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Abstract  

Biomolecular condensates form by phase separation of biological polymers. The cellular functions of the resulting membraneless 

organelles are closely linked to their physical properties over a wide range of length- and timescales: From the nanosecond dynamics 

of individual molecules and their interactions, to the microsecond translational diffusion of molecules in the condensates, to their 

viscoelastic properties at the mesoscopic scale. However, it has remained unclear how to quantitatively link these properties across 

scales. Here we address this question by combining single-molecule fluorescence, correlation spectroscopy, microrheology, and 

large-scale molecular dynamics simulations on different condensates that are formed by complex coacervation and span about two 

orders of magnitude in viscosity and their dynamics at the molecular scale. Remarkably, we find that the absolute timescale of protein 

chain dynamics in the dense phases can be quantitatively and accurately related to translational diffusion and condensate viscosities 

by Rouse theory of polymer solutions including entanglement. The simulations indicate that the observed wide range of dynamics 

arises from different contact lifetimes between amino acid residues, which in the mean-field description of the polymer model cause 

differences in the friction acting on the chains. These results suggest that remarkably simple physical principles can relate the 

mesoscale properties of biomolecular condensates to their dynamics at the nanoscale. 

 

Introduction 

A substantial fraction of all cellular proteins (1) are organized in 

biomolecular condensates formed as a consequence of phase 

separation, an intriguing and important feature of subcellular 

organization (2–4). The role of these membraneless bodies in 

regulating cellular homeostasis is central, as they coordinate 

numerous biological functions by means of the assembly of 

proteins and nucleic acids (5–7). The underlying cellular 

processes span a wide spectrum of time- and length-scales (8), 

they are governed by the physical properties of the 

condensates (9) and the molecular driving forces that lead to 

phase separation (10–12). At the molecular scale, the rate at 

which biomolecules explore different conformations determines 

the efficiency of biochemical interactions and reactions (13, 14). 

These processes and their spatial organization are controlled 

by the translational diffusion of biomolecules within phase-

separated organelles as well as the biomolecular exchange 

with the external environment (15–17). At the mesoscopic 

scale, material properties play a role; for example, bulk 

viscosity affects the fusion times of condensates (18), which 

can influence cell fate (19, 20). This multi-scale complexity 

poses a considerable challenge in deciphering the relationships 

between these dynamic processes and establishing 

quantitative relations that can predict and explain the behavior 

of biomolecular condensates. The nanoscale dynamics of 

biomolecular conformations are expected to be related to 

translational diffusion (21) and to the emergent bulk viscosity of 

the percolated network they form (22). Material properties 

ultimately derive from the interaction strengths among the 

biomolecules that drive phase separation, and therefore from 

their specific amino acid sequences (23–29), but how molecular 

and mesoscale dynamics are linked quantitatively is an open 

question. 

A biological example with this multi-scale complexity 

is the cell nucleus (7, 30, 31) which is rich in highly charged 

biomolecules. To compensate for the high negative net charge 

of DNA, highly positively charged proteins, such as histones 

and protamines, have evolved to compact the chromosomes 

(32). Other highly charged intrinsically disordered proteins 

(IDPs) are involved in remodeling chromatin and regulating 

gene expression and replication. For instance, the negatively 

charged prothymosin α (ProTα) can sequester histone H1 and 

accelerate its dissociation from nucleosomes (33–35). The two 

oppositely charged disordered proteins histone H1 and ProTα 

form viscous droplets by complex coacervation at near-

physiological salt concentrations, but maintain surprisingly 

rapid dynamics at the molecular level (36). However, viscosities 

and chain dynamics are expected to depend on the chemical 

nature of these biological polyelectrolytes and the solution 

conditions, especially the salt concentration. Here we aim to 

identify general relations between the molecular and 

mesoscopic properties of biomolecular condensates across a 

wide range of dynamics.  

We focus on complex coacervates between highly 

charged intrinsically disordered proteins and peptides. In the 

condensates they form, associative phase separation is driven 

by electrostatic interactions (37, 38) and is thus highly sensitive 

to salt concentration and the identity of the charged residues 

(39, 40). We employ a combination of single-molecule 

techniques to investigate the conformational dynamics of the 

polypeptides, and microrheology to assess mesoscale 

properties. We find that the chain dynamics of intrinsically 

disordered proteins within these condensates range from 

hundreds of nanoseconds to tens of microseconds. These 

reconfiguration times correlate linearly with the translational 

diffusion coefficients of the proteins and the bulk viscosity of the 

condensates. From large-scale all-atom molecular dynamics 

(MD) simulations, we find that low salt concentrations and 

especially the presence of arginine residues increase the 

lifetimes of inter-chain contacts, which slows down larger-scale 
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condensate dynamics. Altogether, we thus demonstrate a 

direct relation between the nanoscopic dynamics of protein 

reconfiguration, mesoscale translational motion, and 

macroscopic viscosity within biomolecular condensates. These 

relations can be rationalized within the framework of semidilute 

polymer solutions and generalized to predict the behavior of 

condensates across scales. 

 

 

 
 

Figure 1. Phase separation of charged polypeptides strongly depends on their amino acid sequences. (A) Illustration of 

polymers used in this study with the distribution of charges along their sequences, and net charges (z): ProTα, protamine, and H1 

are naturally occurring polycationic proteins; poly-L-arginine-50 (R50) and poly-L-lysine-50 (K50) are synthetic polycations 

(Supplementary Table 1). The gray band in the H1 sequence indicates the globular domain. (B) Brightfield microscopy images of 

phase-separated samples of ProTα mixed with a polycation (protamine, H1, R50, or K50) at charge balance in TEK buffer at 90 mM 

KCl (ionic strength 98 mM). Scale bar, 20 μm. (C) Illustration of the polymer networks on the nanoscale in the dense phases of H1 + 

ProTα and (D) protamine + ProTα from molecular dynamics simulations. (E) Phase diagrams from coexistence measurements of 

dense and dilute phases as a function of salt concentration. The total mass concentration of both components (bottom axis) is based 

on the measured ProTα concentrations (top axis) and the charge-balanced ratio at which ProTα and the positive partner were mixed 

(36) (ProTα:H1 1.2:1, ProTα:K50 1.13:1, ProTα:protamine 0.5:1, ProTα:R50 1.13:1, see Supplementary Fig. 1). Phenomenological 

fit with a binodal curve based on Voorn–Overbeek theory (41) (solid line, dashed for ProTα:R50 where the theory fails to capture the 

complex interactions of arginine beyond electrostatics (42, 43)).  
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Results 

Phase separation of biological polyelectrolytes  

To be able to assess the influence of amino acid sequence and 

composition, we used the highly negatively charged disordered 

protein ProTα in combination with four positively charged 

polypeptides with different charge densities and amino acid 

composition (Figure 1A): the natural IDPs histone H1 (net 

charge +53) and protamine (net charge +22), and two 

disordered homopolypeptides with 50 lysine (K50) or arginine 

(R50) residues, respectively (both net charge +50). The strong 

electrostatic interactions between ProTα and each of the four 

positively charged partners leads to associative phase 

separation when mixed at charge-balanced stoichiometries 

(Supplementary Fig. 1), as expected for oppositely charged 

polyelectrolytes (44, 45). Viewed under a light microscope, all 

phase-separated samples appear visually indistinguishable, 

with an aqueous dilute phase and spherical droplets of dense 

phase (Figure 1B-D). For all of them, the dense phase has a 

total protein mass concentration above 100 mg/mL. However, 

phase separation of the four samples responds differently to the 

salt concentration: At an initial protein concentration of ~10 μM, 

phase separation is difficult to achieve above 200 mM KCl for 

the lysine-rich polypeptides, but the arginine-rich polypeptides 

readily phase-separate with ProTα at higher salt — for R50 

even above 1 M KCl. This observation and the corresponding 

phase diagrams (Figure 1E) highlight quantitative differences in 

the nature of the interactions of these two positively charged 

residues (40, 46–48) related to differences in their chemical 

structure, charge distribution, and polarizability (49). We thus 

asked how these different interactions affect the conformations 

and dynamics of the polypeptides that make up the 

condensates, as well as the corresponding mesoscopic 

properties. 

 

Condensate dynamics across scales 

To probe the conformations and intrachain dynamics of 

individual proteins within the different dense phases at the 

nanoscale, we used confocal single-molecule Förster 

resonance energy transfer (FRET) spectroscopy. We prepared 

droplets with unlabeled samples and doped them with ProTα 

double-labeled with Cy3B as a donor and CF660R as an 

acceptor at positions 56 and 110. The doping ratio between 

labeled and unlabeled protein was adjusted to yield final 

concentration of ~100 pM labeled ProTα within the droplets to 

enable FRET measurements with single-molecule resolution 

(Figure 2A, B). The resulting FRET efficiency histograms show 

that free monomeric ProTα in dilute solution is expanded at low 

salt concentration, resulting in a low mean transfer efficiency, 

⟨E⟩, due to the repulsion between the negative charges along 

the chain, which are screened at high salt, leading to chain 

compaction (50, 51) (see Figure 2 C, D). The higher FRET 

efficiencies of ProTα inside the condensate droplets indicate 

chain compaction, which increases with the charge density and 

the arginine content of the polycationic interaction partners, 

resulting in stronger interactions with ProTα (Figure 2C). In 

contrast to the free monomeric chain, ProTα within the droplets 

experiences a slight expansion with increasing salt 

concentration, reflected by a decrease in ⟨E⟩ (Figure 2D). Since 

we observe no significant correlation between protein mass 

concentration and chain dimensions (Supplementary Fig. 2A), 

the most likely cause of this expansion is the screening of the 

electrostatic attraction between oppositely charged chains by 

salt.  

The intrinsically disordered protein ProTα samples a 

heterogeneous ensemble of conformations within the droplets 

(36). We measured the corresponding chain relaxation (22) or 

reconfiguration times, τr, by monitoring the fluctuations of the 

acceptor-donor distance using single-molecule FRET 

combined with nanosecond fluorescence correlation 

spectroscopy (nsFCS) (52, 53) (Figure 2E, F, see Methods). 

The chain dynamics of ProTα in the dense phases are highly 

dependent on the identity of the polycationic partner. ProTα and 

the lysine-rich H1 form droplets in which the protein 

rearrangements are extremely fast, with τr of hundreds of 

nanoseconds (36), whereas in arginine-rich droplets, chain 

reconfiguration is slowed down by more than an order of 

magnitude, with τr exceeding 10 μs (Figure 2F, G). In addition 

to the dependence on sequence composition, τr in the droplets 

exhibits a trend with increasing salt concentration and 

decreases by a factor of 2 to 3 over the salt concentrations 

accessible for the different condensates (Figure 2G). This 

observation is consistent with the hypothesis that ions screen 

the intermolecular interactions that slow down chain 

rearrangements, as reflected by the moderate chain expansion 

at high salt concentration (Figure 2D). 

  From the FCS measurements (Figure 2E), we can 

also extract the diffusion time, τD, of the labeled protein 

molecules through the confocal volume (Figure 2H, see 

Methods). While τr reports on the nanoscopic dynamics within 

the polypeptide chain, τD provides information on the 

translational motion of the protein through the percolated 

network of the condensate on the micrometer length scale of 

the confocal volume and is inversely proportional to the 

diffusion coefficient. The dependence of the translational 

diffusion of ProTα on the sequence composition of the binding 

partner and the salt concentration shows remarkably similar 

trends as the nanoscopic chain dynamics (compare Figure 2H 

and G): ProTα diffuses more rapidly in droplets with lysine-rich 

than with arginine-rich interaction partners and at high salt than 

at low salt concentrations. 

To characterize the mesoscopic dynamics of the 

condensates, we used microrheology and monitored the 

diffusion of fluorescent beads inside the droplets by tracking 

fluorescent beads of 100 and 500 nm diameter (Supplementary 

Fig. 3A, B). From the mean squared displacement, we obtained 

the viscosity from the Stokes–Einstein relation (Methods). 

Viscosity is a length-scale dependent quantity in condensates 

(36, 54), but in this study we focus on the bulk viscosity by using 

beads much larger than the correlation lengths of the protein 

networks (22) (Methods). The viscosity in the droplets is 

remarkably different for the complex coacervates with different 

polycationic proteins and ranges from ~300 to ~10,000 times 

the viscosity of water (Figure 2I). These values remain constant 

for days in a given sample, indicating the absence of aging 

effects over this period. 

In summary, the salt concentration and especially the 

amino acid sequence composition have a strong influence on 

the dynamic properties of the condensates across length- and 

timescales, from the nanoscopic chain reconfiguration time to 

the microscopic translational diffusion time of molecules and 

the viscosity at the mesoscopic scale of entire droplets (Figure 

2G–I). The changes span nearly two orders of magnitude for 

each of the physical properties studied, with remarkably high 

correlations between them (Figure 2J), suggesting an 

underlying causal link across scales. To identify the molecular 

origins of the experimentally observed behavior, we turned to 

large-scale molecular dynamics (MD) simulations. 
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Figure 2. Single-molecule spectroscopy and microrheology in phase-separated droplets. (A) Illustration of a double-labeled 

ProTα molecule in the dense phase diffusing through the confocal volume. (B) Fluorescence time traces of (from top to bottom) 

double-labeled ProTα as a monomer free in solution, in complex coacervate droplets of ProTα + H1, ProTα + K50, ProTα + protamine, 

and ProTα + R50. The diffusion time, τD, is the average time it takes a single labeled ProTα molecule to transit the confocal volume, 

resulting in a fluorescence burst. (C) Single-molecule transfer efficiency histograms of double-labeled ProTα as a monomer in solution 

and in droplets (ordered as in B) in TEK buffer at 90 mM KCl (ionic strength 98 mM). To minimize the contribution of donor-only 

molecules and the influence of photobleaching, fluorescence bursts corresponding to the shaded parts of the histograms were 

excluded from correlation analysis. (D) Average transfer efficiency of double-labeled ProTα as a monomer free in solution and in 

complex coacervate droplets as a function of salt concentration. Uncertainties indicated by the shaded bands represent the systematic 

uncertainty due to instrument calibration. (E) Full FCS curves with logarithmic time binning of donor-acceptor cross-correlations (gDA) 

normalized to an amplitude of 1 at 10 μs and 100 μs for ProTα + H1 and ProTα + R50, respectively, to facilitate direct compar ison 

(τrot, segmental rotational correlation time; τr, chain reconfiguration time; τD, translational diffusion time). (F) Representation of FCS 
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curves with linear time binning in the range where chain dynamics dominate the signal. (G) ProTα reconfiguration time, τr, in the 

different coacervates as a function of salt concentration obtained from the FCS fits as shown in E/F (see Methods). Error bars, 

standard deviations calculated from three measurements or the error of the fit of τr, whichever was greater (see Methods). (H) 

Translational diffusion time of double-labelled ProTα in the different coacervates as a function of salt concentration obtained from the 

FCS fits as shown in E (see Methods). Error bars, standard deviation of n ≥ 3 measurements. (I) Viscosity from measurements of 

translational diffusion of 100- and 500-nm polystyrene beads within the different coacervates from particle tracking (see Methods) as 

a function of salt concentration. Error bars, standard deviation of n ≥ 20 tacked beads. (J) Correlations between the data in G, H and 

I indicate a physical relation between condensate dynamics across length scales. 

 

 

Interaction dynamics from atomistic simulations 

We used large-scale all-atom MD simulations with explicit 

solvent in a recently validated (36) slab configuration (55) (see 

Methods) to investigate the experimentally observed trends at 

the atomistic level. To assess the role of lysine versus arginine, 

we simulated systems consisting of 96 ProTα and 80 H1 

molecules in one case, and 96 ProTα and 197 protamine 

molecules in the other. The two systems correspond to roughly 

4 and 2.6 million atoms in the simulation box, respectively 

(Figure 3A, B, Supplementary Videos 1 [link] and 2 [link]). To 

study the effect of salt concentration, we performed simulations 

with 8 mM and 128 mM KCl for both systems. 

The previous in-depth comparison of the simulations 

for ProTα and H1 with experimental observables, including 

protein concentrations, translational diffusion coefficients, 

intrachain distances, and chain dynamics, provided a validation 

of simulations with the force field and slab configuration 

employed (36). Moreover, the simulations at lower salt 

concentration and with protamine instead of H1 reproduce the 

higher protein concentrations (Supplementary Fig. 4) and the 

slower chain dynamics observed experimentally in droplets 

(Figure 3C, Supplementary Fig. 5), indicating that the force field 

also captures the differences in amino acid-specific interactions 

(27). 

On average, each ProTα molecule in the dense phase 

is simultaneously in contact with ~6-7 H1 or ~11 protamine 

molecules, respectively, at any given time (Figure 3D). 

Information on the distribution of interactions between positively 

and negatively charged side chains in the resulting percolated 

network (56) can be obtained from contact profiles (Figure 3E) 

and contact maps (Supplementary Fig. 6). The average number 

of contacts that each residue in ProTα makes with other chains 

reveals remarkably similar interaction patterns in the dense 

phases with the different interaction partners, with local maxima 

at clusters of negatively charged residues in ProTα (36, 57). 

The absolute numbers of contacts, however, differ substantially 

between the different dense phases: The average number of 

contacts ProTα residues make with protamine is ~80% greater 

than with H1, and ~10% greater at 8 mM than at 128 mM salt. 

The origin of the pronounced difference in interaction strength 

between lysine- and arginine-rich sequences in the simulations 

is expected to lie in the characteristic multipole of arginine (58), 

its weak hydration (59), and large polarizability (49), although 

especially the latter can only be captured indirectly with non-

polarizable force fields (60). 

Therefore, the stronger interchain interactions at low 

salt and for arginine-rich sequences are likely to be at the root 

of the slower dynamics observed experimentally (Figure 2). 

Indeed, the average lifetime of contacts in the dense-phase 

simulations of protamine-ProTα is about 10 times longer than 

for H1-ProTα (Figure 3F). The duration of the contacts is in turn 

expected to be a determining factor for the motion of the 

polypeptide chain as a whole (26, 28, 61, 62). This expectation 

is corroborated by the remarkable correlation between contact 

lifetimes and the chain reconfiguration times estimated from the 

simulations (Figure 3G) (see Methods for details). The similarity 

between simulated and measured reconfiguration times (Figure 

3C) further suggests that the atomistic picture emerging from 

the MD simulations can help to explain the dynamics observed 

experimentally. 

The simulations yield a picture in which charged 

residues form close contacts, as reflected by a pronounced 

short-range peak in the residue-residue distance distribution 

that is absent for uncharged residues (Figure 3H). This sticker-

like interaction (63, 64) is also reflected in the diffusion profile 

of charged residues, which at short times show a lower mobility 

than their uncharged neighbors. However, these differences 

average out at longer times when the motion is dominated by 

larger chain segments (Figure 3I). It is worth noting that the 

contact lifetimes between individual charged residues are 

roughly two orders of magnitude shorter than the 

reconfiguration times of the polypeptide chains. An important 

contribution to the short lifetimes of contacts is the rapid 

exchange between interacting side chains at the exceedingly 

high concentrations of charged residues in the molar range 

within the dense phases (36) (Figure 3J, K). Owing to the 

separation of timescales between contact lifetimes and the 

reconfiguration dynamics of entire chains, tens of thousands of 

residue-residue contacts are made and broken during τr (Figure 

3F). Correspondingly, the differences in the strength of side 

chain interactions of lysine and arginine can also be considered 

to result in differences in the average frictional forces acting on 

the chains. 

 

Universal link between nanoscale and mesoscale 

dynamics in condensates 

The effects of amino acid composition and salt concentration 

observed in the simulations, and the correlation of contact 

lifetimes with reconfiguration times imply a quantitative link 

between side chain interactions and larger-scale motion (Figure 

3G), as previously suggested based on coarse-grained 

simulations (26, 28, 29, 61, 62). Striking linear correlations are 

also observed between the experimental chain reconfiguration 

times, translational diffusion times, and droplet viscosity (Figure 

2J). Given these correlations across length- and timescales, we 

thus seek a physical model for condensate dynamics that 

allows us to predict mesoscale properties from the nanoscale 

dynamics. 

Polymer physics presents an opportunity to 

conceptualize the dynamics of biomolecules in condensates 

across scales (Figure 4A-C). The nature of the residue-residue 

interactions observed in the simulation are suggestive of a 

model that considers the effect of stickers explicitly. However, 

established quantitative models assume the lifetime of the 

crosslinks to be longer than chain dynamics (63, 65), which is 

not the case here. In fact, we are closer to the opposite limit: 

the contact lifetimes are orders of magnitude shorter than chain 

reconfiguration times, so that thousands of contacts are made 

and broken along the chain during τr (Figure 3F). The effect of 

side chain interactions on the timescale of τr may thus better be 

represented in terms of an overall drag captured by a friction 

coefficient. This idea is used in the Rouse model of polymer 

solutions (Figure 4B) (21, 22, 66), which describes the  

https://www.youtube.com/watch?v=E4Idah1J3N8&ab_channel=MilosIvanovic
https://www.youtube.com/watch?v=4G9GOYp-Fmw&ab_channel=MilosIvanovic
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Figure 3. All-atom simulations of dense phases at different salt concentrations. 

(A) All-atom explicit-solvent simulations of 96 ProTα (red) and 80 H1 molecules (blue) and (B) for 96 ProTα (red) and 197 protamine 

molecules (purple) in slab geometry55, including water (transparent blue spheres), K+ ions (blue spheres), and Cl- ions (red spheres). 

(C) Comparison between the experimental chain reconfiguration time, τr, and the corresponding distance decorrelation time between 

residues 58 and 112 (corresponding to the dye positions) from simulations (τr of protamine–ProTα slab at 8 mM KCl concentration is 

compared with the value measured at 25 mM KCl due to experimental limitations in performing stable single-molecule recordings at 

low salt conditions; for uncertainties, see Methods). (D) Distribution of the number of H1 and protamine molecules simultaneously in 
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contact with a single ProTα. (E) Average number of contacts made by each residue of ProTα in the four dense phases, with the 

average total number of contacts indicated. Gray bands indicate negatively charged residues. (F) Distribution of the lifetimes of 

contacts made by ProTα in the four dense phases. The areas under the curves correspond to the total number of new contacts 

formed per chain in one nanosecond. We report the number of contacts made and broken by a single ProTα chain during its 

reconfiguration time obtained from simulations. (G) Correlation between the average contact lifetime of individual residues in the four 

dense phases and the chain reconfiguration time indicates the frictional nature of intermolecular contacts, which slows down chain 

dynamics (for uncertainties, see Methods). (H) Distance distribution of the closest and the 2nd-closest lysine (charge +1), arginine 

(+1) and alanine (0) to glutamate (-1) residues in ProTα chains (Lys and Ala distributions from H1–ProTα slab, Arg distributions from 

protamine–ProTα slab, both at 128 mM KCl). A sharp peak is present only in the distributions between oppositely charged residues. 

The shaded gray area represents the fraction of glutamate side chains involved in a multivalent close contact with two positively 

charged residues, which is 6-fold higher for arginine than for lysine (see Methods). (I) Mean-square displacement (MSD) of the 

individual ProTα residues at increasing lag times show that the lower friction (higher mobility) of uncharged residues result ing from 

weaker contacts is evident at short times, but is subsequently smoothed out at longer times when differences in friction for individual 

residues are averaged over longer chain segments. (J) Example of exchange between lysine salt bridges in H1–ProTα (top) and 

arginine salt bridges in protamine–ProTα dense phases (bottom). Multivalent contacts (67) between negatively charged residues and 

arginine are more frequent (H) and more stable than with lysine, as illustrated by representative snapshots from the simulations (see 

also Supplementary Videos 1 and 2). (K) Lysine exchanges partners more rapidly due to competition between the closest and the 

2nd-closest negatively charged residue (histogram shows the fraction of Lys and Arg contacts where, within 100 ns, the 2nd-closest 

negatively charged residue—be it Glu or Asp—replaces the closest. See Methods). 

 

dynamics of chains in terms of N connected segments 

subjected to Brownian motion and to a friction coefficient 𝜁. The 

resulting relation between the translational diffusion coefficient 

of the entire chain, 𝐷 =
𝑘𝐵𝑇

𝑁𝜁
, and the chain reconfiguration (or 

Rouse) time, τR, is 

𝜏R =
〈𝑅2〉

3𝜋2𝐷
 , Eq. 1 

where 〈𝑅2〉 is the mean squared end-to-end distance of the 

chain, T is the temperature, and 𝑘𝐵 the Boltzmann constant 

(see Methods). The bulk droplet viscosity, η, can be expressed 

in terms of the friction coefficient 𝜁 acting on the individual chain 

segments and thus in terms of the experimental observables D 

and τR according to  

𝜂(𝐷) = 𝜂𝑠 +
𝑘𝐵𝑇 𝑐𝑝 〈𝑅2〉

36

1

𝐷
   and  Eq. 2 

𝜂(𝜏R) = 𝜂𝑠 +
𝜋2𝑘𝐵𝑇 𝑐𝑝

12
𝜏R , Eq. 3 

where 𝜂𝑠 is the solvent viscosity, and cp is the protein 

concentration in the condensates (see Methods). Using the 

experimentally measured values of η, cp, and τR, the model 

correctly predicts — without any adjustable parameters — the 

linear dependencies observed experimentally, with absolute 

values within an order of magnitude of the experimental 

findings (Figure 4D, dashed lines). The model thus explains 

much of the mesoscopic properties of the droplets based on the 

notion that a polymer chain within the droplet behaves 

essentially like an isolated polymer within a more viscous 

medium imparting friction on the chain segments. The MD 

simulations support this notion based on the separation of 

timescales between contact lifetimes and chain reconfiguration 

and the large number of contacts made and broken during the 

reconfiguration time. The proportionality between contact 

lifetimes and chain reconfiguration times (Figure 3G) is 

additional evidence that friction arises from the duration of 

individual contacts. 

However, based on the measured chain dimensions 

and protein concentrations, with average protein volume 

fractions between 17% and 31% (Figure 1E and Methods), the 

dense phase is in the semidilute regime (see Methods), where 

the chains partially overlap, indicating that interactions beyond 

purely frictional contributions may need to be taken into 

account. Indeed, the entanglement concentration is estimated 

to be in the range of the protein concentrations we observe in 

the dense phases (see Methods), suggesting that we are in a 

regime corresponding to the onset of entanglement between 

chains (68). This conclusion is supported by the MD 

simulations, which indicate that every protein chain interacts 

with 6 to 11 other chains (Figure 3D), suggesting a contribution 

of entanglement-like effects that restrict the reorientation of the 

chains within the network of other chains (66, 69, 70). Under 

these conditions, the experimentally observable chain 

reconfiguration time corresponds to the disentanglement time 

𝜏d (Supplementary Fig. 7B, Methods). Including entanglement 

in the Rouse model (Eq. 2 and 3) yields a correction to the 

expressions for viscosity by a factor 
〈𝑅2〉

𝑎2
, i.e. (66, 71)  

𝜂(𝐷) = 𝜂𝑠 +
𝑘𝐵𝑇 𝑐𝑝〈𝑅2〉

36

〈𝑅2〉

𝑎2

1

𝐷
  and Eq. 4 

𝜂(𝜏d) = 𝜂𝑠 +
𝜋2𝑘𝐵𝑇 𝑐𝑝

12

〈𝑅2〉

𝑎2 𝜏d , Eq. 5 

which yields quantitative agreement with the experiments for all 

samples for an effective tube diameter, or entanglement 

spacing (71), a, of 4±2 nm (Figure 4D, Supplementary Fig. 7A, 

see Methods). The value of a is only by a factor of ~2 smaller 

than the chain dimensions, indicating that the systems are only 

weakly entangled, as expected for such relatively short chains. 

Nevertheless, this contribution is essential for achieving 

quantitative agreement with experiment, and the same value of 

a describes the observed relation between viscosity and 

diffusion coefficient, as well as the relation between viscosity 

and reconfiguration time (Eq. 4 and 5, Figure 4D). It is worth 

emphasizing that the relation between diffusion coefficient and 

reconfiguration time has no adjustable parameter, and for the 

other relations the only adjustable parameter, a, turns out to be 

of the same order of the correlation length (72) estimated from 

the protein concentration in the condensates (see Methods); all 

other parameters are defined by experimental observables (see 

Methods). We are not aware of theoretical alternatives that 

would provide a similarly consistent framework with a single 

adjustable parameter; Zimm theory, e.g., can only describe part 

of the observed relations (Supplementary Fig. 7B).  

The agreement with the Rouse model for all 

coacervates we investigated raises the question of whether its 

applicability is limited to highly charged proteins. We thus 

compared with the behavior of three other phase-separated 

systems for which diffusion coefficients and bulk viscosities 
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Figure 4. Polymer models provide a link between single chain dynamics, translational diffusion, and macroscopic viscosity. 

(A) Illustration of a ProTα molecule (red) in the H1-ProTα dense phase (gray) from MD simulations, with two H1 segments (blue) 

entangled with ProTα. (B) Schematic of the Rouse model corresponding to A, with beads (red circles) subject to Brownian motion 

and friction from the environment, and entropic springs connecting them. (C) Schematic of the Rouse model with entanglement, or 

reptation model, where the motion of a Rouse chain is constrained by a network of obstacles with a characteristic distance between 

them equal to 𝑎, known as the tube diameter (70) or entanglement spacing (71). (D) Comparison of the experimentally observed 

viscosities, diffusion coefficients, and chain reconfiguration times with the prediction of the Rouse model and the Rouse model with 

entanglement from Equations 1-5 (see Methods), including the viscosities and diffusion coefficients of LAF-1 (54), A1-LCD (73, 74), 

and FUS-LCD (75, 76). The error bands of the fits account for the differences in entanglement spacing 𝑎 (Supplementary Fig. 7A), 

chain dimensions, and protein concentration between the different samples. Data are presented as mean values ± s.d. (see Methods). 

 

 have been reported, LAF-1 (54), A1-LCD (73, 74)a and FUS-

LCD (75, 76). Remarkably, those data are in line with the 

coacervates studied here (Figure 4D), suggesting that the 

Rouse framework we propose is more generally applicable and 

may provide a simple universal link between nanoscopic and 

mesoscopic behavior of biomolecular condensates formed by 

disordered proteins. As a result, we can provide order-of-

magnitude estimates for the expected reconfiguration times of 

those proteins in their dense phases: approximately 0.5–5 µs 

for A1-LCD, 3–30 µs for FUS-LCD, and 20–200 µs for LAF-1. 

 

Discussion 

Our results demonstrate a close link between the strength of 

interactions at the molecular scale mediated by differences in 

amino acid composition and the mesoscale dynamics of 

biomolecular condensates. The success of the Rouse model 

for a range of different biomolecules, including both the 

complex coacervates investigated here and several homotypic 

condensates studied previously, indicates that the underlying 

physics of these systems is remarkably similar. As expected 

from the high protein concentrations inside the condensates, 

and as indicated by the MD simulations of the complex 

coacervates investigated here as well as previous simulations 

of condensates (28, 56, 77, 78), the protein chains form a highly 

connected network of interactions, the hallmark of viscoelastic 

 
a The diffusion coefficient was estimated from the radius of gyration 
and diffusion times values. The reported viscosity is the average of 
the two values closest to the standard room temperature of 25 °C.  

network fluids. Despite the expected viscoelasticity of such 

systems, we observe the viscous component of the shear 

relaxation modulus to be dominant for the complex coacervates 

formed from highly charged disordered proteins on the 

accessible timescales, both in the present work and in our 

previous results on H1 and ProTα (36). For instance, the 

microrheological measurements by bead tracking are well 

described in terms of normal Brownian diffusion down to the 

shortest accessible timescales in the millisecond range 

(Supplementary Fig. 3B-D); for H1-ProTα, droplet relaxation 

upon fusion is single-exponential, with a relaxation time 

proportional to the radius of the final droplet, which also 

indicates that the viscoelasticity of the dense phase on the 

millisecond timescale and above is dominated by a viscous 

(rather than an elastic) component (79). The MD simulations 

performed for H1-ProTα (36) and protamine-ProTα (Figure 3) 

suggest a molecular mechanism contributing to the pronounced 

fluidity of these complex coacervates: The extreme 

concentration of charged side chains of >1 M in the dense 

phase, corresponding to an average distance between charged 

groups of <1 nm, facilitates the formation of transient ternary 

interactions between multiple charged groups. These 

interactions lead to the rapid exchange of contacts between 

residues on the low nanosecond timescale (Figure 3J) (36). 

This type of dynamic shuffling may be essential for many 
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processes in the cell, e.g., to prevent the dynamic arrest in 

compartments such as the cell’s nucleus, which is densely 

packed with highly charged polyelectrolytes (31, 80). 

The abundant evidence for an elastic contribution to 

stress relaxation in other biomolecular condensates (23, 81–

83) raises the question of why viscous relaxation dominates for 

the coacervates we investigated here. To address this point, we 

estimated the frequency dependence of the loss and storage 

moduli according to Rouse theory based on our experimentally 

defined parameters (Supplementary Fig. 8). The resulting 

prediction is that the crossover frequency of the two moduli 

occurs in the range of the inverse chain reconfiguration time 

(21, 66, 72). This result implies that for the coacervates 

investigated here, the elastic component is expected to be 

dominant only on timescales in the microsecond range and 

below, and would thus require microrheology in the megahertz 

regime (84). Conversely, condensates with pronounced elastic 

relaxation at lower frequencies (23, 81–83) would thus be 

expected to show correspondingly slower chain 

reconfiguration. We note, however, that such systems can be 

described by physics beyond simple polymer dynamics: they 

form supramolecular networks with long-lasting crosslinks 

between molecules, and their viscoelastic moduli are thus 

expected to be dominated by the timescales for making and 

breaking crosslinks rather than the intramolecular 

reconfiguration times (73, 85). For some systems, kinetically 

arrested aggregates and rigid solids can form (86–88), whose 

persistent structure and nonequilibrium properties will require 

residue-specific interactions and desolvation effects to be 

accounted for (73, 85, 89, 90). 

Two important factors contribute to the success of the 

simple mean-field Rouse framework for predominantly viscous 

condensates: One is the pronounced separation of timescales 

between contact lifetimes and overall chain dynamics; the 

resulting time averaging over vast numbers of contacts enables 

the concept of friction to be applicable on the timescale of chain 

reconfiguration. Another factor is the absence of pronounced 

sequence patterns in the proteins and polypeptides included in 

our analysis; as a result of the effective spatial averaging 

(Figure 3I), a homopolymer model provides a reasonable 

approximation. A promising approach to account for sequence-

specific interactions is to quantitatively relate the energetics 

and dynamics of molecular simulations to the viscoelasticity of 

condensates (28). An et al. (29) have reported that increased 

condensate stability correlates with low mobilities 

(Supplementary Fig. 2B-D) and high viscosities in coarse-

grained simulations and employed active learning to identify the 

influence of amino acid composition and sequence patterning 

on the dynamic and thermodynamic properties of biomolecular 

condensates. It is also possible to relate the nature of the 

contacts formed at the residue level to viscoelastic properties 

via the eigenvalue spectra of Zimm matrices that account for 

intra- and intermolecular contacts in the Rouse model, albeit 

not yet in terms of absolute timescales (73, 91). Using 

experimentally validated atomistic explicit-solvent simulations, 

as presented here, may enable the development of such 

approaches with predictive power for absolute timescales and 

for aspects such as the frictional contribution of electrostatic 

interactions (92). The relatively simple quantitative relations 

between dynamics across length- and timescales 

demonstrated here indicate the close link between molecular 

mechanisms at the nanoscale and the mesoscopic behavior of 

biomolecular condensates. 

 

 

 

Data availability 

Data that is not available as supplementary information can be 

requested from the corresponding authors. 

 

Code availability 

Fretica, a custom add-on package for Mathematica version 

12.3 (Wolfram Research) was used for the analysis of single-

molecule fluorescence data and is available at 

https://github.com/SchulerLab. The code used to calculate the 

lifetime of residue-residue contacts is available at 

https://doi.org/10.5281/zenodo.7967716.  
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Methods 

Sample preparation and labeling 

We used recombinant human histone H1.0 (H1; New England Biolabs, product code M2501S). Poly L-lysine hydrochloride (referred 

to as K50, MW = 8200 Da, degree of polymerization 45–55) and poly L-arginine hydrochloride (referred to as R50, MW = 9600 Da, 

degree of polymerization 45–55) were purchased from Alamanda Polymers (Huntsville, AL, USA; catalog numbers 000-KC050, 000-

R050). Protamine was purchased from Sigma-Aldrich (product number P4005). Labeled and non-labeled ProTα were prepared as 

described previously (93). Labeling was achieved by introducing cysteine residues at positions 56 and 110 for attaching fluorophores 

(detailed protein sequences in Supplementary Table 1). Prior to labeling, the protein was reduced in phosphate-buffered saline (PBS), 

pH 7, containing 4 M guanidinium hydrochloride (GdmHCl) and 0.2 mM EDTA, using 10 mM Tris(2-carboxyethyl) phosphine 

hydrochloride (TCEP) for 60 minutes, followed by multiple (5x) buffer exchange steps to a similar PBS solution without TCEP (pH 7, 

4 M GdmCl and 0.2 mM EDTA) using centrifugal filters with a 3-kDa molecular mass cutoff (Sigma-Aldrich). Labeling was achieved 

with Cy3B maleimide (Cytiva) and CF660R maleimide (Sigma-Aldrich) at a protein: dye ratio of 1:6:6, incubated for an hour at room 

temperature and overnight at 277 K. Excess dye was reacted using 10 mM dithiothreitol for ten minutes and removed by centrifugal 

filtration. The labeled protein was subsequently purified by reversed-phase high pressure liquid chromatography using a Reprosil 

Gold C18 column (Dr. Maisch, Germany), without separating the labeling permutants. The correct mass of labeled protein was 

confirmed by electrospray ionization mass spectrometry. 

 

Turbidity measurements 

To assess the extent of phase separation, the relative turbidity was quantified by the attenuation of light at 350 nm with a NanoDrop 

2000 UV-Vis spectrophotometer (Thermo Scientific). The positively charged polypeptides were added to a fixed volume of a ProTα 

solution to achieve a final concentration of 10 µM ProTα and investigate a wide range of stoichiometric ratios. These experiments 

were carried out in TEK buffer, composed of 10 mM Tris-HCl, 0.1 mM EDTA (pH 7.4), with ionic strength adjusted using KCl. Samples 

were rapidly mixed via pipetting for approximately 10 seconds before measurements. Each sample was measured four times, and 

the results were averaged. Both protein stock solutions were diluted in identical buffers before the mixing process. 

 

Single-molecule fluorescence spectroscopy  

We performed confocal single-molecule analysis, concentration determination, and fluorescence correlation spectroscopy at 295 K 

with a MicroTime 200 (PicoQuant), equipped with a UPlanApo 60×/1.20-W objective (Olympus), mounted on a piezo stage (P-733.2 

and PIFOC from Physik Instrumente GmbH), using a 532-nm continuous-wave laser (LaserBoxx LBX-532-50-COL-PP; Oxxius), and 

a 635-nm diode laser (LDH-D-C-635M; PicoQuant). Fluorescence photons, which were separated from scattered laser light using a 

triple-band mirror (zt405/530/630rpc from Chroma), were initially divided into two channels by either a polarizing or a 50/50 beam 

splitter, and then into four detection channels with dichroic mirrors to separate donor and acceptor emission (T635LPXR from 

Chroma). Donor emission was further filtered with an ET585/65m band-pass (Chroma), and acceptor emission with an LP647RU 

long-pass filter (Chroma), before being detected by SPCM-AQRH-14-TR single-photon avalanche diodes (PerkinElmer). 

SymPhoTime 64 version 2.4 (PicoQuant) was used for data acquisition. 

In single-molecule measurements, ProTα, labeled with Cy3B and CF660R, was excited by the 532-nm laser. Experiments 

were conducted in TEK buffer, including varying concentrations of KCl. Plastic sample chambers (μ-Slide, ibidi) were used to mitigate 

surface adhesion of the positively charged polypeptides. For measurements of dilute-phase samples, the power of the 532-nm laser 

was set to 100 μW (measured at the back aperture of the microscope objective); the confocal volume was positioned 30 μm deep 

into the sample chamber; and concentrations of labeled protein between 50 and 100 pM were used. For single-molecule 

measurements in the dense phase, the average power at the back aperture was between 3 and 30 μW for continuous-wave excitation, 

depending on the background level; the confocal volume was placed at the center of the spherical droplets, whose radii varied 

between 4 and 30 μm. Unlabeled proteins (12 μM ProTα and a concentration of the positively charged polypeptides to ensure charge 

balance) were mixed with 5 to 10 pM of labeled ProTα. Photon bursts, emerging as proteins traversed the confocal volume, were 

isolated from background-corrected fluorescence trajectories, binned at 4 ms, with a photon count threshold of 285 per burst. In 

dilute-phase measurements, bursts were defined as sequences of at least 285 consecutive photons with interphoton times below 40 

µs. 

Ratiometric transfer efficiencies were obtained from 𝐸 = 𝑁𝐴/(𝑁𝐴 + 𝑁𝐷), where 𝑁𝐴 and 𝑁𝐷 are the numbers of donor and 

acceptor photons, respectively, in each photon burst, corrected for background, channel crosstalk, acceptor direct excitation, 

differences in quantum yields of the dyes, and detection efficiencies (94, 95). Mean transfer efficiencies, 〈𝐸〉, were determined from 

fits with Gaussian peak functions to the transfer efficiency histograms. To infer dye-to-dye distance distributions, P(r), from 〈𝐸〉, we 

use the relation (53) 

〈𝐸〉 = 〈𝜀〉 ≡ ∫ 𝜀(𝑟)𝑃(𝑟)𝑑𝑟,
∞

0
   Eq. 6 

where  

𝜀(𝑟) = 𝑅0
6/(𝑅0

6 + 𝑟6).       Eq. 7 

 

The Förster radius, R0, (96) of 6.0 nm for Cy3B/CF660R in water (97) was corrected for the refractive index, n, in the droplets 

according to the published dependence of n on the protein concentration (98), which is linear up to a mass fraction of at least 50 % 

(99) and only marginally dependent on the type of protein (98). At the dense-phase protein concentrations, n is greater than in water 

by 3%–6%, resulting in a slightly smaller R0 inside the droplets (5.8–5.9 nm). Systematic uncertainties in transfer efficiencies due to 

instrument calibration and uncertainty in R0 are estimated to be roughly ±0.03, in line with the range previously reported (94). The 

precision for measurements on the same instrument is higher, typically <0.01 (97). P(r) was estimated using the length scaling 

exponent ν by applying an empirically modified self-avoiding-walk polymer (SAW-ν) model (100, 101). In all dense phases, the value 

of ν was between 0.57 and 0.61. To estimate the mean square end-to-end distance of the complete ProTα chain, we used ν and the 
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total number of amino acids, Ntot = 110]. The impact of fluorophore labeling on ProTα-H1 interaction was minimal, as evidenced by 

previous studies (57, 93), and given the fraction of <10-6 of labeled protein in the dense phases, effects of fluorophore labeling on 

dense-phase behavior were considered negligible. Analysis of fluorescence data was performed with the software package Fretica 

(https://github.com/SchulerLab) run with Mathematica 12.3 (Wolfram Research). 

 

Measurements of protein concentrations and diffusion coefficients in the dilute and dense phases 

We utilized fluorescence correlation spectroscopy (FCS) and quantitative fluorescence intensity analyses using a MicroTime 200 

(PicoQuant) to assess the concentrations of ProTα molecules doubly labeled with Cy3B and CF660R, in the dense and dilute phases 

(36, 74). A mixture of unlabeled proteins (12 μM ProTα and a concentration of the respective positively charged polypeptides to 

ensure charge balance), doped with a small concentration (~10 pM to 10 nM) of labeled ProTα in TEK buffer including the specified 

concentrations of KCl was allowed to phase-separate at 295 K. To analyze the dilute phase, the phase-separated mixture was 

centrifuged at 295 K for 30 minutes at 25,000 g, leading to the formation of a single large droplet from the dense phase. The 

supernatant was then aspirated and placed into a sample chamber (μ-Slide, ibidi). For measurements in the dense phase, the phase-

separated mixture was directly transferred to the sample chamber, and droplets were allowed to settle on the bottom surface of the 

sample chamber by gravity; the boundaries of individual droplets were identified via 3D confocal imaging, and FCS and intensity 

measurements were performed by focusing inside the droplets.  

To excite CF660R, we employed the 635-nm continuous-wave laser at 5 μW (measured at the back aperture of the 

objective). The emitted fluorescence photons were then separated using a polarizing beam splitter and subsequently detected by two 

detectors. The collected correlation data were analyzed employing a model that assumes a 3D Gaussian-shaped confocal volume: 

𝐺(𝜏) = 𝐺0 [(1 +
𝜏

𝜏𝐷
) √1 + 𝑠−2 𝜏

𝜏𝐷
]

−1

, Eq. 8 

where τ is the lag time, 𝐺0 is the amplitude, τD is the translational diffusion time, and s is the ratio of the axial to lateral radii of the 

confocal volume. The calibration curve was generated from the analysis of samples with known concentrations (0.3, 1, 3 10, 30, and 

100 nM) of labeled ProTα in TEK buffer including 120 mM KCl. 

Concentrations were estimated from the average number of labeled proteins in the confocal volume, 𝑁𝑝 = (1 −
𝑛b

𝑛f
)

2
/𝐺0, as 

previously described (74), where 𝑛b is the background count rate estimated from samples without labeled protein, and 𝑛f is the 

average count rate of the measurement with labeled ProTα. As an alternative method for estimating concentrations, the fluorescence 

intensity after background subtraction was used based on a corresponding calibration curve. Total ProTα concentrations were 

obtained by dividing the concentrations of labeled ProTα by the doping ratio, which was set to ensure that fluorescence intensities 

fell within the range of linear response of detection. This approach requires higher doping ratios for measurements in the dilute phase 

than for those in the dense phase. For each set of experimental conditions, a minimum of two concentration estimates were made, 

one using FCS and one using intensity detection. These assessments were repeated a minimum of two times to increase reliability. 

Diffusion coefficients were calculated from translational diffusion times, τD, using a calibration curve  

𝐷 =
Λ

 𝜏𝐷
 ,    Eq. 9 

where Λ was obtained from a calibration with samples of known diffusion coefficient in water. The calibration was cross-validated in 

ProTα-H1 droplets with two-focus FCS (102) to account for effects of refractive index differences between dilute and dense phase 

on the observed translational diffusion coefficients (36). 

Since maximum dense phase formation occurs at a mixing ratio close to charge balance (Supplementary Fig. 1), all 

experiments were performed by mixing ProTα and the positively charged polypeptides at this ratio. Since reproducible droplet 

formation becomes difficult to maintain and exceedingly sample consuming at salt concentrations near the critical point, a compromise 

between experimental feasibility and accessible salt concentrations was made. 

 

Microrheology 

We mixed ProTα and the positively charged polypeptides, both unlabeled, under phase separating conditions at charge balance w ith 

an aliquot of fluorescent microspheres (100 nm and 500 nm diameter, Fluoro-Max, Thermo Fisher Scientific). After centrifugation, we 

collected a single large droplet (diameter ≥100 μm) for observation. Tracking the motion of the beads within the droplet was conducted 

at 295 K using an Olympus IXplore SpinSR10 microscope equipped with a 100×/1.46 NA plan-apochromat oil immersion objective, 

for 300 seconds with 50 ms exposure time per image and and acquisition rate of 5 Hz. Bead trajectories were obtained using the 

TrackMate plugin of Image J (103) and further analyzed with MATLAB 2016b (MathWorks). We calculated the mean square 

displacements (MSD) in the image plane, averaging across 20 trajectories, to obtain the diffusion coefficient, D, from 〈MSD(t)〉=4Dt, 

where t is the time after the start of observation. 

 The MSD analysis demonstrates uniform viscous properties within the droplets, as evidenced by the Brownian diffusion, the 

consistency between different beads probed in the droplet volume, and the uniform fluorescence intensity observed in microscopy 

images. We did not observe aging effects on the timescale up to days. We estimated the viscosity, η, using the Stokes–Einstein 

equation assuming freely diffusing Brownian motion of particles with hydrodynamic radius 𝑅ℎ: 

 𝜂 =
𝑘𝐵𝑇

6𝜋𝐷𝑅ℎ
.      Eq. 10 

In this study, we were interested on the macroscopic (bulk) viscosity of the medium that can be measured by probes that are much 

larger than the correlation length of the polymer network (104, 105). At short times, some MSD curves apparently deviate from the 

linear Brownian behavior. This effect is due to uncertainties in position determination owing to out-of-focus beads (Supplementary 

Fig. 3C, D), rather than due to possible elastic properties of the dense phase, which cannot be resolved within the time scales studied 

here (72). 

To increase the time resolution of tracking, we also tested K50-ProTα droplets in an optical tweezers instrument (C-Trap, 

LUMICKS, Amsterdam). K50-ProTα was the sample least prone to photodamage by the IR laser. A condensate-forming sample (3 µl) 

mixed with 1-µm polystyrene beads was placed on a polymer coverslip (ibidi GmbH, Germany) at the center of an enclosure formed 

https://github.com/SchulerLab
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by double-sided tape. Another polymer coverslip was placed on top of the sample, sandwiching and sealing it. The condensate 

sample was left to equilibrate for 30 min. The sample was then placed on the sample stage of the optical tweezers instrument 

equipped with a 60× water immersion objective and a bright-field camera. We trapped isolated beads within large droplets (diameter 

> 50 µm) with minimal laser power to prevent photodamage and the formation of optically visible bubbles at the bead surface. Beads 

motion was recorded with the camera at >300 Hz and tracked with Blulake (LUMICKS, Amsterdam). MSDs were calculated in 

Mathematica (Wolfram Research). 

 

 

Correlation length, overlap concentration, and entanglement concentration 

The correlation length in the dense phase was estimated from ξ ≈ Rg (cp/c*)-3/4, (22) where cp represents the total protein concentration 

(concentration of ProTα plus the concentration of the positively charged partner, c* is the overlap concentration, defined as c* = 1/V 

with V approximating the volume occupied by a polymer chain (𝑉 ≈ 4 3⁄ 𝜋𝑅𝑔
3), and 𝑅𝑔 is the radius of gyration (𝑅𝑔 ≈ √〈𝑅2〉/√6, where 

√〈𝑅2〉 is the mean square end-to-end distance of the polymer). The condition cp ≳ c* delineates the transition from the dilute to the 

semidilute regime, marking the beginning of chain interpenetration (22, 106). The concentrations corresponding to c* in the samples 

range from 7 mM to 10 mM, while the protein concentrations corresponding to cp in the four samples range from 14 mM to 42 mM 

(concentration averages at different salt concentrations). The estimated correlation lengths range from 1.1 nm to 2.4 nm, calculated 

using the average values for Rg, c*, and cp of the four protein combinations at different salt concentrations (in previous work (36), a 

slightly larger range for ξ was estimated since the hydrodynamic radius was also used to obtain the volume occupied by a single 

chain). Similarly, the entanglement concentration, ce, delineates the transition from a non-entangled polymer solution to an entangled 

one when cp ≳ ce. This condition is met approximately if the protein concentration is high enough that there are at least two chains in 

the volume V pervaded by a single chain (see eq. 10 in ref. (68)), yielding ce ≈ 2c*. As cp ≈ ce in our systems, only mild entanglement 

effects are expected. The volume fractions, 𝜙, were calculated from the measured ProTα concentrations cProTα (Figure 1E): 𝜙 =

(𝑀𝑤,𝑃𝑟𝑜𝑇𝛼 𝑐𝑃𝑟𝑜𝑇𝛼�̅�𝑃𝑟𝑜𝑇𝛼 + 𝑋 𝑀𝑤,𝑝𝑎𝑟𝑡𝑛𝑒𝑟 𝑐𝑃𝑟𝑜𝑇𝛼 �̅�𝑝𝑎𝑟𝑡𝑛𝑒𝑟) where 𝑀𝑤 is the molecular weight, �̅� is the partial specific volume, and 𝑋 is the 

mixing ratio between the positively charged partner and ProTα. We note that since the samples examined here are complex 

coacervates of similar but not identical lengths, the values must be considered approximate. 

 

Nanosecond fluorescence correlation spectroscopy (nsFCS) 

Samples for nsFCS measurements were prepared as outlined in the section Single-molecule measurements. To avoid the reduction 

in signal due to photobleaching of slowly diffusing molecules in the dense phase, we moved the confocal volume at constant speed 

(3 μm/s) following a serpentine trajectory in a horizontal plane within the droplet  (36). Excitation with continuous-wave laser light of 

532 nm was conducted at 3 or 30 μW (measured at the back aperture of the objective). For subpopulation-specific correlation analysis 

of the FRET-active species, we used photons from bursts with 〈𝐸〉 > 0.15. Autocorrelation curves of acceptor (𝐴) and donor (𝐷) 

detection channels, and cross-correlation between A and D were analyzed as described previously  (36, 107). In Figure 2E we show 

cross correlation curves with logarithmically spaced lag times ranging from nanoseconds to milliseconds. The function used for fitting 

the correlations between detection channels 𝑖, 𝑗 = 𝐴, 𝐷 is 

𝐺𝑖𝑗(𝜏) = 𝐺0,𝑖𝑗  
(1−𝑐𝑎𝑏

𝑖𝑗
 𝑒

−|𝜏|/𝜏𝑎𝑏
𝑖𝑗

 )(1+𝑐𝑐𝑑
𝑖𝑗

 𝑒−|𝜏|/𝜏𝑐𝑑  )(1+𝑐𝑟𝑜𝑡
𝑖𝑗

 𝑒−|𝜏|/𝜏𝑟𝑜𝑡 )

(1+
|𝜏|

𝜏𝐷
)(1+𝑠−2 |𝜏|

 𝜏𝐷
)

1/2 .      Eq. 11 

The three terms in the numerator with amplitudes 𝑐𝑎𝑏
𝑖𝑗

, 𝑐𝑐𝑑
𝑖𝑗

, 𝑐𝑟𝑜𝑡
𝑖𝑗

, and correlation times 𝜏𝑎𝑏
𝑖𝑗

, τcd, τrot describe photon antibunching, 

conformational dynamics, and dye rotation, respectively. τD and s are defined as in Eq. 8. Conformational dynamics result in a 

characteristic pattern with a positive amplitude in the autocorrelations (𝑐𝑐𝑑
𝐷𝐷  > 0 and 𝑐𝑐𝑑

𝐴𝐴  > 0) and a negative amplitude in the cross-

correlation (𝑐𝑐𝑑
𝐴𝐷  < 0), but with a common correlation time 𝜏𝑐𝑑. The three correlation curves 𝐺𝐷𝐷(𝜏) , 𝐺𝐴𝐴(𝜏), and 𝐺𝐴𝐷(𝜏) were fitted 

globally with τcd and τrot as shared fit parameters. The relaxation time τcd was converted into the chain reconfiguration time 𝜏𝑟 =

∫
〈𝑟(0)𝑟(𝜏)〉

〈𝑟2〉
𝑑𝜏

∞

0
, according to the procedure previously established (108). This conversion is based on the assumption that dynamics 

of the inter-dye distance 𝑟 can be represented as diffusive motion in a potential of mean force obtained from the distance distribution 

𝑃(𝑟) by Boltzmann inversion (52, 108). 

The experimental uncertainties of τr reported here are either standard deviations calculated from three measurements or 

the error of the fit of τcd (from which τr is derived), whichever was greater. We estimate the error of the fit from the variability resulting 

from fits using different lag-time intervals of the FCS data: We report as uncertainties the range of reconfiguration times obtained by 

using values from 0.8 ns to 8 ns as lower bounds, and from 1 ms to 6 ms as a upper bounds of the fitting window. The rotational 

correlation time, τrot, is approximately one order of magnitude smaller than the chain reconfiguration time, τr, and is caused by dye 

rotation (36).  

 

Polymer models 

We compared the experimental results of ProTα reconfiguration times 𝜏𝑟 and ProTα translational diffusion coefficients 𝐷 in 

condensates, together with the emerging bulk viscosities 𝜂 of the condensates, with corresponding values derived from three models 

commonly used for polymer solutions, dilute solutions, and polymers in a network of obstacles: i) the Rouse model (21), ii) the Zimm 

model (109), and iii) the Rouse model with entanglement (66, 69, 70). Since the concentrations and chain dimensions in the dense 

phases are comparable in all systems studied, we tested the models using average values of these quantities rather than reduced 

quantities, which would not have allowed a comparison of different models with different dependencies on protein concentrations and 

chain dimensions for all samples together. The upper and lower limits of the error bands in Figure 4D correspond to models calculated 

for the minimum and maximum values of the chain dimensions and protein concentrations in the set of experimentally observed 

values. 
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i) The Rouse model describes the dynamics of a chain of N beads connected by harmonic springs with root mean square 

length b, and subjected to Brownian motion with friction coefficient 𝜁. The friction of the whole chain is approximated as 𝑁𝜁. The 

translational diffusion coefficient of the center of mass of the entire chain D is given by the Einstein relation 

𝐷 =
𝑘𝐵𝑇

𝑁𝜁
.  Eq. 12 

The longest relaxation time of the Rouse chain is (see ref. (66), eq. 4.37): 

𝜏R =
𝜁𝑁2𝑏2

3𝜋2𝑘𝐵𝑇
=

〈𝑅2〉

3𝜋2𝐷
 . Eq. 13 

For the second term we used 〈𝑅2〉 = 𝑁𝑏2 and Eq. 12. 𝜏R is related to the experimentally measured reconfiguration time of the segment 

between residues 56 and 110 of ProTα by the Makarov relation (110) 
𝜏𝑖𝑗

𝜏R
⁄ =

𝜋2

24
|𝜇 − 𝜆|{−(4 + 7𝜇2 − 12𝜆 + 7𝜆2 − 12𝜇 + 10𝜇𝜆) + 4 − 4|𝜇 − 𝜆| + (𝜇 − 𝜆)2}   Eq. 14 

where I = 56, j = 110, 𝜇 =
𝑖

𝑁ProTα
 , 𝜆 =

𝑗

𝑁ProTα
, with 𝑁ProTα = 112, from which we obtain 

𝜏R =
𝜏56−110

0.54
=

𝜏𝑟

0.54
.  Eq. 15 

The bulk viscosity of a polymer solution (21, 66) is given by (see eq. 32 in ref. (21) and eq. 7.33 in ref. (66)): 

𝜂 =
𝑐 𝜁

36
𝑁𝑏2 +  𝜂𝑠 =

𝑘𝐵𝑇𝑐𝑝〈𝑅2〉

36 𝐷
+ 𝜂𝑠    Eq. 16 

where cp = c/N is the concentration of protein molecules in the condensates (number of protein molecules per volume), c is the 

concentration of chain segments (number of segments per volume) in the condensates, and 𝜂𝑠 is the solvent viscosity (1 mPa s in 

our samples). The relation between reconfiguration time and viscosity (Eq. 3) is given by combining Eq. 13 and Eq. 16. The error 

bands in Figure 4D represent the results of the models calculated from the range of experimental chain dimensions and protein 

concentrations. 

 ii) The Zimm model extends the Rouse model by including hydrodynamic interactions. It recognizes that the motion of one 

part of the polymer chain affects the surrounding solvent, which in turn affects the motion of other parts of the chain; the Zimm model 

is thus considered appropriate for polymers in dilute solution. The model relates the diffusion coefficient, D, and the chain 

reconfiguration time, 𝜏Z, to the solvent viscosity (see eq. 4.61 and 4.63 in ref. (66)), but if the viscosity in the polymer network is length 

scale-dependent (36), the relations can be inverted to obtain an effective solvent viscosity, 𝜂𝑍, at the length scale of the chain relevant 

for polymer dynamics: 

𝜂𝑍 =
8

3√6𝜋3

𝑘𝐵𝑇

√〈𝑅2〉 𝐷
 ,   Eq. 17 

which is equivalent to the Stokes-Einstein equation (Eq. 10) with  𝑅ℎ =
3√𝜋

8√6
√〈𝑅2〉 ≈

2

3
 𝑅𝑔, 

𝜂𝑍 =
√3𝜋 𝑘𝐵𝑇  𝜏1

√〈𝑅2〉
3

 
       Eq. 18 

and 𝜏Z =
8

9𝜋2√2

〈𝑅2〉

𝐷
.  Eq. 19 

iii) The Rouse model with entanglement (66, 69, 70) considers a Rouse chain diffusing in a network of other chains resulting 

in obstacles effectively forming tubes of diameter a, within which the chain can diffuse, where a can be considered the ‘entanglement 

spacing’ (71) (Figure 4C). In this picture, the center-of-mass diffusion coefficient of the chains, D, depends both on the friction 

coefficient, 𝜁, acting on individual beads, and on the ratio between the entanglement spacing and the chain dimensions (see eq. 6.40 

in ref. (66)), 

𝐷 =
𝑘𝐵𝑇

3𝑁𝜁

𝑎2

〈𝑅2〉
  . Eq. 20 

The viscosity of the polymer solution can thus be expressed in terms of D (see eq. 7.47, 7.43, 6.19 and 6.40 in ref. (66)) as 

𝜂 =
𝑘𝐵𝑇𝑐𝑝〈𝑅2〉

36 𝐷 

〈𝑅2〉

𝑎2 + 𝜂𝑠 ,  Eq. 21 

and can be used to calculate the entanglement spacing for all samples (Supplementary Fig. 7A), resulting in a = 4±1 nm (±1 nm is 

the variability among the samples), which is of the same order as the correlation length, ξ, estimated for the dense phases. The error 

bands in Figure 4D account for the slightly different entanglement spacing, chain dimensions, and concentrations in the different 

samples. 

There are three characteristic times for chain relaxation (compare to eq. 6.106, 6.18, 6.19 in ref. (66)): 𝜏e =
𝑎6

3〈𝑅2〉2𝐷
 is the 

time at which the displacement of chain segments becomes comparable to the entanglement spacing, a; 𝜏Rtube
=

𝑎2

9𝜋2𝐷
 is the time for 

chain relaxation within a tube; 𝜏d =
〈𝑅2〉

3𝜋2𝐷
 is the disentanglement time — the time required for a chain to disentangle from the tube 

within it was confined. In Supplementary Fig. 7B, we compared the experimental chain reconfiguration time and diffusion coefficient 

with the three characteristic times of an entangled chain with tube diameter of a = 4 nm and found that the chain relaxation that best 

describes the experimental results is 𝜏d. This means that the major contribution to end-to-end distance fluctuations is due to protein 

disentanglement. Note that 𝜏d and 𝜏R defined for the Rouse model have the same dependence on D.  

The viscosity of the polymer solution can also be obtained from the chain relaxation times by combining Eq. 21 with the three relations 

for 𝜏e, 𝜏Rtube
, and 𝜏d. The finding that 𝜏𝑟 ≈ 𝜏𝑑 is valid both for the relation between chain reconfiguration time and diffusion coefficient 

(Eq. 4), and for the relation between chain reconfiguration time and viscosity (Eq. 5, Supplementary Fig. 7B).  

 

Molecular dynamics (MD) simulations 

All-atom explicit solvent simulations of phase-separated ProTα-H1 in 8 mM KCl as well as ProTα-protamine in 8 mM KCl and 128 

mM KCl were performed using the same simulation parameters as previously described for phase-separated ProTα-H1 at 128 mM 

KCl (36). In brief, we employed the Amber99SBws force field (111, 112) with the TIP4P/2005s water model (113, 114). The 

temperature was kept constant at 295.15 K using stochastic velocity rescaling (115) (τ = 1 ps), and the pressure was kept at 1 bar 
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with a Parrinello-Rahman barostat (116). Long-range electrostatic interactions were modeled using the particle-mesh Ewald method 

(117) with a grid spacing of 0.12 nm and a real-space cut-off of 0.9 nm. Dispersion interactions and short-range repulsion were 

described by a Lennard-Jones potential with a cutoff at 0.9 nm. Bonds involving hydrogen atoms were constrained to their equilibrium 

lengths using the LINCS algorithm (118). Equations of motion were integrated with the leap-frog algorithm with a time step of 2 fs, 

with initial velocities taken from a Maxwell-Boltzmann distribution at 295.15 K. All simulations were performed using GROMACS (119) 

version 2021.5. We simulated the unlabeled variant of ProTα, since the droplets under experimental conditions had 1000-fold higher 

concentration of unlabeled than labeled ProTα. 

To obtain the starting structure of phase-separated ProTα-H1 at the desired ion concentration of 8 mM KCl, and to ensure 

charge neutrality, we removed 2289 potassium and 2289 chloride ions from the snapshot at 5 µs of our previous phase-separated 

ProTα-H1 at 128 mM KCl (36). The simulation system contained 96 ProTα and 80 H1 molecules, 129 potassium and 241 chloride 

ions, and 899,220 water molecules, resulting in a simulation system of 3,996,354 particles. The free production run was 3.1 µs long, 

with a timestep of 2 fs, employing 36 nodes (each consisting of an Intel Xeon E5-2690 v3 processor with 12 cores and an NVIDIA 

Tesla P100 GPU at the Swiss National Supercomputing Centre) with a performance of ~35 ns/day, corresponding to ~3 months of 

supercomputer time. The first 2.1 µs were treated as system equilibration and not used for the analysis. 

For the ProTα-protamine simulations, the initial structure for all-atom simulations of the phase-separated system in slab 

configuration (55) was obtained with coarse-grained (CG) simulations, following the strategy described previously (36). We utilized 

the one-bead-per-residue model that was previously developed to study the 1:1 ProTα-H1 dimer (57). Briefly, the potential energy 

has the following form: 

𝑉 =
1

2
∑ 𝑘𝑏(𝑑𝑖𝑗 − 𝑑𝑖𝑗

0 )
2

+

𝑖<𝑁

1

2
∑ 𝑘𝜃(𝜃𝑖𝑗𝑘 − 𝜃𝑖𝑗𝑘

0 )
2

𝑖<𝑁−1

 

             + ∑ ∑ 𝑘𝑖,𝑛(1 + cos(𝑛𝜙𝑖𝑗𝑘𝑙 − 𝛿𝑖,𝑛)) +4
𝑛=1𝑖<𝑁−2 ∑

𝑞𝑎𝑞𝑏

4𝜋𝜖𝑑𝜖0𝑑𝑎𝑏
exp [−

𝑑𝑎𝑏

𝜆𝐷
]𝑎<𝑏 + ∑ 4𝜀𝑝𝑝(𝑎,𝑏) ((

𝜎𝑎𝑏

𝑑𝑎𝑏
)

12
− (

𝜎𝑎𝑏

𝑑𝑎𝑏
)

6
),    

            Eq. 22 

where 𝑖, 𝑗, 𝑘, 𝑙 denote consecutive residues. The first term represents the harmonic bond energy with force constant 𝑘𝑏 =

3.16 × 105 kJ. mol
−1

nm−2, and the second term represents the angle energy with force constant 𝑘𝜃 = 6.33 × 102 kJ mol
−1

rad
−2

; 

reference values for 𝑑𝑖𝑗
0  and 𝜃𝑖𝑗𝑘

0  were taken from an extended backbone structure (0.38 nm; 2𝜋/3 rad). The third term represents a 

sequence-based statistical torsion potential taken from the Go model of Karanicolas and Brooks (120), which was applied to all 

residues. The fourth term represents a screened coulomb potential, with Debye screening length 𝜆𝐷, applied to all residues with non-

zero charges 𝑞𝑖; 𝜖0 is the permittivity of free space; the dielectric constant, 𝜖𝑑, was set to 80. The fifth term represents a generic short-

range attractive potential applied to all residue pairs. This interaction is characterized by a contact distance 𝜎𝑎𝑏 = (𝜎𝑎 + 𝜎𝑏)/2, where 

𝜎𝑎,𝑏 are the residue diameters (all ~0.6 nm) determined from residue volumes (121), and a contact energy 𝜀𝑝𝑝, which is the same for 

all residue pairs and was set to 0.16 𝑘𝐵𝑇, or ~0.40 kJ/mol
−1

. The Debye length, 𝜆𝐷, is given by  

𝜆𝐷 = (
𝜖𝑑𝜖0𝑘𝐵𝑇

2𝑒2𝐼
)

1/2
,      Eq. 23 

where kB is the Boltzmann constant, T the temperature, e the elementary charge, and I the ionic strength. 

Using this coarse-grained model, 96 ProTα and 197 protamine molecules (1:1 charge balance) in an initially extended 

configuration were placed on a rectangular grid in a 60-nm cubic box, and the energy of the system was minimized with the steepest-

descent algorithm. The system was further relaxed in a short NVT run at 500 K and an implicit ionic strength of 500 mM. In the next 

step, the box edge was decreased to 22.41 nm in a 56-ps NPT run with reference pressure set to 20 bar to obtain an average protein 

density close to that of the dense phase in experiment. The system configuration was further randomized via a 1.5-µs NVT run (using 

a 10-fs time step) at 500 K and an implicit ionic strength of 500 mM to ensure relatively uniform protein density in the box. Each chain 

from the final CG structure was independently reconstructed in all-atom form using a lookup table from fragments drawn from the 

PDB, as implemented in Pulchra (121). Side-chain clashes in the all-atom representation were eliminated via a short Monte Carlo 

simulation with CAMPARI (122) using the ABSINTH energy function (122), in which only the side chains were allowed to move. Due 

to the large number of proteins and the relatively high density of proteins in the box, the first CAMPARI moves were performed using 

a soft-core Lennard-Jones (LJ) potential, which has an energy cap, thus avoiding the very large energies resulting from the exclusion 

in the first Monte Carlo moves at the beginning of the CAMPARI simulation. Subsequently, the soft-core LJ potential was gradually 

transformed into a global soft-core form by increasing the CAMPARI parameters FMCSC_FEG_IPP and FMCSC_FEG_ATTLJ. The 

following pairs of FMCSC_FEG_IPP and FMCSC_FEG_ATTLJ values were used: 0.5 and 0.35, 0.7 and 0.6, 0.9 and 0.85, 0.95 and 

0.92, 0.98 and 0.96, 0.99 and 0.97, 0.9925 and 0.975, 0.995 and 0.99. Taking the relaxed configuration obtained with CAMPARI, the 

box edge was extended to 41 nm in the Z direction, and the resulting system was set up with the all-atom Amber ff99sbws protein 

force field (111, 112) in GROMACS and energy-minimized using the steepest-descent algorithm. To eliminate any non-proline cis-

bonds that might have emerged during all-atom reconstruction, we ran a short simulation in vacuum with the dielectric constant set 

to 80 with periodic boundaries, using a version of the force field that strongly favors trans peptide bonds (55) and applying weak 

position restraints to the protein backbone atoms and dihedral angles (5 kJ/mol/rad).  

Subsequently, the simulation box was filled with TIP4P/2005s water44 and energy-minimized. Up to this point, the same 

setup was used for both 8 mM and 128 mM ProTα-protamine simulations. In the next step, 1587 potassium and 1596 chloride ions 

were added to the simulation box for ProTα-protamine at 128 mM KCl (2,612,851 particles in total), and 99 potassium and 108 

chloride ions were added to the simulation box for ProTα-protamine at 8 mM KCl (2,621,779 particles in total), to match the ionic 

strength of the buffer used in the experiments and to ensure charge neutrality. In the next step, both systems were again energy-

minimized, and a 10-ns MD run was performed with strong position restraints on protein backbone atoms (105 kJ mol-1 nm-2) to 

stabilize the trans isomer for any peptide bonds that had isomerized in the previous step. The final structures of these 10-ns runs 

with backbone restraints were used for the production runs (without restraints), using GROMACS (119) version 2021.5. The free 

production runs at 128 mM and 8 mM KCl were ~2.5 µs long, with a timestep of 2 fs, employing 48 nodes each (each node consisting 
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of an Intel Xeon E5-2690 v3 processor with 12 cores and an NVIDIA Tesla P100 GPU at the Swiss National Supercomputing Centre) 

with a performance of ~63 ns/day, corresponding to ~40 days of supercomputer time. The first 1.5 µs of both simulations were treated 

as system equilibration and not used for the analysis.  

 

Analysis of MD simulations 

To estimate long-timescale dynamics and correlation functions from the condensate trajectories, the dynamics of each Prothymosin-

𝛼 chain was described as one-dimensional diffusion along the coordinate defined by the separation in space, r, of the residues that 

were dye-labeled in experiment (here we use the distance between Cα atoms of residues 58 and 112). That is, this coordinate is 

considered to diffuse on a free energy surface, F(r), with a diffusion coefficient D (more generally, position-dependent D(r)), whose 

parameters we determine from the simulations. This distance coordinate is first discretized into b bins of equal width, from which the 

number of transitions, 𝑁𝑗𝑖(Δ𝑡), from bin i to bin j after a lag Δ𝑡 during the simulations is counted. These statistics are combined from 

all Prothymosin-𝛼 chains, considering that they are expected to be indistinguishable. Discretized free energies and diffusion 

coefficients were optimized via Monte Carlo simulation using the likelihood function 

ln 𝐿 = ∑ 𝑁𝑗𝑖(Δ𝑡) ln 𝑝(𝑗, 𝑡 + Δ𝑡|𝑖, 𝑡)𝑖,𝑗 , Eq. 24 

where the propagators 𝑝(𝑗, 𝑡 + Δ𝑡|𝑖, 𝑡) describing the conditional probability of being in bin j at time Δ𝑡 after having been in bin i are 
obtained from the discretized diffusion model as previously described (123, 124): in short, the discretized dynamics is mapped to a 

chemical kinetics scheme describing evolution of populations in the bins, �̇�(𝑡) = 𝐊𝐏(𝑡), where 𝐏(𝑡) is the vector of the bin populations 
at time t and K is a rate matrix derived from the diffusion coefficient(s) D (or Di for  position-dependent D) and free energies Fi 
associated with each bin according to the scheme of Bicout and Szabo (123, 125). The propagators are then given by 𝑝(𝑗, 𝑡 + Δ𝑡|𝑖, 𝑡) =
(exp[Δ𝑡𝐊])𝑗𝑖. In estimating the most probable parameters from the data, a uniform prior is used for the diffusivities and free energies. 

The statistical error on the derived parameters is determined by generating synthetic data sets with the same number M of individual 
distance trajectories r(t) as the original, specifically by choosing M trajectories randomly with replacement, and refitting the model. 
The error is taken as the standard deviation of the parameters across all synthetic data sets (126).  

We can compute the normalized correlation functions directly from the discretized diffusion model via (127) 

𝐶(𝑡) =
∑ (𝐫⋅𝛙𝑛

𝑅)2 exp[𝜆𝑛𝑡]𝑏
𝑛=2

∑ (𝐫⋅𝛙𝑛
𝑅)2𝑏

𝑛=2
, Eq. 25 

where the elements of r are the centers of each bin on the distance coordinate,  𝛙𝑛
𝑅 is the nth right eigenvector of K (𝛙1

𝑅 is the 

stationary eigenvector), and 𝜆𝑛 is the nth eigenvalue. Similarly, the correlation times are given by  

𝜏𝑐 = −
∑ (𝐫⋅𝛙𝑛

𝑅)2𝜆𝑛
−1𝑏

𝑛=2

∑ (𝐫⋅𝛙𝑛
𝑅)2𝑏

𝑛=2
. Eq. 26 

Errors in correlation functions and correlation times were estimated using the same procedure as for the diffusion model parameters. 
In our application of the method to the condensate trajectories, we have used 30 equal-width bins between 2 and 10 nm, and a lag 
time of 200 ns.  

A key assumption of this method is that the dynamics is, indeed, well approximated as diffusive after the chosen lag time 
Δ𝑡. If this is true, then the model should become independent of lag time beyond this point. To assess this effect, we computed the 
correlation time as a function of the lag time and observed that after lag times of around 200 ns it appears to be converging toward a 
limiting value (Supplementary Fig. 8D). One challenge for using even longer lag times is the limited length of the simulations, resulting 
in insufficient statistically independent observations. Separately from the statistical error estimate described above, we also estimated 
the systematic error associated with the choice of lag time by using correlation times computed at 100 and 300 ns lag times as lower 
and upper error bars, respectively. A second assumption we have made is that the diffusion coefficient should be uniform, i.e. not 
dependent on the position on the distance coordinate. This was motivated by our finding that using an explicitly position-dependent 
diffusion coefficient resulted in very little position dependence, as demonstrated in Supplementary Fig. 8B. Although this conclusion 
differs from some earlier work (128), this is most likely because we do not significantly sample the very short distances where the 
position dependence of D emerged in that study.  

The average number of H1/protamine molecules that simultaneously interact with a single ProTα chain, as well as the 

average number of ProTα chains that simultaneously interact with a single H1/protamine molecule (Fig. 3d) in the dense-phase 

simulation were quantified by calculating the minimum distance between each ProTα and each H1/protamine for each simulation 

snapshot. The two molecules were considered to be in contact if the minimum distance between any two of their Cα atoms was within 

1 nm. Distances between Cα atoms were used instead of the commonly used distances between all atoms of the residues to facilitate 

the large calculations. The 1-nm cutoff between the Cα atoms of two residues yields similar results as the commonly used 0.6-nm 

cutoff for interactions between any pair atoms from the two residues (119). The same contact definition was employed when 

calculating residue-residue contacts (Fig. 3e): Two residues were considered to be in contact if the distance between their Cα atoms 

was within 1 nm. 

Lifetimes of residue-residue contacts were calculated by a transition-based or core-state  approach (36, 129). For each pair 

of residues, a contact was based on the shortest distance between any pair of heavy atoms, one from each residue. Starting from an 

unformed contact, contact formation was defined to occur when this distance dropped below 0.38 nm; an existing contact was 

considered to remain formed until the distance increased to more than 0.8 nm (129). Average lifetimes of each residue-residue 

contact were calculated by dividing the total bound time by the total number of contact breaking events for that contact. Intra-chain 

contacts were not included in the analysis. Average lifetimes of each pair of ProTα-H1 and ProTα-protamine residues (averaged over 

the different combinations of ProTα and H1/protamine chains that the two residues could be part of) were calculated by dividing the 

total contact time (summed over all combinations of ProTα and H1/protamine chains) of a specific residue pair by the total number 
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of the contact breaking events for the same residues (summed over the same combinations of chains). Similarly, to calculate average 

lifetimes of residue-residue contacts according to the residue type, we first identified all contacts involving a particular pair of residue 

types, in which one residue was from the ProTα chain and the second was from either H1/protamine or ProTα. Subsequently, the 

average lifetime of that residue-residue combination was calculated by dividing the total bound time by the total number of contact 

breaking events for the contacts involving those residue types. Excess populations  of contacts between specific types of residues 

were determined by dividing the average number of observed contacts for a pair of residue types by the value that would be expected 

if residues paired randomly in a mean-field approximation. The average number of contacts for a pair of residue types was calculated 

as a sum of all times that residues of those types were in contact, divided by the simulation length. The expected average number of 

contacts between two residue types (type 1 and 2) was calculated as N f(1) f(2), where N is the average total number of contacts, 

and f(1) and f(2) are the fraction of residues of type 1 and 2, respectively. 

The mean squared displacement (MSD) of individual residues within ProTα molecules were calculated as a function of delay 
time using the Gromacs function gmx msd. MSD curves of each ProTα residue for each of the 96 chains in simulations with protamines 
as well as in simulation with H1 at 8 mM KCl were calculated from the last microsecond of each of the simulations, using residue 
coordinates every 100 ps. MSD curves of each ProTα residue for each of the 96 chains in ProTα-H1 simulation at 128 mM KCl were 
calculated previously in four 1-µs blocks, using residue coordinates every 100 ps. 

All of these analyses are consistent with what we previously reported in ref. (36).  
Distance distributions of the 1st- and the 2nd-closest residues (Figure 3H) were computed between all residues of all chains 

in the simulations. The distances were considered between specific atoms in the side chains: Cδ for glutamate; Cγ for aspartate; Nζ 
for lysine; Cζ for arginine; and Cβ for alanine. The distributions shown in Figure 3H are averages of 100 structures taken every 1 ns. 
Percentages of contacts exchanged were calculated by annotating the identity of the 1st- and the 2nd-closest negatively charged 
residues (glutamates and aspartates) to all lysine residues in H1–ProTα slab at 128 mM KCl, at time t0. Only cases where both the 
1st- and 2nd-closest negatively charged residues (X-

1st, t=0 and X-
2nd, t=0) were in contact with lysines are considered (similar to the 

contact definition in Figure 3F, distances between reference atoms in the side chains <0.8 nm). We then tracked the distance between 
the lysines and the two negatively charged residues X-

1st, t=0 and X-
2nd, t=0 for 100 ns using residue coordinates every 1 ns, and we 

annotated whether X-
2nd, t=0 becomes the 1st-closest negatively charged residues to that lysine. The percentage of contacts exchanged 

in Figure 3K reports the percentage of lysine residues in the system that had two contacts with negatively charged residues at t = t0 
and where X-

2nd, t=0 became the 1st closest negatively charged residue at least once in the following 100 ns. Error bars are standard 
deviations of 10 analyses starting at different t0. The same analysis was performed for arginine (instead of lysine) in the protamine–
ProTα condensate at 128 mM KCl. 
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Supplementary Fig. 1. Phase separation is most pronounced for protein mixtures near charge balance. The extent of droplet 

formation was assessed using turbidity at a constant concentration of 10 μM ProTα and varying amounts of its polycationic partners 

at 120 mM KCl. Maximal phase separation was observed at a molar ratio λ close to concentration ratios where the charges of the 

two polymers balance: from left to right, λH1-ProTα ≈ 0.8:1, λK50-ProTα ≈ 0.9:1, λprotamine-ProTα ≈ 2:1, λR50-ProTα ≈ 0.9:1. We note that the 

arginine-rich samples (protamine and R50) tend to phase-separate even with excess of the polycationic partner, reflecting the 

complex interactions of arginine beyond Coulomb interactions (42, 43). 
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Supplementary Fig. 2. Correlations between thermodynamic and dynamic quantities in the dense and dilute phases. (A) 

ProTα transfer efficiency vs dense phase protein concentration shows no correlation. (B) ProTα transfer efficiency in dense- vs dilute-

phase protein concentration shows a slight correlation, indicating that both thermodynamic quantities are proxies for the interaction 

strength between polymers: the stronger the interaction, the lower the dilute phase concentration and the smaller the chain 

dimensions (74). (C) Correlations between chain reconfiguration time, τr, and dilute phase mass concentration, and (D) between τr 

and transfer efficiency relate the molecular dynamics within condensates to the intermolecular interactions of the systems as 

proposed by An et al. (29).  
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Supplementary Fig. 3. Passive microrheology shows Brownian diffusion of beads in the dense phase down to the 

millisecond timescale. (A) Example of a fluorescence micrograph of 500-nm beads in a K50-ProTα droplet (image size: 150x150 

µm). (B) Mean-squared displacement (MSD) of individual 500-nm beads and their average (solid thick lines) in water, in K50-ProTα 

dense phase in 60 mM KCl, and in H1-ProTα dense phase in 120 mM KCl show Brownian diffusion. (C) MSD of 500-nm beads in 

R50-ProTα dense phase in 90 mM KCl (right) apparently deviates from Brownian diffusion at short times, which might be mistaken 

to suggest the approach of the elastic plateau (72). Further examination of the MSD of beads fixed on a cover slide at different 

positions relative to the focal plane (left) indicates that this deviation is an artifact due to the limited precision in determining the 

position of the beads. A stricter threshold for automatic bead identification can reduce this artifact (dashed line), but it also reduces 

the number and length of individual trajectories, making viscosity determination problematic over longer time periods. (D) MSD of a 

single polystyrene bead (1 µm diameter) trapped in the dense phase of K50-ProTα with optical tweezers also appears to change 

slope at short times. Similarly, the deviation which occur for MSD values <100 nm2 is likely caused by the limited precision in 

determining the position of the beads. (Tracking was performed from brightfield images taken with maximum LED illumination, see 

Methods). 
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Supplementary Fig. 4. Mass concentrations and ions distributions in MD simulations. (A) Illustrations of H1–ProTα and 

protamine–ProTα simulations in slab geometries. Densities were calculated along the z-axis. (B) Protein density in the dense-phase 

slabs as a function of time, calculated in 50-ns blocks. The parts of the simulations where the protein density increases significantly 

with time were treated as equilibration and omitted from the analysis. The parts of the simulations that were analyzed are highlighted 

by the shaded boxes. (C-D) Mass concentrations of protein, water, all components (protein, water, and ions; left axes), and number 

density of ions (right axes) along the z-axis of the simulation box in the four different simulations. The water density in the protamine–

ProTα simulations is lower compared to the water density in the H1–ProTα simulations, which is consistent with the higher protein 

density observed in the protamine–ProTα simulations. For the simulations with a total salt concentration of 128 mM KCl, ion 

concentrations within the dense phase are decreased relative to the dilute phase in both the H1–ProTα and protamine–ProTα 

simulations, in parallel with the decrease in water content within the dense phases. Conversely, for the simulations with a total salt 

concentration of 8 mM KCl, ion concentrations are increased in the dense phase relative to the dilute phase in both the H1–ProTα 

and protamine–ProTα simulations. 
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Supplementary Fig. 5. Comparison of ProTα chain dynamics in H1–ProTα and protamine–ProTα droplets at 128 mM KCl 

from MD simulations. (A) Examples of intrachain distance fluctuations between residues 58 and 112 for 9 of the 96 ProTα chains 

(chain 10, 20, ... , 90) in the H1–ProTα dense phase over 1 μs. (B) Same as A, but illustrated for the first 0.1 µs. (C) Examples of 

intrachain distance fluctuations between residues 58 and 112 for 9 of the 96 ProTα chains in the protamine–ProTα dense phase over 

1 μs are qualitatively comparable to the distance fluctuations in the H1–ProTα slab during 0.1 µs, further illustrating the ~10-fold 

slower chain dynamics in the protamine–ProTα dense phase. 
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Supplementary Fig. 6. Contact lifetime heatmaps from MD simulations. (A) Average lifetime of residue-residue contacts, 

calculated by considering all instances of these residues across all chains. Numbers on the bottom and left denote the residue 

numbers of ProTα and H1 or protamine, respectively. Note that H1 contains a folded globular domain (GD) between residues 22 and 

96. Bars at the top and right of the plots denote charged residues, as in Figure 1A. (B) Frequency of contacts (defined as the number 

of new contacts made by one ProTα residue per nanosecond). Plots A and B indicate that: (i) decreasing salt concentration increases 

the lifetime of residue-residue contacts (see also Figure 3F); (ii) contact times in arginine-rich droplets (Protamine–ProTα) are longer 

than in lysine-rich droplets (H1–ProTα) (see also Figure 3F); (iii) charge-charge contacts are the most frequent but the most short-

lived contacts in the lysine-rich condensates, whereas charge-charge contacts are both the most frequent and the longest-lived in 

the arginine-rich condensates, reflecting the propensity of arginine to form multivalent contacts (see also Figure 3J). (C) Average 

lifetimes of residue-residue contacts classified by residue type. Residue pairs that are never observed (white squares) and extremely 

long-lived pairs (dark blue) typically correspond to residue types that are rare in the ProTα and H1/protamine sequences. (D) Excess 

populations of contacts between specific types of residues (determined by dividing the average number of observed contacts for a 

pair of residue types by the value that would be expected if residues paired randomly in a mean-field approximation, see Methods). 

The large excess of contacts between charged residues indicates that their interactions are the most favorable in both lysine- and 

arginine-rich condensates. Although these contacts are the most frequent, their lifetimes are in the same range as those of other 

residue pairs (see C). In addition, the excess of charged residue interactions is more pronounced in arginine-rich condensates than 

in lysine-rich condensates, in line with the propensity of arginine to form multivalent contacts (64, 67, 130–132). 
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Supplementary Fig. 7. Comparison of experimental data with different polymer models. (A) The reduced viscosity 
𝜂

 𝑐𝑝〈𝑅2〉2
 allows 

us to evaluate the relation between viscosity and diffusion coefficient D (see Eq. 4), taking into account the contribution from the 

slightly different chain dimensions, 〈𝑅2〉, and protein concentrations, 𝑐𝑝, in the individual samples. The solid lines correspond to the 

relation 
𝜂

 𝑐𝑝〈𝑅2〉2 =
𝑘𝐵𝑇

36 𝐷 

1

𝑎2 +
𝜂𝑠

 𝑐𝑝〈𝑅2〉2, where the entanglement spacings, 𝑎, were calculated for each individual sample set as 𝑎 =

√
𝑘𝐵𝑇

36 𝐷 

𝑐𝑝〈𝑅2〉2

𝜂
. The means and standard deviations of 𝑎 for the individual samples are reported in the legend. For the comparison with 

other models, we used the average value a = 4±2 nm. (B) Comparison of the experimental viscosity, diffusion coefficient, and chain 
reconfiguration time with the predictions of the Rouse model, the Zimm model, and the Rouse model with entanglement from 
Equations 1-5 and 13-21 (see Methods). The viscosities and diffusion coefficients of LAF-1 (54), A1-LCD (73, 74) and FUS-LCD (75, 
76) are from previous reports. The average entanglement spacing used in the Rouse model with entanglement is obtained as 

described in A (a = 4±2 nm). The Rouse model with entanglement predicts three different chain relaxation times: 𝜏e =
𝑎6

3〈𝑅2〉2𝐷
 is the 

time at which the displacement of chain segments becomes comparable to the entanglement spacing a; 𝜏Rtube
=

𝑎2

9𝜋2𝐷
 is the time for 

chain relaxation within a tube; 𝜏d =
〈𝑅2〉

3𝜋2𝐷
 is the disentanglement time — the time required for a chain to disentangle from the tube 

within it was confined. The chain relaxation that best describes the experimental results is 𝜏d, suggesting that the experimentally 
observed end-to-end distance fluctuations are dominated by chain disentanglement. 
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Supplementary Fig. 8. Theoretical storage and loss moduli of the samples with the fastest (left) and slowest (right) chain 

reconfiguration time, τR. The Rouse model (21) can be used to calculate the storage modulus 𝐺′(𝜔) = 𝑐𝑝𝑘𝐵𝑇 ∑
𝜔2𝜏𝑝

2

1+𝜔2𝜏𝑝
2𝑝  and the 

loss modulus 𝐺′′(𝜔) = 𝜔𝜂𝑠 + 𝑐𝑝𝑘𝐵𝑇 ∑
𝜔𝜏𝑝

1+𝜔2𝜏𝑝
2𝑝  of a polymer solution with a concentration of chains, 𝑐𝑝, and solvent viscosity, 𝜂𝑠, 

where 𝜔 is the angular frequency, and 𝜏𝑝 is the relaxation time of the p-th Rouse mode (𝜏𝑝 =
𝜏R

𝑝2
 , where the longest relaxation mode, 

𝜏1 ≙ 𝜏R, is related to the reconfiguration time of the experimentally observed chain segment by the Makarov relation (110), 𝜏R =
𝜏𝑟

0.54
, 

see Methods). This theory has previously been shown to accurately describe experimental data on synthetic polymers (133). We 

note that even in the sample with the slowest reconfiguration time investigated here (R50-ProTα at 60 mM KCl), the predicted 

crossover frequency, 
2𝜋

𝜏R
,  is in the megahertz range, which is difficult to access using conventional rheological methods (18). Similarly, 

in the case of Rouse theory with entanglement, the crossover frequency is expected to be the inverse of the disentanglement time, 

𝜏𝑑,  (66, 72) which corresponds to the experimental chain reconfiguration time, 𝜏𝑟 (see Supplementary Fig. 7B). 
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Supplementary Fig. 8. Computing distance decorrelation times from simulation using a diffusion model. For each system, 

the dynamics of the 58-112 distance is modeled using a discretized diffusion model described by (A) free energies, F(r), and (B) 

diffusion coefficients, D(r), determined from the molecular simulations. Allowing position-dependent diffusion coefficients (symbols in 

(B)) shows that constant D (horizontal lines in (B)) is a good approximation. The model allows properties beyond the ~1 µs time scale 

of the equilibrated portion of most of the simulations to be estimated, such as (C) correlation functions and (D) correlation times. 

Based on the convergence of correlation time, 𝜏c, with lag time, ∆𝑡, in (D), a lag time of 200 ns was chosen for all systems and was 

used in the models for (A)-(C). 
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ProTα (unlabeled) 

GPMSDAAVDTSSEITTKDLKEKKEVVEEAENGRDAPANGNANEENGEQEADNEVDEEE

EEGGEEEEEEEEGDGEEEDGDEDEEAESATGKRAAEDDEDDDVDTKKQKTDEDD 

ProTαC (56C/110C labeled) GPSDAAVDTSSEITTKDLKEKKEVVEEAENGRDAPANGNAENEENGEQEADNEVDEEC

EEGGEEEEEEEEGDGEEEDGDEDEEAESATGKRAAEDDEDDDVDTKKQKTDEDC 

H1 (unlabeled) TENSTSAPAAKPKRAKASKKSTDHPKYSDMIVAAIQAEKNRAGSSRQSIQKYIKSHYK

VGENADSQIKLSIKRLVTTGVLKQTKGVGASGSFRLAKSDEPKKSVAFKKTKKEIKKV

ATPKKASKPKKAASKAPTKKPKATPVKKAKKKLAATPKKAKKPKTVKAKPVKASKPKK

AKPVKPKAKSSAKRAGKKK 

Protamine (unlabeled) MPRRRRSSSRPVRRRRRPRVSRRRRRRGGRRRR 

Poly-L-lysine 50 KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK 

Poly-L-arginine 50 RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR 

Supplementary Table 1. Amino acid sequences of polypeptides used. Cys residues introduced for labeling are indicated in bold. 

Unlabeled ProTα is a variant of human ProTα isoform 2, while ProTα 2C/56C is a variant of isoform 1. (57) The isoforms differ by a 

single Glu at position 39. 

 

 

Supplementary Video 1 [link] 

(Left) All-atom explicit-solvent simulation of the ProTα–H1 condensate (total time 1 μs). One ProTα chain is highlighted in red (chain 

60), and four interacting H1 chains are shown in different shades of blue. Other surrounding ProTα and H1 chains are shown semi-

transparently in red and blue, respectively. 

(Right) All-atom explicit-solvent simulation of the ProTα–protamine condensate (total time 1 μs). One ProTα chain is highlighted in 

red (chain 30), and six interacting protamine chains are shown in three different shades of purple. Other surrounding ProTα and 

protamine chains are shown semi-transparently in red and purple, respectively. 

Both videos are centered on the center of mass of the highlighted ProTα chain.  The video is shown at 2 ns per frame. To slightly 

smooth the motion, a filter with a time constant of 4 ns was applied to all frames. Protein hydrogen atoms, water molecules, and ions 

were omitted for clarity. 

(YouTube link: https://www.youtube.com/watch?v=E4Idah1J3N8&ab_channel=MilosIvanovic) 

 

Supplementary Video 2 [link] 

(Left) All-atom explicit-solvent simulation of the ProTα–H1 condensate (total time 50 ns). One ProTα chain is highlighted in red (chain 

59), and four interacting H1 chains are shown in different shades of blue. Other surrounding ProTα and H1 chains are shown semi-

transparently in red and blue, respectively.  

(Right) All-atom explicit-solvent simulation of the ProTα–protamine condensate (total time 50 ns). One ProTα chain is highlighted in 

red (chain 30), and six interacting protamine chains are shown in three different shades of purple. Other surrounding ProTα and 

protamine chains are shown semi transparently in red and purple, respectively. 

Both videos are centered on the center of mass of the highlighted ProTα chain. The video is shown at 100 ps per frame. To slightly 

smooth the motion, a filter with a time constant of 200 ps was applied to all frames. Protein hydrogen atoms, water molecules, and 

ions were omitted for clarity. 

(YouTube link: https://www.youtube.com/watch?v=4G9GOYp-Fmw&ab_channel=MilosIvanovic)   
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