germany). A series of optical

sectioning images were taken (set manually at 0.10 mm steps) for

both P. indica and S. cerevisiae after marking the area of each

nucleus. Fluorescence of each section of the nucleus was measured

using the software provided with the microscope (LCS, Leica

Confocal Software). At least seven nuclei were measured for each

fungal strain. Based on the assumption that the amount of DNA

per cell is directly proportional to the fluorescence intensity [108]

the DNA content of the P. indica nucleus was estimated by

comparing the histogram mean of the fluorescence intensity with

that of the S. cerevisiae standards.

Supporting Information

Figure S1 P. indica colonization of barley (cv. Golden Promise)

roots during the biotrophic phase. A) Amount of Concanavalin A

(ConA-AF633) stained papillae formed in the differentiation zone

(2 cm underneath the germinated seed) in response to P. indica

colonization. Papillae from the outermost layers of barley root

cortex cells were stained with the carbohydrate-binding ConA.

The number of ConA-stainable papillae formed in response to P.

indica penetration attempts raises during the early biotrophic phase

(2 to 5 dpi) and decreases at the late biotrophic phase (7 to 8 dpi),

eventually reaching zero at the cell death-associated phase (from

10 dpi onwards). Error bars were calculated as standard error of

the mean. At least 6 plants grown on 1/10 PNM medium were
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used at each time point. B) Relative amount of fungal DNA in

colonized barley roots grown on 1/10 PNM medium at different

time points (2, 3, 5 and 7 dpi). Three biological repetitions were

performed showing a similar fungal colonization profile. This

material was subsequently used for the microarrays hybridization

and qPCR analyses. C) Amount of fluorescein diacetate (FDA)

stained cells from the outermost layers of barley root cortex cells in

P. indica colonized (white bars) and non colonized (black bars)

roots. Plants were grown on 1/10 PNM medium. FDA is non

fluorescent, but when hydrolyzed by intracellular esterases, the

hydrophilic fluorescent product fluorescein is formed indicative of

cell viability. The reduction in number of vital cells from 4 to 7 dpi

is most likely due to an early natural senescence process

characteristic for barley and other cereals, called root cortical cell

death (RCD). In barley the onset of the apoptotic process starts

about two days after seed germination and became more

pronounced in older root segments [114], [115]. Root colonization

by P. indica did not significantly influence root cortical cell death

(FDA staining) at 4 and 7 dpi (biotrophic phase) in the outermost

layers. Error bars were calculated as standard error of the mean of

4 biological replicates. D) Schematic representation of P. indica

colonization of the differentiation zone from barley roots at 4 dpi

(7 days old roots). At this stage a mixture of colonized vital (red)

and non vital (black) cells is present. Living cells are intracellularly

colonized by a single hyphae with no or limited branching,

whereas dead cells are extensively colonized.

(TIF)

Figure S2 Bar charts show the top 10 organisms with best blast

hits (cut off eVal 1023) for either P. indica transcriptome (11769,

left), secretome (867, right – whole bars) or for the secreted

proteins that are less than 300 aa in size (366, right – black bars).

Blast searches were performed with Blast2GO [94]. Diagrams

were created using gnuplot (version 4.4 patchlevel 2; Williams and

Kelley; www.gnuplot.info).

(TIF)

Figure S3 Conserved syntenic gene blocks. Diagram represent-

ing P. indica syntenic gene blocks conserved in L. bicolor v2.0 (88), C.

cinerea (49), and U. maydis (10). Each block consists of at least 2

adjacent genes displaying substantial similarity and conserved gene

order between the related fungi. The analyses were performed

using: (1) bidirectional best blastp hits with an e value #1e219 and

alignment length .75% of the query protein length or (2)

bidirectional best blastp hits with an e value #1e219 and similar

definition line annotation as judged manually excluding hypothet-

ical proteins or (3) genes with exactly the same definition line

annotation excluding hypothetical proteins.

(TIF)

Figure S4 Nucleotide preference at each codon position from 20

different fungi. The codon usage of A. bisporus (Abiva), A. nidulans

(Asni), C. cinerea (Coci), C. neoformans (Cryne), F. oxysporum (Fusox),

H. annosum (Heta), L. bicolor (Labi), M. populina (Melapo), P.

crysoporium (Phac), P. indica (Piri), P. ostreatus (Pleos), P. placenta

(Popl), P. graminis (Pugr), S. commune (Schico), S. lacrymans (Serla), S.

roseus (Sporo), T. atroviride (Trat), T. mesenterica (Treme), T. reesei

(Trire) and U. maydis (Usti) was calculated using JAVA. The output

was used to create frequency plots by WebLogo [84].

(TIF)

Figure S5 Representation of the putative MAT-A region from P.

indica containing the multiallelic homeodomain encoding genes of

the two classes of DNA binding motifs (HD1 and HD2, gray

arrows). Best hit for PIIN_09915 is the A1 mating-type protein

from P. chrysosporium (e value, 1e203). Best hit for PIIN_09916 is the

A2 mating-type protein from P. chrysosporium (e value, 1e206).

Average coverage for P. indica contigs 0565 and 0582 was 13.27

and 8.58 respectively. No SNPs were found. ESTs from RNA-Seq

of cDNA pooled from various P. indica developing stages matched

the putative HD1.1 and HD1.2. The white arrows indicate

hypothetical ORFs predicted from the automated annotation

pipeline. No conserved domains were identified in these proteins.

Best hit for PIIN_09914 is PIIN_09976 with an e value of 0.0.

(TIF)

Figure S6 Measurement of fluorescence intensity of Saccharomyces

cerevisiae and Piriformospora indica nuclei. To determine ploidy level,

fungal nuclei were stained with the DNA intercalating dye syto9.

Based on the assumption that the amount of DNA per cell is

directly proportional to the fluorescence intensity [108] the DNA

content of the P. indica nucleus was estimated by comparing the

histogram mean of optical sections with those of the S. cerevisiae

standards. Based on the genome size estimation from pyrose-

quencing (24.98 Mb), the nuclear fluorescence intensity suggest a

ploidy level of 1n for P. indica. Together with single nucleotide

polymorphism (SNPs) analysis this indicates that the P. indica strain

sequenced is an heterokaryon. Histogram mean of optical sections

was calculated with the LCS, Leica Confocal Software on a TCS

SP5 CLM (Leica, Bensheim, Germany).

(TIF)

Figure S7 The upper panel show a scatterplot of the average

coverage of Paired End (PE) contigs vs contig length. Three

groups of contigs could be clustered based on the average

coverage (200, 22 and 10). The overall average coverage of the

contigs was 21.74, but the plot shows that smaller contigs can

differ significantly from this average. Contigs with low coverage

ranging from 8 to 14 had predominately no SNPs. These highly

polymorphic regions in the genome of P. indica could neither be

assembled nor assigned to a specific chromosome. Contigs with

an average coverage of 200 could be assigned to the

mitochondrion of P. indica. The high coverage is typical for these

sequences. The plot was created using gnuplot (version 4.4

patchlevel 2). The lower panel show a scatterplot of the GC-

content of Paired End (PE) contigs vs contig length. Two groups

of contigs could be identified by GC content analysis. The overall

average GC-content of the contigs was calculated to be 52.3%.

The contigs that could be assigned to the mitochondrion of P.

indica had a lower GC-content which is typical for these

sequences. No additional significant digression from the 52.3%

average was found. The plot was created using gnuplot (version

4.4 patchlevel 2; Williams and Kelley; www.gnuplot.info).

(TIF)

Figure S8 Distribution of single nucleotide polymorphisms

(SNPs) in P. indica contigs (left). The plot shows averaged SNPs

calls/kb versus averaged coverage/contigs with an interval of 1.

1.87 Mb of the P. indica genome is represented by low coverage

(,12) contigs containing almost no SNPs (total number of SNPs:

347; 0.18 SNPs/kb) while 22.98 Mb of the genome is represented

by high coverage (12–26) contigs containing most of the SNPs

(total number of SNPs: 6,0079; 2.61 SNPs/kb). Scatterplot of total

number of SNPs called per contig versus contig length (right). The

plot shows that there is a linear correlation between the number of

SNPs and the contig length (R2 = 0.86). Both plots were created

using gnuplot (version 4.4 patchlevel 2; Williams and Kelley; www.

gnuplot.info).

(TIF)

Figure S9 Protein families in P. indica and related organisms. a,

Number of protein families compared against genome size
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(number of predicted ORFs) (blue). b, Average number of proteins

per protein family compared against genome size (orange).

Clustering of protein families was performed using the Tribe-

MCL algorithm [41] as described in material and methods.

(TIF)

Figure S10 Nitrogen assimilation test. P. indica was grown on

Yeast Nitrogen Base (YNB) agar medium without amino acids and

ammonium sulfate (DIFCO, REF 233520). 20% glucose was used

as C source. The medium was buffered with 0.1 M KH2PO4-

K2HPO4 buffers. The final pH of the cultures varied little from the

initial pH 7. Plates either contained no nitrogen, or were

supplemented with N in the form of 0.5 mM and 2 mM nitrate

(KNO3), 0.5 mM and 2 mM ammonium (NH4Cl), or 0.25 mM

and 1 mM glutamine (Gln). Plates were inoculated with the same

amount of chlamydospores (500,000/ml) and analyzed after 5

days. P. indica growth on nitrate was comparable to the growth on

the control medium without N source. Ammonium as N source

provided the greatest growth ratio, followed by glutamine

treatments. These results are consistent with the genome wide

analyses that inferred the absence of nitrate transporters, nitrate

and nitrite reductases.

(TIF)

Figure S11 Sequence logos from hidden markov models (HMM)

created using LogoMat-P [116]. HMMs were created using

HMMER (version 3.0, http://hmmer.org/) based on multiple

sequence alignments constructed using MUSCLE [112]. a) The

LysM model was created using 61 P. indica LysM domains (from 18

proteins) and compared to the LysM model from the Pfam

database [38]. The generated HMM logo shows that P. indica

LysM domains contain 3 conserved cysteine residues at positions

9, 32 and 42 as described for Tricoderma atroviride [117]. b) The

WSC model was created using 109 P. indica WSC domains (from

36 proteins) and compared to the WSC model from the Pfam

database. c) The CBM1 model was created using 69 P. indica LysM

domains (from 67 proteins) and compared to the CBM1 model

from the Pfam database. Used were all P. indica domains which

were classified as CBM1 by the Pfam database and as fCBD by

SMART [101]. The constructed P. indica CBM1 model was

further compared to all other CBM models from the Pfam

database. LogoMat-P produced the best alignment for CBM1 and

only small alignments of the HMMs for all other CBM domains

indicating that the 69 domains identified in P. indica belong to the

CBM1 category.

(TIF)

Figure S12 Mean fold-change estimates for selected P. indica

genes for comparison between microarray and quantitative PCR

methods. Fold changes were determined for P. indica growing on

living (blue) or dead (red) barley roots by the 22DCt method [118]

and calculated relative to complete medium (CM) control.

Expression data are standardized relative to PiTEF. Standard

errors are from 3 independent biological repetitions.

(TIF)

Figure S13 Quantitative PCR analysis of plant (left) and fungal

(right) transporters involved in different forms of nitrogen uptake.

The plant and fungal transporters were up-regulated upon P.

indica colonization of barley roots grown on plant minimal

medium (PNM) in axenic condition. A) Relative expression of two

putative nitrate transporters (Hv NRT1, Harvest Unigene 46286

and 39899) and one ammonium transporter (Hv AMT, 10619)

from barley in response to P. indica colonization at 1, 2, 3 and 5

dpi. Fold changes were determined by the 22DCt method [118]

and were calculated relative to non inoculated barley roots

control. Expression data are calculated relative to barley

ubiquitin (M60175). B) Relative expression of two P. indica

ammonium transporters (PiAMT1, PIIN_02036; PiAMT2,

PIIN_04373) during colonization of living barley roots. Fold

changes were determined by the 22DCt method and were

calculated relative to P. indica TEF (AJ249911, PIIN_03008)

versus the control complete medium. Relative expression values

of selected transcripts were similar in 3 independent biological

experiments.

(TIF)

Figure S14 Alignment of the central part of Piriformospora indica

DELD proteins and HRPII proteins from Plasmodium falciparum.

Two representative DELD proteins and HRPII proteins were

chosen for the alignment. While looking for DELD homologs from

other organisms, we found that HRPII, a protein synthesized by

the parasite during the early erythrocyte infection, shows about

30% sequence identity with the central part of the DELD proteins,

primarily due to its high histidine and alanine content.

(TIF)

Figure S15 Distribution of P. indica intergenic region lengths.

9010 predicted genes were sorted into two dimensional bins on the

basis of the lengths of the flanking intergenic distances to

neighboring genes at the 59 and 39 ends as described before

[119]. The number of genes in each bin is shown as a log

transformed color-coded (z axis) heat map. 2759 genes either

present alone or at the end of the scaffolds hence lacking

neighboring genes were excluded from the analysis. P. indica

genome does not show an unusual distribution of intergenic region

lengths but possess a gene dense genome with an average distance

between genes of 530 bp (see also Table S2). 279 genes were

present in gene-poor regions with intergenic space between 1 kb

and 9 kb. From the 279 genes, 43 (15.41%) were predicted to be

secreted and of these, 18 (41.86%) were differentially regulated

during colonization of barley roots. Additionally, similar to

effectors found in other filamentous organisms, genes belonging

to the P. indica putative effector family DELD proved to have

flanking intergenic distances among the longest (with an average at

the 59 of 1677 bp and at the 39 of 1345 bp).

(TIF)

Figure S16 Circular map of the P. indica mitochondrion. The

map was drawn using CGView [120]. Different colours indicate

different gene families: blue: cytochrome c oxidase (subunits

COX1, COX2, COX3) and cytochrome b (COB); red: NADH

dehydrogenases (subunits NAD1, NAD2, NAD3, NAD4, NAD4L,

NAD5, NAD6); green: ATPases (subunits ATP6, ATP8, ATP9);

grey: subunits of the ribosome (SSUrna, LSUrna) and ribosomal

proteins (rps3); gold: transfer RNAs (V = Valine, P = Proline,

N = Asparagine, L = Leucine, R = Arginine, G = Glycine,

M = Methionine, E = Glutamate, T = Threonine, Q = Glutamine,

K = Lysine, C = Cysteine, A = Alanine, F = Phenylalanine,

Y = Tyrosine, S = Serine, I = Isoleucine, H = Histidine, D = As-

partate, W = Tryptophan), numbers indicate multiple copies of the

tRNA, asterisk indicate confirmation only by one program

(tRNAscan-SE, [83], or Aragorn, [121]); dark blue: homing

endonucleases with LAGLIDADG (LAG) or GIY-YIG (GIY)

motif; introns are drawn in the same colour as their corresponding

genes, but a bit lighter; numbers indicate the position and number

of introns in the specific gene (In1–In4).

(TIF)

Table S1 Evaluation of P. indica annotation against mapped

ESTs.

(XLS)
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Table S2 Genome features of P. indica and related fungi.

(XLS)

Table S3 Repetitive DNA sequences identified in the P. indica

genome.

(XLS)

Table S4 tRNA genes along with their respective anticodons

present in P. indica.

(XLS)

Table S5 Single nucleotide polymorphisms identified in the P.

indica contigs.

(XLS)

Table S6 Clustering of protein domains.

(XLS)

Table S7 Structural comparison of LysM and WSC proteins in

different fungi.

(XLS)

Table S8 Clustering of protein families.

(XLS)

Table S9 Analyses of genes and clusters involved in secondary

metabolite production.

(XLS)

Table S10 Significantly regulated genes from microarray data

and selected features.

(XLS)

Table S11 Enrichment analysis performed using GOEAST.

(XLS)

Table S12 Identified RSIDELD motif in fungi.

(XLS)

Table S13 Identified RXLR motifs in P. indica.

(XLS)

Table S14 Reference genomes.

(XLS)

Table S15 Subcellular localization of P. indica proteins.

(XLS)

Table S16 List of primers used in this study.

(XLS)

Table S17 EMBL accession numbers.

(XLSX)
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