
Original article

Community gene annotation in practice

Jane E. Loveland*, James G.R. Gilbert, Ed Griffiths and Jennifer L. Harrow*

Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK

*Corresponding author: Tel: +44 1223 496836; Fax: +44 1223 496802; Email: jel@sanger.ac.uk

Correspondence may also be addressed to Jennifer L. Harrow Tel: +44 1223 496836; Fax: +44 1223 496802; Email: jla1@sanger.ac.uk

Submitted 14 October 2011; Revised 15 December 2011; Accepted 13 January 2012

.............................................................................................................................................................................................................................................................................................

Manual annotation of genomic data is extremely valuable to produce an accurate reference gene set but is expensive

compared with automatic methods and so has been limited to model organisms. Annotation tools that have been de-

veloped at the Wellcome Trust Sanger Institute (WTSI, http://www.sanger.ac.uk/.) are being used to fill that gap, as they can

be used remotely and so open up viable community annotation collaborations. We introduce the ‘Blessed’ annotator and

‘Gatekeeper’ approach to Community Annotation using the Otterlace/ZMap genome annotation tool. We also describe

the strategies adopted for annotation consistency, quality control and viewing of the annotation.

Database URL: http://vega.sanger.ac.uk/index.html
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Introduction

High-quality manual annotation of a genome is enor-

mously valuable to aid its interpretation and provide an

accurate gene set which serves as a solid foundation for a

wide array of further studies, as the value of a genome is

only as good as its annotation. Manual annotation

can prove to be costly, as it requires a considerable

infrastructure, such as a large-scale automated analysis

pipeline and specific tools, in order to be viable. The

human and vertebrate analysis and annotation (Havana)

team at the Wellcome Trust Sanger Institute (WTSI) (1)

manually annotate the human, mouse and zebrafish gen-

omes using the Otterlace/ZMap genome annotation tool

(2). The manual annotation from the Havana team is

released every three months and publicly available from

the Vertebrate Genome Annotation Database (VEGA)

database (3).

Several genome annotation models were described by

Lincoln Stein in 2001 (4):

Museum approach: model organisms with sufficient

funding e.g. model organism databases such as fly-

base (5), wormbase (6).

Party: the jamboree, a short intensive annotation work-

shop e.g. Drosophila, mouse cDNAs (7,8)

Cottage industry: decentralized effort among several

groups of experts e.g. fungal and prokaryotic gen-

omes (9) (10)

Factory: automated genome analysis, used by the

genome browsers [Ensembl (11), UCSC (12), NCBI

mapViewer (13)].

Despite it being over 10 years since the publication of the

Stein paper, manual gene structure annotation is still lack-

ing for many organisms and has been hard to adopt as a

community effort because of the limitation of tools avail-

able. Where community annotation has been extremely

successful is the wikigenes project (14). However, this has

been associated with adding descriptive text to attribute

functionality to existing gene structures rather than anno-

tation of new gene structures. The main genome browsers

have now adopted a mix of factory and museum models,

which is employed by NCBI, UCSC, Ensembl and Ensembl

Genomes (15). For human annotation, Ensembl and UCSC

now display a merged geneset, which is a mix of manual

and automated annotation, called the GENCODE geneset

(16). This GENCODE annotation will comprise the first pass

annotation of the whole of the human genome by the end

of 2012. Many genome browsers now also make use of the

Distributed Annotation System (DAS) (17) to aid data shar-

ing. This enables browsers to display the most recent data
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about a region of interest, as DAS makes use of the

common reference sequence as a basis to visualize add-

itional annotation. The issue of lag time between browser

builds is thus eliminated and data can be accessed and dis-

played as soon as it is made available to the community.

Community annotation using
Otterlace/Zmap

The Otterlace manual annotation system (18) comprises a

relational database that stores manual annotation data

and supports the graphical interface, Zmap. The Otterlace

database schema is based on the Ensembl schema. The an-

notation data is stored in a MySQL database (19) and forms

the backend to the Vega database. ZMap is a stand-alone

sequence feature viewer derived from the Acedb FMap dis-

play (18). It is written in the C language for high perform-

ance and has a command interface so it can be integrated

with other annotation software, such as Otterlace. It has a

very flexible data model allowing the incorporation of new

data sources (e.g. short reads) as they become available.

Funding for manual annotation is limited and therefore

we have explored a community annotation approach,

which utilizes our annotation software and analysis

pipelines. We have used the ‘Blessed Annotator’ and

‘Gatekeeper’ approach within two projects.

Blessed annotator

A variation on the Museum approach. This has been

applied to the knockout mouse project (KOMP) (20) and

the North American Conditional Mouse Knockout project

(NorCOMM) (21). This is part of the International Knockout

Mouse Consortium (IKMC) (22) that aims to generate mu-

tants for all of the protein-coding genes in mouse of which

WTSI is a member. Since internally, we had developed tools

for the analysis of mouse knockout genes for the European

Conditional Mouse Mutagenesis Program (EUCOMM) (23),

we developed the ‘Blessed Annotator’ approach for KOMP

and NorCOMM external annotators. In additional to gene

annotation, the mouse projects required the identification

of the critical exon; that is the exon in a gene that can be

removed to induce Nonsense Mediated Decay (NMD) (24)

and so knock-out the expression of that gene. Following

on from this, the knock-out construct itself, missing the

critical exon, was annotated in order to provide informa-

tion for the vector constructs that the laboratory partners

generate (25).

We conducted extensive training for a small group of an-

notators from Washington University for KOMP and one

annotator at the University of Manitoba for NorCOMM,

who were given remote access to our annotation tools so

they could continue their work after the initial training

period. After a period of close mentoring and quality

control (QC), their annotation is considered to be of suffi-

cient quality to be integrated into the mouse gene-build.

Both groups have been using our software for 3 years to

contribute to their projects.

Gatekeeper

We have also used the ‘Gatekeeper’ approach for multiple

species. This is an extension and refinement of the party

plus cottage industry approach. We have held several an-

notation jamborees at WTSI in Hinxton, Xenopus Tropicalis

in 2005 (cDNAs), Cow in 2007(WGS) (26) and Pig in 2008

(WGS). These were week-long intensive jamborees to anno-

tate cDNA and genomic sequence with our in-house anno-

tation tools (Otterlace/ZMap), aimed mainly at the Principal

Investigators (PI’s) of interested groups. The disadvantage

with the jamboree model is that the annotation is a one-off

event and the PI’s are usually unable to be available to

extend and refine the annotation subsequently, so this

is not suitable for a longer-term annotation project. The

development and refinement of our annotation tools,

which is discussed in the following section, led to their

use externally and hence opened up the possibility of ex-

ternal community annotation.

WTSI is involved in the sequencing of the swine genome

as part of the swine genome sequencing consortium (27),

and is finishing and manually annotating the pig X and Y

chromosomes. Our involvement in the annotation in pig

and the interest generated by the pig jamborees led to

an approach by the Immune Response Annotation Group

(IRAG), to annotate �1700 genes in pig that are involved

in immune response. The genes were chosen by searching

for the gene ontology term for immune system process

(GO:0002376), core genes involved in host pathogen inter-

play (28) and gene sets under positive selection in humans

(29) within Ensembl (30).

A group of researchers working on resistance to disease

and immunity in swine was identified to establish shared

and species-specific immune response and to refine the an-

notation of immunity-related genes. Group training was

instigated at WTSI and Iowa State University, with regular

follow up meetings by web conferencing tools, such as

WebEx and Skype. Groups of researchers were assigned

genes of interest and annotated them using Otterlace/

ZMap under the instruction and guidance of professional

annotation staff.

Software and analysis tools

The Otterlace annotation client runs on a local machine and

downloads all of its data from the WTSI web server. The

genomic region being annotated is stored in a persistent

annotation session directory on the user’s computer, which

can be recovered following system reboots. Annotation
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actions require only occasional network access, so the

system is tolerant of interruptions to network connectivity.

The genomic sequence is run through an analysis pipe-

line that consists of homology searches, gene predictions

and de novo sequence analysis. The pipeline analysis in-

cludes: BLASTX against SwissProt and TrEmbl proteins,

BLASTN against ESTs and vertebrate mRNAs, tandem

repeat finder, Augustus (31)and Genscan (32) gene predic-

tions. The results are displayed in the ZMap graphical inter-

face (Figure 1B). ZMap is written in the C programming

language to give good drawing performance and makes

use of threading to load multiple datasets simultaneously

resulting in much faster startup times.

Large-scale data analysis, such as searches of mRNA

libraries against the whole genome, are performed on

WTSI systems, served by Otter CGI scripts, and presented

in ZMap on the client where they can then be used to

construct the annotation. Additional sources of evidence,

such as BAM files on FTP or web servers anywhere in the

world, can be configured on the server and then loaded

into ZMap for display. As many of these data sources can

be very large ZMap allows the annotator to choose which

tracks and how much of each track is loaded.

Access to the Otter system is restricted to authorized

users. External annotators register themselves with the

WTSI SingleSignOn system, using their email address at

their Institute. This takes care of authentication, and

access to each species (authorization) is controlled via a

configuration file which lists their email address and

which is administered by the Otter support staff at WTSI.

Users save annotation back to the master Otter annota-

tion databases. Since it contains a relatively small quantity

of valuable data, this database is carefully and frequently

backed up. Saving edits to genes does not delete old

Figure 1. A selection of different views of Otterlace and ZMap. (A) Assembly sequence chooser showing user’s email displayed on
locked clones. (B) ZMap view of the results of pipeline analysis, namely EST (in purple) and vertebrate mRNA (in brown) hom-
ology matches together with manually annotated transcripts (in red and green). (C) Manual annotation shown as ‘greyed out’,
non-editable transcripts where they extend past the genomic region that has been opened. (D) Internal QC displaying a ‘tool tip’.
(E) Transcript editing window showing a non-consensus splice site that has been highlighted in red, and a selection of attributes
available at the transcript level (green shaded text).
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versions, but writes new versions of genes into the Otter

database. It is therefore possible to recover old versions of

genes if mistakes are made. The author of any changes to

genes and transcripts is recorded, so who has been editing

what is tracked. Unchanged transcripts keep their author,

but changed transcripts are given the new author, and the

author of the parent gene changes to the new author too.

The system tracks changes to genes and transcripts via their

stable identifiers, and these are shown on the VEGA (33)

and Ensembl websites too. These stable identifiers remain

attached to each version of genes and transcripts stored in

the database, and are independent of any changes to their

names.

Locks are used to prevent more than one annotator

making changes to the same region of the genome

(Figure 1A). Existing genes which are not contained entirely

within the region being annotated cannot be edited in the

otterlace session and appear ‘greyed out’ (Figure 1C).

Quality control in Otterlace

The Otterlace client performs a number of quality and

sanity checks as genes and transcripts are built by the an-

notator. The names of transcripts with problems are high-

lighted in red in the session window, and a ‘tool tip’ gives a

brief description of the problem when the annotator

mouses over the transcript name (Figure 1D). The transcript

editing window shows the 2 bp in the intron immediately

adjacent to each exon, and colours them green if they

match a splice consensus, and red if they do not (Figure

1E). Introns are checked to make sure that they are not

too short. When present, the protein translation is checked

for internal stop codons and completeness, and the tran-

script is checked to ensure that it is not subject to NMD (34),

or if it is subject to NMD has been correctly flagged. The

format of the transcript name is checked to ensure that it

conforms to an approved naming convention. Transcripts

must have evidence attached (accessions of the nucleotide

or protein sequences used to build them), and more than

one transcript in the same gene cannot share the same evi-

dence. The locus must have the full name associated with

the gene symbol added in the Full name field. A vocabulary

of attributes, which can be attached to transcripts or loci is

provided to avoid keying errors, and these appear in the

transcript window with green shading (Figure 1E).

This integrated QC within Otterlace proved a valuable

tool for external annotators as it flags errors as they

occur and reduces the need for QC by Havana annotators.

For the Blessed annotator model, due to the extended

training period there is minimal manual QC over a period

of several years for several thousand genes. However, for

the Gatekeeper annotator model, the manual QC is much

more extensive due to the much shorter training period of

the annotators. Thus, this model requires more frequent

input by professional annotators but over a shorter

timescale compared to the KOMP and NorCOMM projects.

The annotators were all trained with reference to the

Havana team annotation guidelines (35) which was very

important to give an assurance of the quality of the

annotation.

The annotation

The annotation for the KOMP and NorCOMM projects took

advantage of the customized software features that were

already available for the EUCOMM project (25) in particular

identifying critical exons and making knock-out constructs.

The number of genes targetted for annotation is 5000 for

KOMP and 500 for NorCOM, and they are complimentary to

the EUCOMM project. This Blessed annotation makes use of

the full complement of biotypes that are available within

Otterlace, and is integrated into the gene set for mouse

that is available from the VEGA website. Gene target for

knockouts are identified from Ensembl predictions. Figure 2

gives and example of the importance of manual annotation

for this project.

The IRAG project has �30 external annotators working

through a list of �1700 genes. For the pig project a con-

densed version of the biotypes was used due to the dearth

of sequence evidence available for pig and the lower qual-

ity of the genome sequence. The reduced numbers of pig

mRNA and SwissProt entries that are available and required

to make a coding locus biotype Known_CDS, resulted in

many more Novel_CDS made from cross-species mRNA evi-

dence. Working with unfinished genomic contigs was a

challenge for both the software and the annotators, as

for high quality finished genomes, such as human, the an-

notation is added to finished BAC sequences. For the pig

autosomes many BACs consist of several, often unordered,

contigs that are not finished to a high quality. Figure 3

shows and example of how manual annotation can assist

in assessing the quality of a genome assembly.

In order to find genuine deletions and duplications of

pig genes relative to the human genome, a high-quality

genome is required. The current pig assembly 9.2, is

thought to be missing �10% of the genome. The process

of gene annotation identifies assembly and sequencing

errors, but as full finishing will only be performed on the

X chromosome it is unlikely that these errors will be

resolved under current plans.

Despite the concerns about the quality of the genome,

with reference to high-quality manual annotation, the

group has already identified at least 12 genes that show

genuine duplication, for example the REG3A gene. Genes

that are thought to be absent in the swine genome will be

re-assessed when the new genome build is available to

ensure that they are not artefactual deletions.

The HUGO Gene Nomenclature Committee (HGNC),

(36,37) naming convention for pig genes orthologous

to human was used whenever possible and the

.............................................................................................................................................................................................................................................................................................
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Havana naming convention for potentially duplicated/simi-

lar genes was followed (see guidelines). The KOMP,

NorCOMM and IRAG projects are ongoing and the

number of de novo genes annotated to date are 1876,

378 and 1276 respectively. The full swine genome is not

available in VEGA so in order to view the manual annota-

tion a DAS track for Havana Pig manual annotations is

available in Ensembl, called ‘havana_pig’ and can be

found from the DAS source http://das.sanger.ac.uk/das/

havana_pig. An example of this can be seen in Figure 4.

Discussion

Compared with other community annotation projects, it is

apparent that the ‘Blessed Annotator’ and ‘Gatekeeper’

models can give a much wider range of biotypes with a

relatively small number of annotators. This comparison

is shown in Table 1. The majority of the projects, including

Methanosarcina acetivorans, cow and Bee, only annotate

Coding genes. The Drosophila project includes non-protein

coding RNAs, as does rice. Drosophila also include pseudo-

genes, but admit that it has very low pseudogene numbers

(17 in the whole genome). The rice project gives a five-level

Coding gene breakdown, but these are based on auto-

mated annotation with a final manual curation step. The

annotation using Otterlace/ZMap includes the full biotypes

that we have developed in the Havana team. Please see the

annotation guidelines for further information (35) These

include:

(1) Coding loci: Known_CDS, Novel_CDS, Putative_CDS,

NMD.

(2) Non-coding genes: retained_intron, lincRNA, anti-

sense, sense_intronic, sense_overlapping, 30_over-

lapping_ncRNA.

(3) Pseudogenes: Processed_pseudogene, transcribed_

processed_pseudogene unprocessed_pseudogene,

Dnhd1

A B

Repeats

Knock out construct

Critical exon

Ensembl 64 
prediction

Ensembl 64 
prediction

Figure 2. An example of manual annotation in mouse to identify a critical exon. (A) Dnhd1 is a KOMP target gene that is
automatically chosen to create a knockout from the Ensembl prediction. A Zmap view of the Dnhd1 gene manually annotated in
mouse. The Ensembl 64 prediction is partial, probably due to the highly repetitive nature of the genomic region. (B) A Zmap
view of the position of the critical exon identified after completion fo the manual annotation and the associate knockout
construct. If the Ensembl prediction had been used as a model to create the knockout a rage proportion of the gene would
have been missed. This would have resulted in an unsuccessful knockout construct.
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Vertebrate 
mRNA 
homology 
matches

Fragmented 
manual 
Annotation
of
CRISPLD2
(in red and
green).

Grey vertical 
bars represent 
unorderedunordered
contigs.

Figure 4. Unordered contigs on pig chromosome 6 viewed in Zmap. The annotation of the CRISPLD2 gene shows clearly how the
annotation highlights the fragmented nature of the assembly and aids in identifying the correct contig ordering. The vertebrate
mRNA homology matches show the mismatches in the contiguity of the sequence. If sequence is contiguous the connecting lines
between the matches are green, but where there is missing or incorrectly ordered sequence the connecting lines are orange.

A Ensembl prediction 
track

Manual annotations (in green and red),
including several splice variants.

B

Manual
Annotation
(DAS)

DNA and 
Protein

Ensembl prediction 
track (in red)

evidence

Figure 3. An example of manually annotated genes viewed in ZMap and also displayed as a DAS track in Ensembl. (A) ZMap
view of copies of the REG3G gene in pig. The automated Ensembl track predicts one copy of the gene, whilst the manual
annotation can resolve two copies in this section of the genome. (B) Ensembl view of the same region displaying the manual
annotation DAS track.
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transcribed_unprocessed_pseudogene, unitary_pseu-

dogene, transcribed_unitary_pseudogene, poly-

morphic_pseudogene.

We also annotate polyA signal and sites to ensure that

we have annotated the full-length gene. These detailed

biotypes give a much more informative picture of the

genome and increases the value of the manual annotation

when compared to other annotation methods.

The goal of both of our approaches to community an-

notation is to manually annotate all of the genes required

by the projects, with a much depth of detail as possible.

Due to the use of the SingleSignOn system for access to

the annotation tools, we can track authorship and as

mutiple users are prevented from annotating the same

region of a genome at the same time there is no duplica-

tion of annotation. We routinely transfer annotation over

to new genome builds when they are available. For the

IRAG project, the annotation will be transferred over to

build 10.2 and the annotation reviewed and checked for

additional supporting evidence. This is particularly import-

ant where genes are partial or thought to be duplicated

or deleted with reference to the human genome due to

the unfinished nature of the pig genome. This may cause

transfer issues where contigs have been re-ordered with

relation to the previous genome build and in cases where

new sequence has been incorporated into the new build.

The use of annotation guidelines is essential to ensure

consistency throughout the annotation of all annotation

groups, although discussion is valuable when appropriate

to aid in their interpretation. The Gatekeeper annotation

approach is particularly challenging, as consistent and

timely QC is required to address the diverse levels of

experience and expertise throughout the group. This

method is being successfully adopted by the Bovine

Genome Database, which is using the annotation

tool Apollo to allow collaborators to annotate new gene

structures (38) and a professional curator to validate

the data.

It is essential to ensure consistency in gene naming and

the IRAG project has provided a good start to establishing

this for the pig and thus has highlighted the need for a

Swine Genome Nomenclature Committee. This has also

demonstrated the added value of manual annotation

compared to automated annotation, to give accurate

gene structures and gene locations and aid the production

of a reference gene set. A possible next step in this com-

munity annotation effort could be the annotation of gene

families across the genomes of multiple species by utilising

the experience of experts in the field. We are also looking

at using the information from RNA-seq to confirm and

expand alternative transcripts is many different tissue

types.T
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