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Abstract: The development of therapeutics and theranostic nanodrug delivery systems have

posed a challenging task for the current researchers due to the requirement of having various

nanocarriers and active agents for better therapy, imaging, and controlled release of drugs

efficiently in one platform. The conventional liver cancer chemotherapy has many negative

effects such as multiple drug resistance (MDR), high clearance rate, severe side effects,

unwanted drug distribution to the specific site of liver cancer and low concentration of drug

that finally reaches liver cancer cells. Therefore, it is necessary to develop novel strategies

and novel nanocarriers that will carry the drug molecules specific to the affected cancerous

hepatocytes in an adequate amount and duration within the therapeutic window. Therapeutics

and theranostic systems have advantages over conventional chemotherapy due to the high

efficacy of drug loading or drug encapsulation efficiency, high cellular uptake, high drug

release, and minimum side effects. These nanocarriers possess high drug accumulation in the

tumor area while minimizing toxic effects on healthy tissues. This review focuses on the

current research on nanocarrier-based therapeutics and theranostic drug delivery systems

excluding the negative consequences of nanotechnology in the field of drug delivery systems.

However, clinical developments of theranostics nanocarriers for liver cancer are considered

outside of the scope of this article. This review discusses only the recent developments of

nanocarrier-based drug delivery systems for liver cancer therapy and diagnosis. The negative

consequences of individual nanocarrier in the drug delivery system will also not be covered

in this review.

Keywords: nanocarrier, therapeutics, theranostics, drug delivery systems, liver cancer,

nanodrug, modalities

Introduction
Recent statistical reports show that human liver cancer took place as the fifth most

common type of cancer. The percentage of liver cancer patients is the highest in

Asia and Africa and conversely the lowest prevalence in Europe.1 The most

common type of liver cancer is hepatocellular carcinoma (HCC).2 Approximately

75% to 90% of liver cancer exists as hepatocellular carcinoma (HCC) or malignant

hepatomas, and it is the most frequent liver cancer.1 Liver transplantation and

surgery are conventional treatment options in treating HCC patients at early stages,

but at the advanced stage of the tumor, surgery is no longer feasible for most cases.

HCC or liver cancer can be treated clinically by chemotherapy besides surgery

or transplant. Chemotherapy is the treatment of choice for most cases of liver
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cancer but due to drug toxicity, poor absorption in the

tumor cell, multiple drug resistance limits the access of

drug to liver cancer cells in chemotherapy.3 Most of the

liver chemotherapeutics drugs are tyrosine kinase inhibi-

tors which are anti-angiogenesis. This chemotherapeutic

drug blocks the signaling pathways that lead to some

extend to disrupt the normal cell functions. Eventhough,

they primarily inhibit the liver cancer cell proliferation,

but they also inhibit the normal cell growth such as hair

follicles, bone marrow and gastrointestinal tract cells in

the body.4 To overcome the limitations of drug toxicity of

chemotherapeutics agents, developments of nanotechnol-

ogy has transpired with therapeutics and theranostics

nanocarrier based drug delivery system (DDS).

Nanocarriers (NCs) are nanomaterials of 10–200 nan-

ometers in diameter. They consider as potential vehicles for

DDS.5 NCs have potentially lowered the cytotoxicity and

increase therapeutic efficiency for anti-tumor drugs.6 They

can also be made to target specific surface receptors of cancer

cells.7 Most of the chemotherapeutic anticancer drugs have

low molecular weight, high toxicity and low specificity and

less severe side effects on the patients. As a result, they are

often cleared from the circulation before reaching the target

site and thus do not accumulate in tumors region. In order to

reduce the side effects of chemotherapeutic drugs on normal

healthy tissues, nanodrug delivery therapies are required in

order to achieve higher efficacy with negligible side effects.

However, the designed NCs must have the properties of

biodegradability and they must effectively entrap the drug

molecules and circulate into the blood stream and target into

the desired site with accurate dose.8 Nanocarrier-based drug

delivery system (NDDS) is able to be tailor-made, by selec-

tively delivering drugs to the cancerous regions and reducing

the chances of unspecific delivery to the healthy tissues, thus

reducing the side effects of the drugs. Therefore, nano drug

delivery is the answer to recapitulate the new option for liver

cancer cure.

Nanocarriers in Therapeutic Drug
Delivery of Liver Cancer
NCs have emerged as one of the most powerful and

promising tools for drug delivery, imaging and diagnosis

due to their characteristics of being able to image the

disease tissues, diagnose the condition or detecting the

cancer cells at the earlier stage, and simulataneoutsly

able to treat the disease. The system is proficiently

known as theranostics nanocarriers which presentably

able to diagnose and treat the disease at the same time.

The system must be biodegradable, having a small size

with high surface area and surface modifying properties.

They are rapidly evolving as an interesting and effective

drug delivery system in liver cancer therapy.

Lately, many researchers have developed various NCs

for liver tumor-targeted drug delivery and imaging. Figure 1

shows various nanocarriers used in liver cancer drug deliv-

ery system. For example, it was found that polymeric

micelles-doxorubicin NC is effective for growth inhibition

of HepG2 cell lines and a better survival rate in a HepG2

xenograft model.9

In addition, the theranostic strategy to treat liver cancer

is becoming more prominent and in demand. Table 1

shows the list of NCs used for liver cancer therapeutics

and diagnostic agents. Moreover, various NCs have been

used in the treatment of liver cancer tumors including

liposomes, micelles, dendrimers, metal oxide nanoparti-

cles, nanocrystals, carbon nanotubes, magnetic nanoparti-

cles, and nanogels which have been mentioned in Table 1.

Organic Nanocarriers for Therapeutics

Applications in Liver Cancer
A wide range of nanostructures based on organic materials

has been advanced for drug delivery systems. The first FDA

approved nanodrug was based on nanocarrier liposome

which is an organic nanocarrier utilizing doxorubicin as an

anticancer agent.10 Polymeric nanocarriers are one of the

most promising organic NCs for liver cancer.11 They are

biodegradable, biocompatible, non-toxicity and do not harm

autogenous tissue even though it stays prolonged in circula-

tion. The system also has a wide spectrum of therapeutic

drugs of liver cancer that can easily be adsorbed, encapsu-

lated or conjugated by the surface of the polymeric

nanocarriers.12 Tang et al, (2018) studied the biodegradable

d-tocopherol polyethylene glycol 1000 succinatepolycapro-

lactone (TPGS-b-PCL) nanoparticles loaded with sorafenib

(SFB) to evaluate the effectiveness of anti-tumor effect in

HepG2 hepatoma cells and in HCC xenograft mouse

model.13 They have successfully found that compared with

free SFB, the SFB-loaded TPGS-b-PCL NPs are more effec-

tive in suppressing HepG2 cell growth and delayed tumor

growth in the HCC xenograft model. Lee et al, (2016) had

successfully developed a galactosylated-polylithocholic-acid

based doxorubicin loaded nanocarrier for liver cancer ther-

apy which suppresses the growth of hepatic tumor and

metastasis in an orthotopic xenograft mouse model of liver
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cancer.14 Several nanocarriers like chitosan nanoparticles,

liposomes, micelle, dendrimer, lipid nanocarrier can be clas-

sified into organic nanocarrier.

Chitosan Nanoparticles

Chitosan (CS) is a biodegradable polymer of cationic

polysaccharide generated by partial deacetylation of chitin.

Many researchers have conducted studies on chitosan

nanoparticles for liver cancer drug delivery for therapeutic

purposes. Ye et al, (2018) evaluated the effect of chitosan

coated doxorubicin loaded nanocarrier in liver cancer

where it showed excellent inhibitions of cell growth of

liver cancer.15 Loutfy et al, (2016) synthesized chitosan

nanoparticle (CS-NPs) for evaluation of the in vitro human

liver cancer cell model (HepG2). They investigated that

the cytotoxic effect of CS-NPs towards liver cancer cells is

relatively good and they suggested that CS-NPs are suita-

ble for drug delivery proposes for liver cancer.16

Micelles

Polymeric micelles (PM) have been used for liver cancer

drug delivery platform due to its core-shell structure, small

size and narrow size distribution.17 It can solubilize drugs

and imaging agents which results in the advantages of

diagnosis and therapy for liver cance.18 PM has proven to

be highly effective in drug delivery vehicles for liver cancer.

Huang et al, (2010) synthesized glycyrrhetinic acid (GA)-

modified PM loaded with doxorubicin which has great

potential in liver targeting therapy.17 Hanafy et al (2018)

synthesized a novel PM (polyacrylic\poly-galacturonic acid

hybrid) loaded with drug galunisertib (LY2157299) which

acts as an inhibitor of TGFβ to treat hepatocellular

carcinoma.19 Yang et al, (2019) synthesized a nanocarrier

of polyethylene glycol-derivatized glycyrrhizic acid (GA)-

based PM loaded with doxorubicin which is delivered in

HepG2 cell line.9 This PM demonstrated excellent thera-

peutic efficacy in vivo compared with free doxorubicin. It

potentially inhibited the tumor growth and showed positive

survival in a HepG2 xenograft model.

Liposome

In recent years, several studies have focused on liposomes

for controlled drug delivery. Liposomes are relatively

stable, consist of biodegradable materials. The drugs are

Various 
nanocarriers for 
liver cancer drug 
delivery system 

Polymeric 
Nanoparticle 

Graphene 
Oxide  

Liposome  

Micelles  

Carbon Nanotube  

Nano shell  
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Superparamagnetic 
Iron Oxide 
Nanoparticles 

Nanofiber 

Figure 1 Various nanocarriers for liver cancer targeted drug delivery applications.
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Table 1 List of Nanocarriers, Therapeutic and Diagnostic Agents for Liver Cancer

Nanocarriers Drugs Diagnostic

Agent

Cell Lines Outcomes Reference

Micelles Sorafenib Polymeric micelles HepG2-Luc tumor-

bearing mice

Micelles show higher tumor

growth inhibition in vivo

systems.

[110]

Gadolinium co-loaded

liposomes

Sorafenib Gadolinium HepG2 and mouse

hepatocarcinomatous

cells (H22)

The imaging time is long and

signal enhancement is high,

good inhibition of cells growth

[111]

Lipid-polymer hybrid

nanoparticles

Sorafenib and

doxorubicin

– HepG2 HCC cells in

xenograft mouse

models

Significantly enhanced

antitumor efficiency in HCC

[112]

Polymer nano-core shell Hydrophobic drug

(sorafenib), and

hydrophilic drug

(doxorubicin)

– HepG2 Inhibits cell proliferation [113]

Nanostructured lipid

carriers (NLC)

Sorafenib – HepG2, Hep3B, Huh7 Enhanced anti-tumor activity of

HCC

[32]

Silica coated Gold

Nanoparticle

Doxorubicin Gold Nanoparticle SMMC-7721 tumor-

bearing mice

Inhibit the tumor growth

in vivo significantly and reduce

the toxicity systematically

[114]

Polymer containing

hydroxyapatite (HAp) shell

and a magnetic core of iron

oxide nanoparticles

Doxorubicin and/

or curcumin

Iron xide HEpG2 Effectively inhibit the growth

HEpG2 (liver) cancer cells,

[115]

Zinc oxide quantum dots – HepG2 Induce the cytotoxicity and

apoptosis in HepG2 cancer

cells

[116]

Chitosan (CHI) modified

single walled carbon

nanotubes (SWNTs)

Doxorubicin – HCC SMMC-7721

cell lines

kill the HCC SMMC-7721 cell

lines and depressed the growth

of liver cancer compare to free

doxorubicin.

[49]

Chitosan coated multiwall

carbon nanotubes

Doxorubicin – HepG2, mice bearing

the H22 tumor

higher antitumor activity and

stronger fluorescent intensity

have been shown in tumor

tissue

[48]

Nanocomposite based on

graphene oxide

Doxorubicin Gadolinium Human hepatoma

cells

Exhibited cytotoxic effect upon

liver cancer cells

[117]

Porous magnetic

nanoclusters with iodinated

Oil

Doxorubicin Magnetic

Nanoclusters

Liver tumors in rabbit

model

Enhance the liver cancer cell

death significantly

[118]

Silica nanoparticles Cetuximab and

Doxorubicin

– HepG2 cells in vitro

and in vivo

Better anticancer efficiency

than free cetuximab and free

doxorubicin

[119]

(Continued)
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Table 1 (Continued).

Nanocarriers Drugs Diagnostic

Agent

Cell Lines Outcomes Reference

Dextran – Super paramagnetic

iron oxide

nanoparticles

(SPIONs)

Human hepatocellular

cells, HepG2

Effective antitumor effect and

magnetic resonance

[120]

Fe3O4/MnO hybrid

nanocrystals

– Mn2+ Human hepatocellular

carcinoma (HCC) in

orthotopic xenograft

model

Shows greater imaging effect

by detecting the HCC with

a high degree

[121]

Gadolinium-embedded iron

oxide (GdIO)

– Gd Liver of BALB/c mice Efficient tumor imaging [122]

Nanofiber Doxorubicin – H22, an aggressive

murine liver cancer

cell line SMMC7721

cell line

Provide good tumor-targeting

activity.

[123]

Alginate/doxorubicin-

modified alginate complex

nanoparticles),

Doxorubicin – HepG2 Cells The inhibition rate of tumor

growth is high

[124]

Superparamagnetic iron

oxide nanoshells

Doxorubicin Superparamagnetic

iron oxide

In vivo liver tumor

model

Effective antitumor effect and

imaging

[52]

Polyethylene glycol

modified phospholipid

micelles

Sorafenib – HepG2 Cells Antitumor effectiveness is high [3]

Dendrimer Doxorubicin HepG2 Cells Inhibits the growth of liver

cancer cells with a better

efficiency.

[30]

Nanofiber Cisplatin – Prevent tumor recurrence [54]

Lipoprotein modified silica

nanoparticles

Docetaxel and

Thalidomide

– HepG2 human

hepatocellular liver

carcinoma cell line

Achieve effective

chemotherapy of liver cancer

[37]

Nanofiber Doxorubicin – Mammary carcinoma

EMT6 cells

Effective inhibition of cancer

cells and in vivo release and

biodistribution show greater

outcome

[36]

Polymeric micelles Doxorubicin – HCC cell line, HepG2 Good tumor growth inhibition

and overall survival rate in

a HepG2 xenograft model.

[9]

Folate-conjugated

PEGylated PLGA

nanoparticles

Sorafenib SPION BEL7402 cancer cells Suppress the tumor cell

proliferation effectively and

improve the anticancer efficacy

[125]
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entrapped by the inner core of the liposome.20 It has been

effectively used as a carrier system for delivering a variety

of therapeutic agents due to its biocompatibility, low toxi-

city, biodegradability and capability of incorporating both

hydrophilic and hydrophobic drugs.21,22 Wang et al,

(2018) studied liposome decorated with antibodies of

CD147, a polyclonal antibody highly precence in liver

cancer cell lines and HCC tissues. In their study, CD147

was used as the target molecule to construct a new targeted

liposome-based carrier loaded with doxorubicin. The

result showed that this nanocarrier exhibit a higher cyto-

toxic effect on Huh-7 and HepG2 cells as well as the

HCC3736 model.23 Persico et al, (2018) investigated lipo-

somes coated with chitosan and uncoated liposomes

loaded with butyric acid (BA) to evaluate the anticancer

effect of hepatoblastoma (HB) in HepG2 cell line.24 They

concluded that BA-loaded liposomes coated with chitosan

showed higher cytotoxicity effect than both uncoated lipo-

somes and free BA.24 He et al, (2018) investigated in vitro

and in vivo drug release studies on Sorafenib-loaded lipo-

somes compared with free Sorafenib using Hep3B tumor-

bearing xenograft nude mice. The experimental evidence

suggested that biocompatibility, biotoxicity and anti-tumor

effect were improved using sorafenib-loaded liposome

compared with free sorafenib.25 According to the results,

liposome represents a novel and suitable nanocarrier-based

treatment strategy for advanced HCC therapy in the future.

Dendrimer

Dendrimer-based drug delivery systems for antitumor therapy

have a great advantage. The physico-chemical properties, such

as structure and size, aqueous solubility, mono-dispersity and

the high drug delivery ability make dendrimer a unique nano-

carrier for drug delivery application.26 Moreover, dendrimer

has efficient renal filtration properties.27 Wojnarowicz et al,

(2018) synthesized a dendrimer based multifunctional NCs

coated with polydopamine (PDA) andmagnetite nanoparticles

(Fe3O4). The synthesized nanocarriers were reported as non-

toxic and it can load the drug photothermal and chemother-

apeutic agents effectively to treat liver cancer cells at the

solution of low nanoparticles.28 Sharma et al, (2017) reported

that the surface of dendrimers has water soluble functional

groups that are responsible for the excellent water

solubility.29 Liver cancer drugs are hydrophobic, the inner

core and branches of dendrimers have the characteristic of

encapsulating hydrophobic drugs. Fu et al, (2014) had have

developed amultifunctional dendrimer-based nanocarrier con-

jugated with polyethylene glycol, modified with lactobionic

acid and encapsulated with doxorubicin for liver cancer ther-

apy. They found that the nanocarrier effectively inhibits the

growth of liver cancer cells.30 Jain et al (2014) have carried out

the synthesis of a nanoconjugate of glycyrrhizin-dendrimer

modified with carbon nanotube.31 The liver cancer drug, dox-

orubicin was loaded and entrapped by the dendrimer and

carbon nanotubes. The cytotoxicity, loading and release studies

indicate that this dendrimer-based nanocarrier seems to be an

effective vehicle for encapsulation of ionizable drugs of liver

cancer.31

Lipid Nanocarriers

The lipid-based NCs provide an option in the development

of a specific nanotherapeutics delivery system for different

liver cancer drugs. A nanostructured lipid carrier was

synthesized by Bondì et al, (2015) for the controlled

release of sorafenib drug to see the anticancer activity

compared to free drug. They suggest that lipid based

nanocarrier can be a good delivery agent for liver cancer

for therapeutic application.32 Furthermore, Zhao et al,

(2015) developed a lipid nanocarrier that delivers the

doxorubicin and curcumin drug in mice model and they

found that lipid nanocarrier has the excellent inhibitory

effect on tumor growth with its high encapsulation effi-

cacy, uniform particle size and sustained release profile.33

Organic Nanofiber

Organic nanofibers have been used as vectors for drug

delivery for liver cancer. The chemotherapeutic drug-bear-

ing nanofiber simultaneously inhibits metastasis and tumor

growth of liver cancer cells. Ebara et al, (2015) con-

structed an organic nanofiber containing anticancer drug,

paclitaxel and therapeutic gene, miRNA-145 to see the

effect of both drug and gene delivery to liver cancer. It

has shown that the reduction of growth of a liver tumor

and prevents metastasis.34 Ji et al, (2018) synthesized

doxorubicin-conjugated nanofibers which have the prop-

erty of sustained release drug for inhibiting tumor growth

in an SMMC7721 cell line in the mouse model.35 Liu et al

(2013) investigated a doxorubicin-loaded nanofiber as

a chemotherapeutic system against hepatic carcinoma.

They observed significant anti-tumor efficacy in the result-

ing nanofiber.36

Inorganic Nanocarriers
Inorganic nanocarriers are generally had physical proper-

ties, such as optical absorption, fluorescence (semiconduc-

tor QDs), and magnetic moment (e.g., iron oxides), useful
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reactive groups for different biomolecules in order to

achieve a biological functionality, such as active targeting

of tissues or cells. Table 1 summarised various inorganic

nanocarriers for the application of liver cancer nano drug

delivery. For example, Ao et al, 2018 studied lipoprotein

modified silica nanoparticles loaded with Docetaxel and

Thalidomide to observe the cytotoxicity of HepG2 human

hepatocellular liver carcinoma cell line and found effective

tumor killing on liver cancer.37

Graphene Oxide-Based Nanocarriers

Graphene oxide nanocarriers have excellent drug loading

capacity. The property of high electron transfer of indivi-

dual graphene sheets makes them a good carrier for drug

delivery application.38 Due to their high surface area,

graphene-based nanocarriers can form specific interactions

with various drug molecules.39 Yang et al (2016) had

indicated a targeted drug delivery system of graphene

oxide with carboxymethyl chitosan, fluoroscein isothio-

cyanate, lactobionic acid and anticancer drug doxorubicin.

The nanocarrier has induced cell death after 24 hrs of

incubation and shown higher biocompatibility with liver

cancer cell lines.40 Yuan et al, 2015 indicated that

a combination of folic acid, monoclonal antibodies and

gold nanoparticles-based graphene nanocomposites pro-

moted HepG2 cell apoptosis with drug targeting and con-

trolled release properties.41

Polylactic-Co-Glycolic Acid (PLGA) Nanoparticles

Poly(lactic-co-glycolic) acid PLGA nanoparticles are

a copolymer of two monomers; lactic and glycolic acids.

PLGA can be obtained as a synthetic polymer. Due to its

biocompatibility, the US Food and Drug Administration

and the European Medicine Agency has been approved

PLGA for drug delivery.42 Recent studies have shown that

PLGA nanoparticles have high drug loading capacity,

good specificity, biocompatibility and efficacy in drug

delivery of liver cancer. Gao et al, (2015) formulated

polylactic-co-glycolic acid (PLGA) nanoparticles, coated

with lipid and modified with a CXCR4 antagonist to

deliver anticancer drugs sorafenib into HCC liver cancer.

It was found that the sorafenib-loaded PLGA nanocarrier

enhanced the anti-angiogenic effect, delayed the tumor

progression and increased survival of the orthotopic HCC

model mouse.43 Li et al, 2015 formulated a poly(lactide-co

-glycolide) conjugated with tocopheryl polyethylene gly-

col 1000 succinate (PLGA TPGS) nanoparticles loaded

with oleanolic acid (OA) to improve the anticancer

efficacy of liver cancer treatments. They successfully

found that PLGA nanoparticles loaded with OA shows

the excellent anticancer effect on human liver cancer cell

line HepG2 cells and in vivo model. In the work of Dangi

et al, (2014), PLGA nanoparticles conjugated with lacto-

bionic acid and loaded with 5-Fluorouracil (5-FU) showed

a good anticancer efficacy on the human cancer cell line,

HepG2 compared with free 5-FU.44

Carbon Nanotubes

Carbon nanotubes (CNTs) are needle-like shape materials

that able to carry therapeutic drugs to the cellular

component.45 According to the study of He et al (2017),

CNTs are potentially considered excellent nano-vehicles for

the delivery of different therapeutic agents due to their small

size and mass, high electrical, strong mechanical potency

and thermal conductivity.46 CNTs exhibit biocompatibility,

low toxicity, fewer side effects, high treatment efficacy with

low drug doses in tumor-targeted drug delivery.47 Qi et al

(2015) had used CNTs as a carrier to deliver the doxorubicin

drug in vivo liver tumor model and found excellent antitu-

mor activity in the Hep2 cell lines.48 Ji et al (2012) studied

doxorubicin-loaded chitosan folic acid conjugate single

walled CNTs for controlled release in HCC cell lines.

They successfully found that CNTs-based nanocarrier can

effectively kill the HCC cells and depress the liver cancer

growth than free doxorubicin in nude mice.49 Elsayed et al

(2019) has designed sorafenib-loaded carbon nanotubes

(CNTs) that showed the therapeutic efficacy against HCC.50

Superparamagnetic Iron-Oxide Nanoparticles

Superparamagnetic iron-oxide nanoparticles (SPIONs)

have shown significant performance in the field of liver

cancer therapy and diagnosis. Azzariti et al (2017) had

synthesized polyethylene-glycol modified micelles loaded

with SPIONs and sorafenib to test the liver cancer inhibi-

tion effect. Due to the impact of the magnetic field,

SPIONs have made potential targeting ability to specific

sites in liver cancer. They administered SPIONs in the

human hepatocellular carcinoma (HepG2) cells in an

in vitro system to evaluate tumor cell targeting efficacy

of the sorafenib-loaded superparamagnetic micelles and

they found that this nanocarrier had controlled drug load-

ing efficacy and better inhibition effect.3

Nanoshell

Nanoshells have attracted tremendous attention over the

past few decades as a promising tool for liver cancer

therapy.51 It is a self-assembled polymer forming a core
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or shell structure and has been used for liver imaging as

well.52 One of the most useful nanoshells is gold nano-

shells. According to Liu et al, (2010), gold nanoshell

showed good targeting ability to liver cancer cells, for

example, BEL7404 and BEL-7402 without affecting the

normal healthy liver cell like HL-7702.53

Inorganic Nanofiber

Both organic and inorganic nanofibers are considered as

good carriers for drug delivery of liver cancer. Zhang et al,

(2014) investigate cisplatin-loaded, multilayered polylac-

tide electrospun nanofiber in liver cancer in mice. They

evaluate the inhibitory effect of cisplatin-loaded nanofiber

in the H22 cell lines. The nanofiber improved tumor cyto-

toxicity and prolonged drug release and prevent tumor

recurrence following HCC surgery.54

Various Nanocarriers for
Theranostic Drug Delivery for Liver
Cancer
The theranostic delivery literally means putting together

diagnostic and therapeutic agents on a carrier to cure and

diagnose cancer. Theranostic nanocarriers have emerged to

diagnose and treat the diseases at the cellular and mole-

cular level. Figure 2 represents the theranostic model of

nanocarriers. Currently, the theranostic delivery-based

approach has been explored effectively for treating liver

cancer. The therapeutic agents in theranostic nanocarriers

include chemotherapeutics drugs, proteins, peptides, gene

and genetic materials. Diagnostic agents that are com-

monly used in theranostic nanocarriers include gadoli-

nium, fluorescent dyes, quantum dots, superparamagnetic

iron oxides, radionuclides, heavy elements, such as iodine

for optical imaging, magnetic resonance imaging (MRI),

nuclear imaging and computed tomography.55 Table 2

shows the list of nanocarriers used for liver cancer ther-

anostic drug delivery. For example, Zhang et al, (2016)

used lipid-micelles as nanocarrier and used gadolinium as

a contrast agent for MRI/photoacoustic imaging (PAI) in

HepG2 tumor-bearing mice.56

Gadolinium as a Diagnostic Agent for

Liver Cancer
FDA approves gadolinium (Gd) as a diagnostic agent for

magnetic resonance imaging (MRI) of the liver to detect

and characterize the tumors in liver cancer. Liu et al (2011)

had designed novel multifunctional polymeric nanoparti-

cles modified with gadolinium-diethylenetriamine pentaa-

cetic acid (Gd-DTPA) to deliver Gd-DTPA to the tumor

area and achieve the early diagnosis of hepatocellular

carcinoma (HCC).57 Luo et al (2011) had carried out the

synthesis, characterization and imaging of gadolinium-

based multifunctional peptide dendritic MRI probes for

liver imaging. The properties and targeting effect of gado-

linium containing dendritic have shown a strong impact on

their behavior in vitro and in vivo as MRI contrast agents

to detect the tumors.58

Theranostics 
Model

Therapeutic Agents
Chemotherapeutics 
Drugs
Photodynamic Therapy
Gene Therapy

Diagnostic agents
Contrast agent
Imaging agent 
MRI
PET optical
Chemical 
Sensors
Photoacoustic Imaging
Computed Tomography

Therapeutics 
Model

Diagnostics 
Model

Addition of targeting agents such as folic acid,
ligand and other targeting moieties

Figure 2 Theranostics nanocarrier model.
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Superparamagnetic Iron Oxide

Nanoparticles as a Diagnostic Agent for

Liver Cancer
Superparamagnetic iron oxide nanoparticles (SPIONs) are

important in the field of theranostic delivery because of

their magnetic property. SPIONs have been used as diagnos-

tic agents for magnetic resonance imaging (MRI) to detect

liver cancer as they can be targeted to specific sites of liver

cancer through the effect of themagnetic field. SPION can be

used as a therapeutic agent, as well as an MRI contrast agent

in liver cancer cell line. It was found that SPION was

degraded into a soluble form of iron or non-toxic ions in

the body and cleared from the blood by phagocytosis. They

are metabolized in cell lysosomes.59 There are a few types of

superparamagnetic iron oxide (SPIO) in the market such as

Ferumoxytol, Ferumoxides, Ferucarbotran, Ferumoxtran-10,

and Ferropharm. They have been designed and clinically

tested as MRI contrast agents. Ferumoxytol comprised of

iron oxide nanoparticles surrounded by a carbohydrate coat.

It is a potential imaging approach for evaluating certain liver

tumors.60 Ferumoxide (dextran-coated SPION) and

Ferucarbotran (carboxydextran-coated SPION) are the two

SPIONS clinically approved for liver cancer imaging.61

SPIONs and sorafenib loaded nanoformulation were pre-

pared by Azzariti et al, (2017) based on polyethylene glycol-

modified phospholipid micelles. They investigate their drug

delivery for hepatocellular carcinoma and found that SPION

could enhance imaging by magnetic targeting.3 However,

iron oxide nanoparticles had limited clinical use in imaging

liver, spleen and lymph nodes, due to the passive

Table 2 Theranostics Nanocarriers Delivery Agents for Liver Cancer

Nanocarriers Drug Diagnostic Agent Technique Target References

SPION Doxorubicin Iron oxide MRI Liver cancer of rabbit

bearing orthotopic

tumor

[126]

Micelle Sorafenib SPION MRI Cancer of

subcutaneous H22 cells

bearing mice

[127]

Polymeric

nanoparticles

Doxorubicin SPION MRI Rabbits bearing VX2

rabbit tumor

[128]

Lipid-micelles – Gadolinium MRI/photoacoustic imaging

(PAI)

HepG2 tumor-bearing

80 nude mice (22–24 g)

[56]

Micelles Mitoxantrone

(MX)

Micelles MRI/upconversion

luminescence (MRI/UCL)

Human hepatocellular

carcinoma cell line BEL-

7404

[59]

Dendrimer – Polydopamine CT (chemotherapy) and PTT

(photothermal therapy)

HepG2 [129]

Polymeric

nanoparticle

– Gadolinium MRI HCC [57]

Gadolinium-based

silica-coated

nanocrystals

– Gadolinium PDT and MRI BNL 1 ME A. 7R.1 cell [130]

Dextran – Iron oxide nanoparticles – HepG2 [120]

Micelles Doxorubicin Super magnetic iron oxide Targeted therapeutic and

imaging strategy against liver

cancer.

HepG2 [131]

Calcium phosphate

nanoparticles

Doxorubicin Diethylenetriaminepentaacetic

acid gadolinium

MRI BEL-7402 and HepG2

cell lines

[132]

Abbreviations: SPION, Superparamagnetic iron oxide nanoparticle; MRI, magnetic resonance imaging; PDT, photodynamic therapy.
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accumulation in these organs. Therefore, FDA has with-

drawn the approval of iron oxide nanoparticles and the

usage was discontinued as MRI contrast agents in the US

Meanwhile, other SPIONs, namely ferumoxsil (Lumirems/

Gastromarks) for oral administration and ferumoxide

(Endorems/Feridexs) are available as intravenous injection,

were also discontinued for economic and safety issues

reasons.62–65

Quantum Dots as a Diagnostic Agent for

Liver Cancer
Quantum dots (QDs) are one of the most efficient diagnos-

tic agents used in theranostic applications for diagnosis and

therapy of liver cancer due to their unique physico-chemical

characteristics, especially photoluminescence characteris-

tics. Olerile et al, (2017) showed that HepG2 cells of liver

tumors were detected by the NLC nanostructured lipid

carrier-loaded QDs.66 Das & Mohapatra (2017) found

QDs are suitable for targeted imaging of liver cancer cells,

where QDs are incorporated as a platform of bioimaging

systems for liver cancer detection and imaging.67 Shao et al

(2015) applied QDs-based liposomes carrier for liver cancer

imaging of suicide gene therapy.68 Al-Jamal et al (2009)

demonstrated that the near-infrared fluorescence imaging

accumulated efficiently in liver cancer cells of mice via

QD fluorescence. In addition to their findings, QDs can be

encapsulated within the lipid bilayers of liposomes to form

nanoscale vesicles and perform as a contrast agent to iden-

tify liver cancer imaging.69

Nanocarriers Interaction with Liver,
Cellular Uptake, Biodistribution and
Clearance
The liver consists of two types of major cells: parenchymal

cells and non-parenchymal cells. Parenchymal cells can be

further subcategorized into hepatocytes and cholangiocytes,

while non-parenchymal cells include Kupffer cells (KCs),

liver sinusoidal endothelial cells (LSECs) and hepatic stellate

cells (HSCs).70 KCs, LSECs, HSCs and hepatocytes are

responsible for various physiological functions of the liver

including cellular uptake of the nanocarrier. The huge portion

of NCs are taken byKCs, followed by LSECs, HSCs and less

by hepatocytes cells.71 Figure 3 shows nanocarriers uptake

by different liver cells. The liver metabolizes the drugs and

NCs. The administered NCs should be eliminated from the

body by degradation or excretion. However, some NCs are

very stable and difficult to be broken down, while some NCs

are biodegradable and easy to be metabolized (Kang& Song,

2018).72 After administration, NCs which are less than 6 nm

in size can be excreted by renal within hours to days. The

non-degradable nanocarriers which are larger than 6 nm in

size are taken up by the mononuclear phagocyte system

(MPS). Hepatobiliary excretion of nanocarrier (> 6 nm) is

a route for NCs removal through the liver. The liver is the

Figure 3 Nanocarriers (NCs) uptake in different liver cells.
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primary organ of the MPS that entraps majority of the admi-

nistered NCs. The MPS and renal system compete with the

tumor for circulating NCs and eliminate 99% of the adminis-

tered NCs. The MPS contains phagocytic cells such as

macrophages which consist of the liver, spleen, lymph

nodes, bone marrow and skin. Most administered NCs are

sequestered by the liver and the spleen. Macrophages in the

liver include KCs and liver sinusoids along with endothelial

cells (Wilhelm et al, 2016).73 Figure 4 shows the elimination

of nanocarriers in the liver from the bloodstream. NCs

sequester from the body through macrophage. The mechan-

ism of NCs sequestration by macrophages is phagocytosis,

macropinocytosis, caveolin-mediated endocytosis, clathrin-

mediated and endocytic pathways.74 NCs can enter liver cells

via several endocytic pathways. Passive penetration may

occur through the plasma membrane while active penetration

occurs mainly via endocytosis.75 The process of NCs uptake

into cells begins with the nanocarriers being enclosed within

the early endocytic vesicles and thus not directly carried into

the cytosol. Endocytosis can occur through pinocytosis or

phagocytosis pathways.76 In pinocytosis, NCs are interna-

lized by small vesicles while in phagocytosis the cells such as

monocytes/macrophages, neutrophils and dendritic cells

engulf the NCs and form intracellular phagosomes.75

Pinocytosis further subdivided into four different categories;

macropinocytosis, clathrin-mediated endocytosis, caveolin-

mediated endocytosis and clathrin- and caveolin-

independent endocytosis.77 It was reported that graphene

oxide (GO) NCs could be internalized by HepG2 cells but

reduced GO (rGO) or adsorbed onto the cell surface without

internalization.78 Phagocytosis occurs mainly in liver KCs.79

For instance, polyalkyl cyanoacrylate nanoparticles loaded

with an anticancer agent, doxorubicin into 200–300 nm size

substantially accumulated in hepatic KCs, which then acted

as a reservoir, slowly releasing doxorubicin as the particles

degraded.80 Li et al, 2014, synthesized cholesteryl pullulan

nanoparticles (CHP) which enhanced the efficiency of drug

delivery in human hepatocellular carcinoma by clathrin-

mediated endocytosis and micropinocytosis pathways.

These pathways were involved in the uptake of CHP

nanoparticles.81 However, HepG2 cells have no endogenous

caveolin, so they are unable to mediate the nanocarriers

uptake by caveolae mediated endocytosis.82 Figure 5 shows

the clearance of nanocarriers from the liver. According to the

study by Zhang et al, (2016), NCs enter the liver via the

portal vein and traverse into the hepatic sinusoid and seques-

tered in KCs. Based on their physico-chemical properties,

NCs are filtered into the space of diseases and endocytosed

by hepatocytes, followed by the NCs enter the bile duct and

travel through the hepatic ducts. After that according to the

state of the digestive system and bile production, NCs may

first collect inside the gallbladder and enter inside the com-

mon bile duct. From there, NCs are excreted into the duode-

num and eventually traverse into the gastrointestinal tract and

eliminate from the body.83

Targeting Approaches for
Nanocarrier Based Drug Delivery in
Liver Cancer
Nanocarrier drug delivery targeted to a tumor cell is

based on active and passive targeting interactions. In

active targeting, ligands are attached on the surface of

each nanocarrier which is complementary to the tumor

target sites. In passive targeting, the nanocarrier surface

is coated with stabilizing agents which help to cross the

tumor vascular barrier through intercellular gaps. This is

Figure 4 Nanocarriers elimination in liver from the bloodstream.
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termed as “enhanced permeability and retention” (EPR).

Accumulation of drugs loaded in NCs by passive target-

ing usually occurs via the EPR effect.84 Nowadays scien-

tists are focusing on development and design of NCs

system that can deliver drug molecules directly to liver

cancer cells either via passive targeting pathway based on

the EPR effect or via active targeting mediated by tumor-

specific targeting ligands. Both passive and active target-

ing can potentially accumulate chemotherapeutic drugs

into the targeted liver cells and decrease the accumulation

of drug into healthy tissues.85 NCs rapidly pass from the

systemic circulation to the vessels after injected and cross

the vascular barrier to enter the tumor region. Once NCs

have crossed the vascular barrier, they must interact with

the tumor microenvironment.

Strategies for Passive Targeting to Liver
Passive targeting refers to the nanocarriers uptake or trans-

port to the cancer region through leaky vasculature that

makes a pathway for the nanosized carrier to enter tumorous

cells by passive diffusion. According to Bae & Park (2011),

the tumor tissue has abnormal leaky vasculature which

helps nanocarrier to enter it. This phenomenon is called

enhanced permeation and retention (EPR) effect.86 The

EPR effect was first written by Matsumura and Maeda in

1986 which helps in the accumulation of nanocarrier pas-

sively which can be taken up in the liver for therapeutics

drug delivery.87 Figure 6 shows the passive targeting of

nanocarriers to the liver cells. The passive targeting

approach usually depends on the physico-chemical proper-

ties of the nanocarrier such as size, the surface of the drug as

Figure 5 Schematic diagram showing possible nanocarriers clearance.

Figure 6 Passive targeting of nanocarriers to the liver cells.
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well as carriers which increase the nanocarriers accumula-

tion in the liver tissues.88 The study of Prabhu et al, (2015)

had reported that passive targeting also depends on some

significant features of cancer cells such as temperature,

abnormal vasculature, pH, permeability and surface charge

of tumor cells.89 Furthermore, Ferreira et al, (2013) had

illustrated that some physico-chemical properties of nano-

carriers such as size, molecular weight, surface charge,

hydrophobicity, a hydrophilic feature which are significant

for passive targeting of drug delivery.90 The liver endothe-

lial wall has sinusoids capillaries which present 100‒200

nm fenestrations to facilitate the passive accumulation of

nanocarrier to targeted cancerous tissues. Nanocarriers less

than 200 nm facilitate passive targeting into the liver

because these particles can easily be removed through larger

sinusoidal fenestrations.91 Bae & Park (2011) have reported

that the advantage of passive targeting drug delivery sys-

tems is that drugs in nanocarriers stay for a longer period in

the blood circulation. Prolonged duration in the circulation

gives the EPR effect and therefore the significant level of

drug carrier in the blood to accumulate the nanocarriers in

the targeted area in the liver cells.86 When nanocarriers

enter the bloodstream, they have a non-specific interaction

with serum proteins to form a “protein corona”. After inter-

action with the biological fluid, it may cause the aggregation

of nanocarriers and change the functionality of the carriers

influenced by the physico-chemical properties of the

nanocarriers.73 Protein corona leads to low accumulation

of the drug in the cancer cell due to the EPR effect. In

addition, due to the large size of NCs, the carriers cannot

slip between the endothelial cells lining and normal blood

vessels in the EPR effect. It was found that the size, dia-

meter and surface properties of protein corona influence the

outcome of passive targeting.92 The liver KCs uptake these

NCs while they arrive on the wall of the sinusoids and thus

accumulate in the liver.93 The drug is then released ade-

quately into the liver cancer cells. Therefore, the surface of

the NCs may need to be modified by polymers, stabilizer or

proteins for enhancement of their affinity to cells and reduce

protein corona.94

Strategies for Active Targeting to Liver
Active targeting occurs when nanocarriers conjugate with

ligands or targeting moieties. Specific receptors or antigens

molecules are attached on the surface of nanocarriers, which

target the active site of the tumor followed by the accumula-

tion of drug nanocarriers uptake at the site of action. Liver

cells such as Kupffer cells, endothelial cells, hepatocytes,

hepatocellular carcinoma cells have various specific recep-

tors which bind to specific surface ligands on nanocarriers.7

These ligands can be recognized by their receptors presents

on liver cancer cells, which allowed the binding of the

nanodelivery system to the cell surface, triggering drug

released into tumor cells. For example, HCC cell has asia-

loglycoprotein (ASGP) receptor where ligands from nano-

carrier like galactoside, galactosamine, lactose,

sterylglucoside, pullulan, lactobionic acid complementarily

bind to ASGP receptor.95 Bioactive moieties such as che-

motherapeutic drug or specific gene will be released into the

liver cancer specific site after the nanocarriers bind to the

surface. Figure 7 shows the active targeting strategies of

nanocarrier for liver. After administration, the modified

nanocarriers with specific ligands on the surface can be

recognized by their receptors presents on a specific type of

liver cells. As shown in Figure 8, there are five different liver

cells; hepatocyte, hepatocellular carcinoma cell, hepatic

Figure 7 Active targeting of nanocarriers to the liver.
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stellate cell (HSC), Kupffer cell and endothelial cell.96 Each

hepatic cell expressed different types of receptors that

allowed the binding of the nanocarriers. Nanocarrier with

active targeting moieties must be in physical contact with the

receptor present on liver cancer cells. The carrier molecules

must be capable of penetrating the stomach and intestine as

well as recognized by the receptor present on liver cells.

Glypican-3A is recently reported as a promising biomarker

for hepatocellular carcinoma.95

In active targeting, scientists developed different gene

silencing technologies such as antisense technologies, small

activating RNAs (saRNAs) for liver tumor targeting. The

development of a saRNAs upregulates the enhancer binding

protein α (CEBPA). The CEBPA gene encodes C/EBP- α
which is described as a transcription factor for liver func-

tion. The upregulation of C/EBP-α activity limits HCC

growth. The C/EBP- α pathway activation is a therapeutic

target for saRNA, to inhibit liver tumor growth. The

CEBPA gene identified a saRNA sequence that upregulates

CEBPA mRNA in human hepatocellular carcinoma cells.

This saRNA activates the CEBPA mRNA and inhibits the

growth of liver cancer cell lines in vitro.97 Kim et al (2019)

evaluated N-acetylgalactosamine (GalNAc) conjugation to

antisense oligonucleotides (ASO) as a novel therapeutic

approach that enhanced the antitumor activity in the HCC

tumor model. ADP-ribosylation 4C (ARL4C) is a small

GTP-binding protein that is highly expressed in primary

HCC tumors.98 Harada et al (2019) have modified antisense

oligonucleotide (ASO) which effectively reduced ARL4C

expression in HCC. They suggested that ARL4C ASO can

be used as a novel targeted nucleic acid for the treatment of

primary liver cancer.99

The Design of Drug Delivery
System for Liver Cancer, Its Clinical
Success and Limitations
Nanocarrier-based drug delivery systems (DDS) will be the

future generation of DDS of liver diseases such as hepatitis,

liver fibrosis, hepatocellular carcinoma due to few side

effects, low drug distribution in normal cells and high

drug distribution in target tumor cells. Nanocarriers must

be nontoxic, biodegradable, biocompatible and physico-

chemically stable. The uptake and interaction of nanocar-

riers must be suitable for liver cells.7 Figure 9 shows

a schematic diagram of targeted drug delivery to the hepa-

tocellular carcinoma orthotopic model. However, the clin-

ical phases are still slow, and more studies need to be done

for the sake of the benefit of the human.

The nanomedicines have marketed at a slow phase as

the clinical phase needs to be recapitulated. The poor

survival rate of nanomedicines demands its improvement

Figure 8 Receptors present on liver cells for nanocarriers binding via active targeting to the liver cells.
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in therapeutic and diagnostic fields for better survival of

patients.100

In 2009, Zhou et al, (2009) evaluated the Phase II

clinical trial to test the activity and toxicity of mitoxan-

trone (di-hydroxy-anthracenedione, DHAD)-loaded poly-

butyl-cyanacrylate nanoparticles (DHAD-PBCA-NPs) and

DHAD. They injected both nanoparticles and DHAD in

Chinese patients with unresected HCC. The response rate

of DHAD-PBCA-NPs was 10.5%, 28.1% of patients had

progression compared to 61.4% of patients with stable

disease. DHAD injection showed no response, 54.9% of

patients had progression and 45.1% of patients had stable

disease.101 Preclinical studies showed that DHAD-PBCA-

NPs showed better tumor-inhibiting effect than DHAD

injection in HCC nude mice.102

There are many reasons for the limitations of nanocar-

rier systems. The designed nanocarriers cannot function

effectively if they access at disease specific sites in an

insufficient dose. As a result, the clinical translation of

nanocarriers with the drug has been limited.86,103 The

biological environment such as pH, protein, and enzyme

often creates hostile conditions for nanocarriers.104 The

injected nanocarriers often face many physical and biolo-

gical barriers such as protein adsorption, diffusion,

aggregation, shear forces, renal clearance, phagocytic

sequestration, etc. These barriers have a negative effect

on reaching the target diseased tissue or cells.105–108

According to the analysis by Wilhelm et al, (2016), only

0.7% (median) of the administered nanoparticles dose was

found to be delivered to a solid tumor. This means that 7

out of 1000 administered nanoparticles capable of entering

a solid tumor mouse model.73 According to Park (2013),

less than 95% of nanocarriers are ended up at the non-

targeted sites, the rest 5% of administered nanocarriers can

end up at the tumor site. In addition, most of the tumor

cells express receptors but in the period of nanocarriers’

arrival to the tumor cells, it may not have overexpressed

receptors.109 As a result, only limited outcomes were

found for nanomedicine. Although there are some chal-

lenges in nanotechnology fields for the development of

nanocarrier systems, these nanocarriers for drug delivery

for the purpose of liver anticancer therapy and imaging

have been evolved significantly.

Conclusion
There are many limitations to conventional approaches for

liver cancer therapy. Due to the non-specific interaction

with cells, side effects, lack of drug targeting, the

Figure 9 Nanocarrier encapsulated liver cancer drug for drug delivery to the hepatocellular carcinoma (HCC) orthotopic model.
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resistance of the liver cancer cells, problems with the

permeability, solubility and stability of anticancer drugs,

chemotherapy does not provide holistic treatment for liver

cancer. In contrast, nanocarrier for liver cancer has shown

significant prospects for solving problems in liver cancer

chemotherapy. Nanocarriers are capable of high drug load-

ing capacity, high stability, excellent tolerability, drug

degradation, reduce multidrug resistance, controlled

release and sustained delivery of anticancer drugs.

Therefore, therapeutics and theranostics drug delivery

nanocarrier systems have important advantages over con-

ventional treatment methods. The development of a variety

of nanotechnology platforms such as theranostic nanocar-

riers has considerable promise as the next generation of

medicine that enables the early detection of disease, simul-

taneous monitoring and treatment, and targeted therapy

with minimal toxicity to diagnose and treat liver cancer.

Nanomedicine. in particlur nanocarriers have a huge

potential in future liver cancer holistic management.

However, there are many challenges needed to be solved

in drug delivery systems, such as excessive accumulation

of the carriers in the liver, low therapeutic efficacy on the

cancer cells and some barriers near the tumor areas or in

vasculature area that create obstacles to penetration into

liver cancer cells needed to be overcome. The ligands or

targeting moieties need to translocate the nanocarriers to

a specific region of tumors to achieve the site-specific

delivery of nanodrugs. The current nanotherapeutic sys-

tems have developed only a limited number of clinically

approved nanodrugs for liver cancer. There are many new

therapeutic drugs with diverse physico-chemical properties

of nanocarriers need to be invented to achieve adequate

therapeutic payload and imaging sensitivity. Moreover, the

controlled release of various drugs from its nanocarrier in

liver cancer is another challenge in the development of

nanomaterials that need further studies.
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