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Abstract

Introduction: Studies in robotic therapy which applied the performance enhancement approach report improvements

in motor performance during training, though these improvements do not always transfer to motor learning.

Objectives: We postulate that there exists an assistance threshold for which performance saturates. Above this

threshold, the robot’s input outweighs the patient’s input and likely learning is not fostered. This study investigated

the relationship between assistance and performance changes in stroke patients to find the assistance threshold for

performance saturation.

Methods: Twelve subacute and chronic stroke patients engaged in five sessions (over twoweeks, each 60min) in which

they performed a reaching task with the rehabilitation robot H-Man in presence of varying levels of haptic assistance

(50N/m to 290N/m, randomized order). In two additional sessions, a therapist manually tuned the assistance to

promote maximal motor learning.

Results: Higher levels of assistance resulted in smoother and faster performance that saturated at assistance levels with

K� 110N/m. Also, the therapist selected assistance levels of K¼ 175N/m or below.

Conclusion: The findings of the study indicate that low levels of assistance (K� 175N/m) can sufficiently induce a

significant change in performance.

Keywords

Assistive technology, decentralized care, neurorehabilitation, robotic rehabilitation, robotic assistance, stroke

rehabilitation

Received 21 March 2018; accepted 29 August 2019

1School of Mechanical and Aerospace Engineering, Nanyang Technological

University, Singapore
2NUS Graduate School for Integrative Sciences and Engineering, National

University of Singapore, Singapore
3Interdisciplinary Graduate School, Nanyang Technological University,

Singapore
4Health Equity Institute, San Francisco State University, San Francisco,

CA, USA
5Centre for Advanced Rehabilitation Therapeutics, TTSH Rehabilitation

Centre, Department of Rehabilitation Medicine, Tan Tock Seng Hospital,

Singapore

6School of Physical and Mathematical Sciences, Nanyang Technological

University, Singapore
7Department of Mechanical Engineering, National University of

Singapore, Singapore

*These authors contributed equally to this study.

Corresponding author:

Domenico Campolo, School of Mechanical and Aerospace Engineering,

Nanyang Technological University, Singapore.

Email: d.campolo@ntu.edu.sg

Journal of Rehabilitation and Assistive

Technologies Engineering

Volume 6: 1–9

! The Author(s) 2019

Article reuse guidelines:

sagepub.com/journals-permissions

DOI: 10.1177/2055668319881583

journals.sagepub.com/home/jrt

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-

NonCommercial 4.0 License (http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and

distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.

sagepub.com/en-us/nam/open-access-at-sage).

https://orcid.org/0000-0002-1160-1501
https://orcid.org/0000-0001-6930-0413
mailto:d.campolo@ntu.edu.sg
http://uk.sagepub.com/en-gb/journals-permissions
http://dx.doi.org/10.1177/2055668319881583
journals.sagepub.com/home/jrt


Introduction

The world’s population is aging, with the number of
people aged 65 years or older expected to reach 1.6 bil-
lion (17% of the global total) by 2050.1 The risk of
stroke increases with age,2 with incidences doubling
each decade after the age of 55.3,4 Healthy older
adults and those affected by stroke often suffer from
deficits in upper extremity sensorimotor dysfunction
due to changes in both the central and peripheral ner-
vous systems.5 Results from studies exploring the time
course of recovery report that approximately up to
70% of the patients have residual impairment in the
upper extremity six months post stroke.6–9 The preva-
lence of motor dysfunction in elderly and stroke pop-
ulations has motivated research groups to develop
technology-assisted systems that can decrease the
workload of clinicians, while also facilitating motor
re-learning. In the last few decades, multiple robotic
solutions have been developed that promote sensori-
motor learning in populations with sensorimotor
impairments such as stroke.10–12 Overall, results of clin-
ical studies have demonstrated that robot-assisted
training is at least as effective as conventional physical
therapy.13–17

In addition to considerations regarding the mechan-
ical design of the robotic systems, there has been ample
interest in elucidating robotic interactive control algo-
rithms that can positively influence motor learning (i.e.
the processes associated with practice or experience
that leads to long-term changes in the ability to per-
form a skill18). In a very common training scheme
(known as the ‘performance enhancement approach’),
the movements of a patient are haptically guided
or constrained in some fashion,19–21 with the goal of
enhancing the patient’s motor performance (i.e. an
observable and measurable change in motor skill
during training22) during the task. The assistance pro-
vided by the rehabilitation robot enables patients to
perform otherwise inexecutable movements, which is
said to stimulate brain plasticity and sensorimotor
learning processes.23,24 Prior research has demonstrat-
ed that robotic assistance improves task performance
during training,20,21 but these effects are often short-
lived and do not translate to long-term learning.21 For
example, Liu et al.21 conducted a study in which
healthy subjects were first guided in a tracing task
(i.e. training phase) in such a way that the subjects
were not required to actively support the movement.
Then, when the subjects were asked to replicate the
movement without any assistance (i.e. recall phase)
from the robot immediately afterwards, the subjects
made large tracing errors. This finding is congruent
with the ‘guidance hypothesis’,25 which argues that
when guidance is provided very frequently during

new skill acquisition, the user relies on said guidance
to perform the task and/or learns an altered task, and
when the feedback is absent, there is a noticeable
decline in performance quality.26,27 Thus, for the case
of robotic rehabilitation, haptic guidance may result in
suboptimal motor learning if too much support or
assistance is provided during training.21,26 In addition,
too much assistance may motivate slacking in the
user28,29 since the user can rely on the robot completing
the task, but effort is considered crucial for motor
learning.30–32

Taken together, there is strong evidence that perfor-
mance and learning are not directly related33: a profi-
cient motor performance during training (in presence
of assistance) does not necessarily result in a proficient
motor performance when assistance is removed (i.e.
learning). We agree that robotic assistance influences
motor performance (metrics sensitive to the motor con-
dition, as e.g. smoothness), but argue that there exists
an assistance threshold for performance saturation (for
a given robotic device) for which assistance levels
higher than such a threshold do not result in further
performance improvements. Likely, in these cases, the
robot does most of the task and this, in consequence,
results in a slacking response by the user. Concluding
from the precedent on the relationship between motor
performance and motor learning, assistance above that
threshold does, therefore, not provoke any further
learning gain. To the best of our knowledge, this
threshold has not been systematically determined yet
for stroke patients with upper limb dysfunction.

Knowledge about the maximal assistance require-
ments would directly translate to the power require-
ments of a rehabilitation device. Early upper limb
robotic systems were designed to fully support a
patient’s movements (e.g. MIT-Manus,34 ARMin,35

HapticMaster36), which resulted in complex, high-
powered setups. The high cost and safety issues of
these complex rehabilitation robotics restrict their use
to centralized care facilities (e.g. hospitals), and thus
limit their application to decentralized environments
(i.e. community centers or patient’s home).37

Fortunately, there is growing interest in designing
lower powered neurorehabilitation robots that can be
used in decentralized locations38,39 (e.g. hCAAR,38

H-Man40), which in contrast to early systems are
likely to be more accessible for patients due to their
reduced costs and inherent safety. Knowing the maxi-
mal range of assistance required for performance satu-
ration, and, hence, the maximal required power supply
is a crucial step for the future development of devices
aiming to provide therapy in decentralized settings
while avoiding unnecessary power disposability.

As such, the aim of the present study was to find this
assistance threshold by investigating the relationship
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between five different robotic assistance levels and

motor performance in presence of assistance in 12 sub-

acute and chronic stroke patients. To achieve this aim,

we utilized a two degrees of freedom robotic manipu-

lator (hereafter referred to as ‘H-Man’) designed for

upper limb assessment and rehabilitation training.40

Stroke patients performed an upper extremity reaching

task in five sessions (each 60min) over a period of two

weeks, under varying levels of robotic assistance (i.e.

50, 110, 170, 230, and 290N/m). Differences in stan-

dard kinematic performance metrics (i.e. spectral arc

length (SAL) and normalized total time (Tnorm)) were

examined. A secondary aim of this study was to gain an

understanding of optimal robotic assistance for motor

learning from the rehabilitation therapist’ viewpoint.

Thus, after the two-week rehabilitation program,

patients completed another two sessions with the H-

Man robot (each 60min), during which the rehabilita-

tion therapist tuned the assistance levels to induce a

maximum learning effect based on motor behavioral

characteristics of the participant. These results are the

first step in elucidating an optimal assistance threshold

for the H-Man, with the aim to develop guidelines for

future developments of rehabilitative devices employed

in decentralized care settings.

Methods

Participants

Twelve subacute and chronic stroke patients (age: 55.8�
10.0 years, 7 males, time since stroke: 11.3�
6.5months) participated in the present study (Table 1).

Study inclusion criteria were first-ever clinical stroke
(ischaemic or haemorrhagic) confirmed by brain imag-
ing, post-stroke duration of 3 to 24months, with shoul-
der abduction and elbow flexion greater or equal to 3/5
on the Medical Research Council scale for muscle
strength, and a Fugl–Meyer Upper Extremity Motor
Assessment (FMA)41 score of 20–50 or predominant
motor ataxia or incoordination (FMA> 50).
Participants were excluded if they had any non-stroke
related arm impairment, moderate arm spasticity as
indicated by the Modified Ashworth Scale42

(MAS> 2), moderate shoulder pain (VAS> 5/10),
visual impairment (hemianopia), visual-spatial neglect,
and/or cognitive impairments (Mini Mental State
Exam (MMSE)43< 26/30).

Prior to subject recruitment, ethical approval was
obtained from the Domain Specific Institutional
Review Board (IRB) of the National Healthcare
Group (NHG), Singapore. All subjects gave written
informed consent prior to screening procedures and
recruitment (clinical-trial ID: NCT02188628 – clinical-
trials.gov). Also, written informed consent was provid-
ed by all patients for patient information to be
published. The study was conducted in accordance
with the declaration of Helsinki.

Apparatus and protocol

The experimental apparatus used for the study is the
rehabilitation robot H-Man40 (Figure 1): a compact
planar, upper extremity robot designed for the use in
rehabilitation settings and for human motor control
experiments in stroke and neurologically healthy
participants.44,45 The participant was seated in a

Table 1. Stroke patient characteristics.

Age (years) Gender

Time since

stroke (months) Stroke type Affected arm FMA (0–66)

FMA �40

66 M 6 Ischaemic R 64a

54 M 22 Ischaemic R 55a

75 M 4 Ischaemic L 48

57 F 7 Ischaemic R 46

45 M 13 Haemorrhagic L 45

52 F 5 Haemorrhagic L 43

56 F 11 Haemorrhagic R 43

57.9� 9.8 4M, 3F 9.7� 6.3 4I, 3H 3L, 4R 49.1� 7.7

FMA< 40

52 M 20 Haemorrhagic R 30

51 F 7 Haemorrhagic R 29

38 F 16 Ischaemic R 29

57 M 6 Ischaemic R 28

67 M 19 Ischaemic L 20

53.0� 10.5 3M, 2F 13.6� 6.7 2H, 3I 1L, 4R 27.2� 4.1

aIndicates pre-dominant motor ataxia.

Note. Italics represent the averages of the above lines.
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height-adjustable chair in front of H-Man that was
placed on a fixed table, such that the center of the ster-
num was aligned with the handle of the H-Man robot
and the elbow bent at 90�. A display was used to pro-
vide visual feedback and the representation of the task.
The visual stimuli consisted of the start and target posi-
tions, the cursor position and task instructions. The
participant’s trunk was physically restrained to limit
trunk movements during the task. At the start of
each trial, a target was visually displayed on the com-
puter monitor in one of the contralateral, ipsilateral
and sagittal plane directions (angles of �45�, 0�, and
þ45� from the vertical axis, respectively) at a distance
of 16 cm to the initial position. The participant grasped
the robot’s handle (if needed a wrist strap was provid-
ed) and moved the cursor from the start position to the
target (point-to-point reaching task).

During the point-to-point reaching task, assistance
was provided via a target attraction impedance control-
ler46,47 by the equation:

F ¼ Kðx� xtargetÞ þ B _x

where K is the stiffness, B the damping, x the present
position (user-controlled cursor) and xtarget the final
position. The assistance was rendered as a pulling
force between the user-controlled cursor position and
the target position (virtual spring-damper system). The
protocol was carried out in five training sessions, each
of 60min, over a period of two weeks with supervision
from one occupational therapist and engineers. In each
of the five sessions, the point-to-point reaching task
was performed with a different, but fixed, level of assis-
tance, i.e. different levels of stiffness K (50, 110, 170,

230, and 290N/m). The order of the assistance levels

was randomized for each participant.
After the two-week program, patients performed

two additional sessions (each 60min), during which

one rehabilitation therapist (the same therapist for all

subjects who had many years of experience of occupa-

tional and robotic therapy with stroke patients) was

asked to tune the assistance levels to induce a maxi-

mum learning effect for the respective participant.

Starting from a medium level of assistance for each

patient, the therapist could adjust (increasing or

decreasing) the assistance level at any time while

observing the patient’s movements, if considered

useful for learning.

Data and statistical analysis

Participants were divided into two impairment groups

based on the FMA score before the commencement of

the intervention17: Five patients were assigned to the

moderately to highly impaired (FMA <40) group and

seven to the mildly impaired group (FMA �40).
For the first part of the study, in which assistance

levels were systematically varied, the raw kinematic

data (position and velocity) were filtered using a low

pass filter (Butterworth: 6th order, cut-off frequency

Fc: 20Hz, sampling rate Fs: 1000Hz). The filtered

data were used in offline data processing to calculate

the task performance indices adopted from the litera-

ture.48 For each level of assistance, the data across the

three directions were considered as tasks on a planar

workspace and hence were combined in the analysis.

Task performance in presence of the different levels of

assistance was evaluated based on metrics that are con-

sidered sensitive to the motor condition and thus are

of importance for movement evaluation.49,50 As such,

a smoothness metric spectral arc length (SAL)51 and a

temporal performance metric normalized total time

(Tnorm) were chosen. The smoothness metric SAL is a

dimensionless measure of the length of the frequency

spectrum curve of a speed profile over the bandwidth

appropriate for the action. Movement smoothness is

considered as an important indicator for motor

re-learning in stroke patients, allowing for the quanti-

fication of sub-movements and thus of movement effi-

ciency. There is ample evidence that reaching

movements get smoother with motor learning52 and

post-stroke motor recovery.50 Tnorm is a measure of

the temporal performance of each trial defined as the

total time needed for the completion of a trial divided

by the maximum distance covered in the respective

trial. Temporal performance serves as an indicator

for paresis53 and somatosensory loss,54 and is expected

to improve with recovery.49

Figure 1. A participant using the current version of H-Man. The
visual interface illustrates the reaching task by providing visual
cues for the start position (‘Start’), the current position
(‘Cursor’) and the target position (‘Target’).
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Differences in task performance metrics due to the

different assistance levels and impairment groups were

evaluated using a two-way analysis of variance

(ANOVA) with group as the between-subject factor

and assistance level as the within-subject factor.
Significant main effects and interactions were com-

pared using Tukey’s honest significant difference test

(HSD).
For the analysis of the therapist’s tuning of the

robotic assistance, we analyzed the final assistance

level that the therapist considered optimal for maximal

learning for the respective patient.

Results

Task performance

Spectral arc length (SAL) values as a function of assis-

tance level and group are shown in Figure 2. Smoother

movements were observed for higher levels of assis-

tance, F(4,50)¼ 8.60, p< 0.001. The change in smooth-

ness appeared to reach a plateau with an increase in the

level of assistance. This was verified by Tukey’s HSD

test that indicated that movements were smoother for

the lowest assistance level (SAL(level 1)¼�2.72

� 0.41) compared to all other assistance levels (SAL

(level 2)¼�2.45� 0.30, pLevel1-2< 0.05; SAL(level

3)¼�2.31� 0.18, pLevel1-3< 0.001; SAL(level 4)¼
�2.31� 0.14, pLevel1-4< 0.001; SAL(level 5)¼�2.22

� 0.12, pLevel1-5< 0.001). Differences in SAL between

all other levels did not reach significance (all

p’s> 0.05). In terms of inter-group performance varia-

tions, movements performed by the mildly impaired

group were smoother than those performed by the

highly impaired group (SAL(FMA� 40)¼�2.34
� 0.26 and SAL(FMA< 40)¼�2.48� 0.35),
F(1,50)¼ 4.88, p< 0.05. The interaction between the
level of assistance and impairment group was found
non-significant, F(4,50)¼ 1.20, p¼ 0.322.

Normalized total time (Tnorm) values dependent on
assistance level and group are shown in Figure 3. In
general, movements were completed in a shorter time
period as assistance level increased, F(4,50)¼ 6.46,
p< 0.001. As for the smoothness performance,
post hoc analysis showed that performance in terms
of Tnorm was significantly worse for the lowest
assistance level (Tnorm(level 1)¼ 14.32� 7.64 s/m)
than for all other levels (Tnorm(level 2)¼ 10.76�
4.26 s/m, pLevel1-2< 0.05; Tnorm(level 3)¼ 9.93
� 4.04 s/m, pLevel1-3< 0.05; Tnorm(level 4)¼ 9.51
� 3.27 s/m, pLevel1-4< 0.05; Tnorm(level 5)¼ 8.06�
2.65 s/m, pLevel1-5< 0.001). Differences in Tnorm

between all other levels were not found to be significant
(all p’s> 0.05). There was also a significant main effect
of impairment group on Tnorm (F(1,50)¼ 42.12,
p< 0.001), such that the mildly impaired group exhib-
ited shorter total movement times than the moderately
to highly impaired group (Tnorm(FMA� 40)¼ 8.07
� 3.10 s/m and Tnorm(FMA< 40)¼ 13.95� 5.20 s/m).
The interaction between the level of assistance and
impairment group was non-significant, F(4,50)¼ 2.39,
p> 0.05.

Therapist’s tuning of robotic assistance

For most patients (91.7%, n¼ 11), the therapist tuned
the final assistance levels to a level lower than or equal

Figure 2. Smoothness performance (mean and standard devi-
ation) in terms of spectral arc length (SAL) in presence of dif-
ferent levels of assistance of both impairment groups.
Smoothness performance saturated from level 2 of assistance
onwards (*indicates significance: p< 0.05).

Figure 3. Performance (mean and standard deviation) in terms
of total time normalized (Tnorm) in presence of different assis-
tance levels for both impairment groups. Tnorm in the lowest level
of assistance was significantly higher than in all other levels (levels
2–5), hence assistance levels higher than level 2 did not provoke
further Tnorm performance changes (*indicates
significance: p< 0.05).

Kager et al. 5



to 175N/m. The only case in which the therapist
adjusted the assistance to a level higher than 175N/m
was for the patient with the lowest FMA score
(FMA¼ 20).

Discussion

This study investigated the relationship between robot-
ic assistance and performance in 12 subacute and
chronic stroke patients to find an assistance threshold
after which no further performance gain can be
achieved. Further, the study yielded an understanding
of robotic assistance for motor learning from the reha-
bilitation therapist’s viewpoint.

Overall, we observed a significant difference between
groups for both performance metrics, whereby the
mildly impaired stroke patients exhibited smoother
movements and shorter movement times than the mod-
erately to highly impaired patients. In addition, there
was a trend toward smoother movements and shorter
movement times as the level of robotic assistance
increased. However, statistical analysis indicated that
motor performance reached saturation at K ¼110N/m,
after which higher levels of robotic assistance did not
yield further improvements in either movement
smoothness or movement times. The observation of
this performance saturation indicates that when
higher assistance levels are utilized in a robotic rehabil-
itation protocol for post-stroke upper limb dysfunc-
tion, the robot’s input outweighs that of the patient
(i.e. the robot is taking over most of the work required
to complete the task). This, arguably, results in a reduc-
tion of overall effort by the user who allows the robotic
device to move the upper limb to the target with min-
imal participation. Consequently, patients may modu-
late their force production based on the applied
assistive force during task performance (i.e. slack-
ing),55,56 which ultimately reduces the possibility that
robotic rehabilitation training would provoke somato-
sensory stimulation and initiate brain plasticity23,24 and
hence learning. This explanation is consistent with the
work of Jarrassé et al.57 in which the interaction
between the patient and the rehabilitation robot is
described akin to a teacher–student relationship. In
this framework, the main purpose of the teacher (i.e.
robot) is to assist the student (i.e. patient) in building
his/her own capacity, rather than the robot exerting
unidirectional control over the task performance
(master-slave interaction). An assistance level above
the threshold would arguably induce a master–slave
interaction instead of the desired teacher–student
relationship.

Moreover, results from the two manual tuning ses-
sions indicated that the rehabilitation therapist selected
values lower (or equal to) 175N/m as the final

assistance level for all but the most impaired stroke
patient (i.e. FMA¼ 20). Although this value is higher
than the assistance threshold obtained from the kine-
matic data, it is apparent from the viewpoint of a ther-
apist with extensive robotic rehabilitation experience,
that levels of assistance above 175N/m are not required
to induce optimal motor learning for a post- stroke
population with FMA higher than 20. We do, however,
acknowledge that the manual tuning data are prelimi-
nary, especially in light of the fact that we received
input from a single rehabilitation clinician, and that
we conducted only two manual tuning sessions.
Nonetheless, clinicians are a critical partner in the
delivery of decentralized rehabilitation, and our
future work will investigate inter-therapist variations
in manual tuning as a function of clinical experience
and patient upper limb dysfunction.

Both parts of the study reveal that high assistance is
not required for motor learning. Our study aimed to
investigate a threshold for the performance enhance-
ment approach. Combining the findings of both parts
of the study, a stiffness threshold of 175N/m seems
appealing. As with any study, the present experiment
comes with some limitations: First, while the results of
our study suggest that high levels of robotic assistance
do not improve motor performance, there is the possi-
bility that the stiffness threshold may be different for
robotic devices with dissimilar mechanical structures.

Moreover, the assistance levels used in the present
study were based on the available power range of the
H-Man device, and thus we cannot rule out the possi-
bility that stiffness values greater than 270N/m would
not promote further motor performance. Second, the
present study focused on motor performance and,
therefore, we cannot directly translate our findings to
motor learning since performance and learning are not
necessarily related. Based on the current knowledge of
motor learning, we assume that assistance levels higher
than 175N/m will not further foster learning. This
hypothesis, however, needs to be confirmed in future
work. Next, our findings cannot be generalized to the
whole population of stroke patients given that the
sample size was relatively small (n¼ 12) and patients
with severe levels of upper limb weakness (i.e.
FMA< 20) and comorbid difficulties were not eligible
to participate. Given the heterogeneous nature of
stroke characteristics and post-stroke upper limb
impairments, future research will focus on a larger
number of stroke patients across a broader neurologi-
cal profile (e.g. FMA< 20) in order to fully evaluate
the relationship between motor performance and
robotic assistance.

Despite these limitations, the findings of our study
have great implications for the design of future reha-
bilitation robotic systems aiming for decentralized care.
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Lower powered devices may suffice in providing the
required assistance for optimal motor learning.
Although a quantifiable power safety limit for devices
employed in decentralized settings cannot be provided
yet, it is indisputable that the understanding that high
assistance levels are unnecessary makes decentralized
care more realizable.

Conclusion

This paper investigated motor performance variations
(smoothness and movement time) in presence of differ-
ent levels of haptic assistance with the upper limb reha-
bilitation robot H-Man. Results show a performance
saturation for high levels of assistance (K� 110N/m)
as those assistance levels did not yield further perfor-
mance improvements. We postulate that the perfor-
mance saturation (level 2–5 [K¼ 110–290N/m]) is a
result of the robot taking over most of the work
required to complete the task. Likely, this promotes
slacking in the user and consequently, learning is not
further promoted. The manual tuning behavior of the
therapist points in the same direction since the final
assistance level was set to maximal K¼ 175N/m for
all but the most impaired patient. These findings are
of great importance for the development of robots that
target decentralized care: Lower assistance levels
directly translate to the power requirements of a device.

Lower powered devices indisputably make decen-
tralized care more realizable.
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