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ABSTRACT

Single-cell RNA sequencing (scRNA-seq) is a power-
ful tool to study heterogeneity and dynamic changes
in cell populations. Clustering scRNA-seq is essen-
tial in identifying new cell types and studying their
characteristics. We develop CellBIC (single Cell BI-
modal Clustering) to cluster scRNA-seq data based
on modality in the gene expression distribution.
Compared with classical bottom-up approaches that
rely on a distance metric, CellBIC performs hierar-
chical clustering in a top-down manner. CellBIC out-
performed the bottom-up hierarchical clustering ap-
proach and other recently developed clustering algo-
rithms while maintaining the hierarchical structure of
cells. Importantly, CellBIC identifies type 2 diabetes
and age specific � cell signatures characterized by
SIX3 and CDH2, respectively.

INTRODUCTION

The advent of high capacity single cell RNA-seq (scRNA-
seq) allows the characterization of large number of single
cell transcriptomes (1–6). Clustering is an important step
to study cell heterogeneity and characterize previously un-
known cell sub-population. For clustering cell-to-cell dis-
tance is usually used to identify cells with similar expres-
sion profiles. A classical hierarchical clustering method uses
the cell-to-cell distance to reconstruct a tree structure, where
each branch represents a sub-type (2–10). Accordingly, the
choice of an appropriate metric and a linkage criterion in-
fluences the clustering results. Also, a hierarchical cluster-
ing method often fails to find a large group in the pro-
cess of collecting small groups to reconstruct a tree struc-
ture due to the conflict between similarity across multiple
groups (11,12). Ensemble approaches have been developed

for scRNA-seq clustering to compensate biases from using
a metric or a criterion (13,14). SC3 (13) uses a consensus
of k-means clustering results followed by hierarchical clus-
tering. SIMLR (14) provides a similarity metric learned by
combining multiple kernels. Even though successful, these
approaches still rely on the choice of a metric and a linkage
criterion.

Dimension reduction approaches such as principle com-
ponent analysis (PCA) and t-distributed stochastic neigh-
bor embedding (t-SNE) have been widely applied for clus-
tering in order to handle multi-dimensional scRNA-seq
data efficiently by visualizing cells in a two or three dimen-
sional space (2,4,5,6,8–10,15–20). Subsequently, clustering
is performed by grouping cells based on the proximity in the
reduced dimension. However, these approaches can fail to
identify cell types when cells are intermingled in the reduced
domain.

Here, we develop CellBIC (single Cell BImodal Clus-
tering), a novel clustering approach for scRNA-seq. Com-
pared with a classical ‘bottom-up’ hierarchical clustering
approach that builds up a tree from a distance matrix,
CellBIC implements a ‘top-down’ approach by perform-
ing clustering by dividing the datasets recursively to recon-
struct a hierarchical structure (21). While a top-down hier-
archical clustering method requires additional computation
time for identifying an optimal division point (22), it can
provide a better clustering performance and interpretation
than bottom-up algorithms (21–25). A top-down clustering
equips with a simple flat clustering to divide datasets into
large sub-groups (22). Often, a K-means algorithm has been
used as a flat clustering due to its execution speed (22). In-
stead of using a K-means algorithm, we designed a new flat
clustering approach for scRNA-seq data using multi-modal
patterns in gene expression.

Multi-modality is an intrinsic characteristic observed in
heterogeneous scRNA-seq data. For instance, if the expres-
sion levels of a gene are high in a cell type and low in other
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cell type, its distribution in the mixed population will show
a bimodal distribution in scRNA-seq. Bimodality in ex-
pression is also previously observed in the scRNA-seq from
mouse bone-marrow-derived dendritic cells due to the po-
tential cell specificity of a sub-population in responding to
lipopolysaccharide (26).

CellBIC identifies cellular clusters by considering a bi-
modal expression pattern in a top-down manner. By dissect-
ing cells based on bimodal memberships recursively, Cell-
BIC reconstructs a hierarchical tree structure. We applied
CellBIC to various scRNA-seq data including human pan-
creas (3,6), mouse cortex (4), and mouse lung (5). CellBIC
shows a superior performance for clustering of scRNA-seq
data over traditional bottom-up clustering algorithms as
well as other state-of-the-art clustering algorithms. The hi-
erarchical structure that CellBIC identified reconstructed
the developmental lineages of the pancreas. Applying Cell-
BIC further to pancreatic � cells, we identified genes in �
cells associated with type 2 diabetes (T2D) and aging.

MATERIALS AND METHODS

Clustering evaluation

t-SNE (27) and density-based spatial clustering of appli-
cations with noise (DBSCAN) (28) were implemented in
MATLAB 2017b. Bottom-up hierarchical clustering was
performed by two MATLAB functions ‘linkage’ and ‘den-
drogram’. For t-SNE and bottom-up clustering, we used
genes whose log2 transformed TPM >1 in >25% cells and
the coefficient of variation of the log2 transformed TPM >1.
For SC3 and SIMLR, we used their default parameters.

To benchmark clustering algorithms, each obtained clus-
ter was assigned to a cell type with the best match-
ing cell type. By comparing the assigned cell type with
the gold standard, we calculated adjusted rand Index
(ARI) for each clustering result. We considered the max-
imum ARI of the clustering results for different num-
bers of clusters and for five repeats as the ARI of
each clustering algorithm. ARI was calculated by a
MABLAB function ‘rand index’ in a package Adjusted
Rand Index version 1.0 with ‘adjusted’ option using MAT-
LAB 2017b (https://www.mathworks.com/matlabcentral/
fileexchange/49908-adjusted-rand-index).

CellBIC uses bimodal distribution in scRNA-seq for cluster-
ing

A multi-modal distribution in expression is often observed
in scRNA-seq data from a mixed cell population. For in-
stance, insulin (INS) expression levels in the scRNA-seq
from human pancreas showed a bimodal distribution: the
higher mode for � cells (INS+) the lower mode for other
cells (INS-) regardless of the donors (Supplementary Figure
S1). This suggests a potential use of modality for scRNA-
seq clustering.

Hypothesizing that cells that belong to a mode in a bi-
modal distribution consistently across multiple genes share
similarity, we designed a top-down hierarchical cluster-
ing approach. To implement clustering, we obtain Boolean
membership of cells (High/Low or 0/1) after fitting the dis-
tribution of expression levels of each gene with a Gaussian

mixture model (Figure 1A). To obtain bimodal distribution,
we used a Gaussian mixture model with two modes. We only
consider a gene as a candidate based on t-statistics (t > 10).
In CellBIC, genes that do not make cells belong to a mem-
bership are discarded (Figure 1B). For this, CellBIC calcu-
lates the Hamming distance using the Boolean membership.
The Hamming distance (Hij) of two Boolean vectors i and j
is defined by the ratio of the number of mismatch. The ab-
solute Hamming distance (AHij) between i and j is defined
as follows:

AHi j =
{

Hi j
1 − Hi j

if Hi j < 0.5
otherwise

In this configuration, the Hamming distance of 1 is for
the perfect mismatch for a gene pair and 0.5 for a ran-
dom match. Two genes with maximum Hamming distance
are selected as the top seed gene pair. We limited that the
seed gene pair has a distance larger than 0.7 to remove seed
gene pairs weakly mismatching each other. We further con-
firmed that the performance was robust to the Hamming
distance cutoff for a seed gene pair (Supplementary Fig-
ure S2). Then, we selected genes showing consistent or con-
trasting Boolean membership with the selected two seed
genes. A gene is added if average absolute Hamming dis-
tance with the existing genes is below 0.2 (correlation test
P-value <0.01, and binomial test P-value < 1e–25), which
provided robust clustering performances for several inde-
pendent scRNA-seq datasets (Supplementary Figure S3).

The collective membership will show two groups of cells
aligned with the seed gene pair (Figure 1C).

Dissecting cells using the hamming code table

The Hamming codes for the aligned genes were represented
in the membership matrix. The matrix is composed of two
gene groups aligned to the two seed genes, respectively. The
Boolean values were switched (0 to 1 and 1 to 0) when ap-
propriate. The maximum of the moving standard deviation
(window = 1/15 of the total number of cells) on the col-
umn sum of the matrix determines the dissection point of
the two groups of cells. Consequently, the dissecting point
and the genes aligned to the two seed genes form four quad-
rants in the membership matrix. The majority values of the
two crossing quadrants are same. For instance, the majority
value of the second and the fourth quadrants in Figure 1C is
0 and the other two quadrants (first and third quadrants in
Figure 1C) is 1. If the majority component is not observed in
an alternative manner from the first to the fourth quadrant,
dissection is discarded and the clustering stops. To prevent
CellBIC from falling into a local minimum, this procedure
is repeated using the top 5 seed genes (Supplementary Fig-
ure S4). When selecting the aligned gene sets with the seed
genes, genes used for previous dissection are not considered
for the alignment with the next seed genes. Genes that pro-
vide best dissection among them is selected based on the
following clustering score C.

C =
(

E
4

− 0.7
)

N

where E denotes the sum of the ratios of ‘1’ in the second
and the fourth quadrants and the ratios of ‘0’ in the first
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Figure 1. CellBIC implements top-down hierarchical clustering using bimodal pattern. (A) Step 1: Boolean membership is obtained using a Gaussian
mixture model. (B) Step 2: A gene group is selected based on the Boolean membership. Only genes observed in one mode significantly are included. (C)
Step 3: A membership matrix is obtained using the selected gene set. Cells are divided into two groups based on the membership matrix. (D) A top-down
clustering is performed by applying A-C recursively. (E) A membership matrix obtained by CellBIC when using human pancreatic � and � cells (3). (F)
A classical bottom-up hierarchical clustering using human pancreatic � and � cells (3). The point to cut the tree is not well defined for the bottom-up
hierarchical clustering.

and third quadrants of the membership matrix, N denotes
the number of the genes aligned to the two seed genes, and
0.7 is clustering score weight. The clustering score weight
was determined after testing various weight values using the
benchmarking data (Supplementary Figure S5). This algo-
rithm is recursively applied to the subgroups until every dis-
section is discarded (Figure 1D) or the minimum number
of cells in the cluster is less than a cutoff value. The Cell-
BIC performance was robust to the change of the minimum
number of cells especially with the cell number <50 (Sup-
plementary Figure S6).

Gene ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) analysis

All the GO (29) and KEGG (30) pathways analyses were
implemented using Enrichr 2017 version (31).

RESULTS

A top-down clustering better dissects cells than the classical
hierarchical clustering

To test the usefulness of using modality in clustering
scRNA-seq data, we prepared a well-characterized cell
groups composed of human pancreatic � and � cells (3).
Applying CellBIC to this dataset, we identified Glucagon
(GCG) and INS as the top pairing seed genes, which are the
marker for � and � cells, respectively (Figure 1E). Along
with GCG, we found classical � cell markers such as ARX
(32) and IRX2 (33) were aligned with GCG (Fisher’s exact
test P-value = 3.11e–28 and 1.33e–38, respectively). Also,
� cell markers such as PDX1 (34) and MAFA (35) were
aligned well, as expected, with INS (Fisher’s exact test P-
value = 7.27e–28 and 5.45e–43, respectively).

The classical bottom up clustering approach identified
pre-defined � and � cell groups as well. However, it did not
provide a well-structured tree. When a tree is cut, the hi-
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erarchical clustering approach did not clearly distinguish �
against � cells, which could mislead the subsequent analysis
(Figure 1F). Our test demonstrates that the top-down clus-
tering identified functional sub-cell types and can better be
applied to clustering scRNA-seq data.

CellBIC showed outstanding clustering performance in the
comprehensive benchmarking tests

For comprehensive benchmarking, we compared the per-
formance of CellBIC with various clustering approaches for
scRNA-seq data including the classical hierarchical cluster-
ing and t-SNE (27) followed by DBSCAN (28). We also in-
cluded recently developed SC3 (13) and SIMLR (14) for the
comparison.

For this benchmarking we used scRNA-seq data for (i)
668 cells from human pancreas (3), (ii) 2544 cells from hu-
man pancreas (6), (iii) 3005 cells from mouse cortex (6) and
(iv) 201 cells from mouse lung (5). We used the annotation
of cells provided by each study as a gold standard. If a cell
is not defined, we left it as undefined. Supplementary Table
S1 summarizes the composition of cells that we used.

From the transcriptome of 668 human pancreas cells,
CellBIC identified �, �, pancreatic polypeptide (PP), duc-
tal, acinar, and mesenchymal cells successfully (Figure 2A).
The classical bottom-up hierarchical clustering method suc-
cessfully identified �, �, PP, ductal and mesenchymal cells.
However, many � cells were misclassified. The t-SNE ap-
proach identified �, �, duct, acinar and mesenchymal cells,
but it misclassified most of � cells. This is because of the
difficulties in dissecting � against � cells that are located
closely in the reduced dimension, where DBSCAN only se-
lected the subset of � cells (Supplementary Figure S7). SC3
identified � and � cells well. However, SC3 failed to distin-
guish PP cells from � cells. SIMLR almost perfectly sepa-
rated four types of endocrine cells, but it failed to distin-
guish ductal, acinar, and mesenchymal cells (Figure 2A).

With another 2544 cells from human pancreas, SIMLR
showed similar identification performance to CellBIC (Fig-
ure 2B). However, both hierarchical clustering and t-
SNE+DBSCAN failed in identifying � cells against � cells.
SC3 missed or misclassified considerable proportions of �
and � cells (Figure 2B). For mouse cortex cells, CellBIC, hi-
erarchical clustering, t-SNE+DBSCAN, and SC3 showed
comparable performance (Figure 2C). SIMLR, however,
failed in distinguishing interneurons and two pyramidal
cells (CA1 and S1). For mouse lung cells, only CellBIC
and SIMLR distinguished E16 stage cells (Figure 2D) but
SIMLR misclassified a considerable number of cells.

Figure 2E summarizes the overall performance using
ARI for the datasets we used. Overall, CellBIC showed best
or at least comparable results with other classifiers. Cell-
BIC’s performance was robust for all the tested datasets
(ARI > 0.7) SC3 showed comparable performance with
CellBIC for 3 independent datasets. However, it performed
poorly when using 2544 human pancreas cells. Our results
demonstrate that clustering using modality may overcome
the potential algorithmic biases in calculating distance be-
tween cells and/or subsequent analysis.

CellBIC reconstructs hierarchical cluster trees

We further investigated the hierarchical structure identified
by CellBIC. From human pancreatic tissues (3), we first ob-
tained two large cell groups. Gene ontology (GO) of the first
group (left) showed terms related with endocrine function
of pancreas such as ‘Maturity onset diabetes’ (adjusted P-
value = 1.50e–6) and ‘Insulin secretion’ (adjusted P-value =
7.94e–6) (Figure 3 and Supplementary Table S2). The other
group (right) showed terms related with exocrine function
of pancreas such as ‘Hippo signaling pathway’ (adjusted P-
value = 6.37e–3) (36,37) (Figure 3 and Supplementary Ta-
ble S3). Endocrine cells were further divided into a group
containing � (GCG+) and PP (PPY+) cells and the other
group containing � (INS+) and � (SST+) cells. This is con-
sistent with the view that PP and � cells are similar with
� and � cells, respectively (38,39). The exocrine cells di-
vided into mesenchymal cells expressed genes related with
‘ECM-receptor interaction’ (adjusted P-value = 1.73e–2)
and a group expressed genes related with ‘Tight junction’
(adjusted P-value = 3.63e–4) (Figure 3 and Supplementary
Tables S4–S5). The second group was further divided into
ductal and acinar cells. In sum, CellBIC identified a struc-
ture of pancreatic cell types in a hierarchical form. We also
obtained similar results from the scRNA-seq dataset for
2544 cells from human pancreatic tissues (6) (Supplemen-
tary Figure S8 and Supplementary Tables S6–S11).

CellBIC also reconstructed a hierarchical structure using
the scRNA-seq data from mouse cortex (4). At the top level,
mouse cortex cells were dissected into two large groups,
one with a function related with ‘Myelination’ (adjusted
P-value = 2.92e–2) and the other ‘Synaptic transmission’
(adjusted P-value = 2.62e–4), suggesting non-neuronal and
neuronal cells, respectively (Supplementary Figure S9 and
Supplementary Tables S12–S13). The neuronal cells were
separated by the order of the interneurons and pyramidal
neurons from two different sources including somatosen-
sory (S1) and hippocampal CA1 region (Supplementary
Figure S9 and Supplementary Tables S14–S15). The non-
neuronal cells were separated by the order of oligoden-
drocytes, endothelial-mural cells, astrocyte-ependymal cells
and microglia (Supplementary Figure S9 and Supplemen-
tary Tables S16–S19).

CellBIC identified the characteristics of � cells associated
with T2D and aging

We further questioned the sub-clusters in the � cells com-
posed of 98 adult and 20 child pancreatic � cells (3). Cell-
BIC identified a group of cells with higher expression levels
of SIX3 and CD14 (Figure 4A). While these cells showed
strong INS expression levels, we found majority of cells high
with SIX3 and CD14 were from T2D donors (Fisher’s ex-
act test P-value: 1.56e–14). To confirm this, we used an in-
dependent scRNA-seq data from normal and T2D � cells
(18) (Figure 4B). In these independent datasets, genes highly
expressed in SIX3+ cells (CD14, NEFM, SIX3, ITGB3BP)
also had significantly higher expression in the cells from
T2D donors (Wilcoxon rank sum test P-value < 1.0e–2).
Also, genes exclusively observed in SIX3+ cells such as
CPB1 and CPA2 were expressed significantly less frequently
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Figure 2. CellBIC outperforms in the benchmarking tests. The pre-defined sets (gold standard) are compared with the predicted cell types by CellBIC,
bottom-up hierarchical clustering, t-SNE+DBSCAN clustering, SC3, and SIMLR. (A, B) two human pancreata (3,6), (C) a mouse cortex (4) and (D) a
mouse liver dataset (5). (E) Performance evaluation of five clustering algorithms for four scRNA-seq datasets using ARI.

Figure 3. CellBIC reconstructs a top-down hierarchical structure from 668
human pancreatic cells (3). The entire human pancreatic cells were divided
into endocrine and exocrine cells. Endocrine cells were further divided into
a group containing � (GCG+) and PP (PPY+) cells and another group
containing � (INS+) and � (SST+) cells. The exocrine cells were divided
into mesenchymal cells and a group consisting of ductal and acinar cells.
Finally, CellBIC reconstructed the hierarchical structure for the pancreatic
sub-types.

in normal � cells (Wilcoxon rank sum test P-value < 1.0e–
4).

Interestingly, a previous genome-wide association study
also showed a potential role of SIX3 in � cell maturation
and a relevance of SIX3 with type 1 diabetes (T1D) and
T2D risk (40). Furthermore, a subset of � cells expresses
CD14, which is associated with the immune surveillance
(41) and � cell viability (42). Our study may suggest Cell-
BIC can be used to identify � cell markers associated with
diabetes risk.

The clustering using the top second seed pair identified
another � cell sub-type marked by N-cadherin (CDH2)
(Figure 5A). We found CDH2+ cell group is populated with
cells obtained from adult donors (Fisher’s exact test P-value
= 2.71e–16, Figure 5A). The age-dependent gene expres-
sions of two seed genes LCN2 and CDH2 is also supported
by a published bulk RNA-seq data obtained from human
adult and fetal pancreatic � cells (43) (Wilcoxon rank sum
test P-value < 0.01, Figure 5B). The validation using the
two scRNA-seq datasets from donors with various ages
(6,18) showed significantly positive correlations (correlation
test P-value = 3.05e-4 and P-value = 3.12e–4, respectively,
Figure 5C and D). Previous staining study identified the ex-
pression of CDH2 in human � cells (44,45). We also found
that CDH2 is expressed only in adult � cells in the two inde-
pendent scRNA-seq datasets (3,18) (Supplementary Figure
S10). The negligible CDH2 expression in adult � cells from
the same donor further showed that CDH2 expression in
adult � cells are not from contamination such as doublet
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Figure 4. CellBIC identifies genes associated with T2D from � cell sub-clustering. (A) A membership matrix of sub-clustering of � cell shows SIX3 and
CD14 are highly expressed in � cells from T2D donors. (B) Evaluation of the gene expression using the � cell scRNA-seq dataset from normal and T2D
patients (18).

Figure 5. CellBIC identifies genes associated with aging from � cell sub-clustering. (A) A membership matrix of sub-clustering of � cell show CDH2 is
highly expressed in adult � cells. (B) LCN2 and CDH2 expression shows age-dependency in the bulk RNA-seq data obtained from fetal and adult pancreas
(43). Violin plots show age-dependent CDH2 expression in the two � cell scRNA-seq datasets by (C) Segerstolpe et al. (18) and (D) Enge et al. (6).
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cells. Our study suggests that CDH2 may be a � cell aging
marker.

DISCUSSION

Clustering scRNA-seq data provides an unbiased way to
characterize cells. CellBIC newly implemented a top-down
hierarchical clustering approach for scRNA-seq data. To
dissect cell groups, CellBIC designed a new flat clustering al-
gorithm in a top-down clustering based on modality. Unlike
its competitors, it does not require a calculation of cell-to-
cell distance from the expression values directly. In the series
of benchmarking tests, CellBIC outperformed the classical
bottom-up hierarchical clustering approach. This may be
because a simple distance metric the bottom-up clustering
relies cannot deal with multi-dimensional data effectively.
Ensemble approaches such as SIMLR and SC3 were de-
signed to overcome potential biases using a single metric.
Our benchmarking tests demonstrated that CellBIC out-
performed the bottom-up hierarchical clustering approach
as well as ensemble-based approaches. The robust perfor-
mance of CellBIC in clustering four independent scRNA-
seq datasets shows the advantages of using the distribution
of data instead of using cell-to-cell distances.

Modality has been used for a number of studies us-
ing scRNA-seq data. MAST (46), SCDE (47), and scDD
(48) utilized bimodal characteristics of gene expression in
scRNA-seq to identify differentially expressed genes. These
studies indicate that a gene with a bimodal expression pat-
tern across single cells could be a good marker for distin-
guishing a cell state of cell type.

Previously, single cell based approaches identified
CFAP126 (also known as Fltp), CD9, and ST8SIA1 as the
� cell sub-type markers (49,50). We did not identify them in
our analysis. However, CellBIC identified SIX3 and CDH2
as a marker for T2D and aging, respectively. These are
obtained from the top 2 seed gene pairs. Interestingly, the
other four algorithms could not identify these two � cell
subtype markers using their default options (Supplemen-
tary Figures S11–S13). Interestingly, SC3 found a group of
cells depleted with SIX3 and CDH2 expression when it was
forced to identify more than three clusters (Supplementary
Figure S12). Our results exhibit that there are algorithmic
advantages of using the modality for cell clustering.

Even though we used bimodal pattern for our clustering,
a multi-modal pattern will be observed if multiple cell types
are observed in scRNA-seq. Multi-modal pattern can be
identified using mixture of multiple Gaussian. CellBIC can-
not currently use the multi-modal patterns. Clustering using
multi-modal pattern requires large cell number for assign-
ing membership to each mode and it may not be easy each
to reconstruct the hierarchical structure. Instead, CellBIC
identifies clusters by recursively identifying for bimodal pat-
terns.

DATA AVAILABILITY

Input files for the benchmarking datasets and a MATLAB
source code for CellBIC are available at https://github.com/
neocaleb/CellBIC.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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