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Extracellular vesicles (EVs) are released by most cell types as part of an intracellular
communication system in crucial processes such as inflammation, cell proliferation, and
immune response. However, EVs have also been implicated in the pathogenesis of several
diseases, such as cancer and numerous infectious diseases. An important feature of EVs
is their ability to deliver a wide range of molecules to nearby targets or over long distances,
which allows the mediation of different biological functions. This delivery mechanism can
be utilized for the development of therapeutic strategies, such as vaccination. Here, we
have highlighted several studies from a historical perspective, with respect to current
investigations on EV-based vaccines. For example, vaccines based on exosomes derived
from dendritic cells proved to be simpler in terms of management and cost-effectiveness
than dendritic cell vaccines. Recent evidence suggests that EVs derived from cancer cells
can be leveraged for therapeutics to induce strong anti-tumor immune responses.
Moreover, EV-based vaccines have shown exciting and promising results against
different types of infectious diseases. We have also summarized the results obtained
from completed clinical trials conducted on the usage of exosome-based vaccines in the
treatment of cancer, and more recently, coronavirus disease.

Keywords: extracellular vesicles (EV), immunization, infectious diseases, cancer, exosomes
EXOSOME FUNCTIONS: BIOGENESIS AND CARGO

Extracellular vesicles (EVs) are a group of biological, nano-sized, bilayered membrane vesicles
produced by almost all cells. EVs can be found naturally in body fluids, such as blood, saliva, and
breast milk (1–4). Classically, EVs are classified by size, molecular cargo, and the biogenesis pathway
(5). However, there was a debate in literature regarding the definition of EVs due to inconsistencies
in EV purification and characterization (6, 7). Fortunately, significant progress has been achieved
regarding the establishment of criteria for a standardized nomenclature of EVs, and minimal
requirements are set for experimental controls during EV separation, concentration and,
characterization endorsed by the International Society of Extracellular Vesicles (ISEV) (8). In
terms of biogenesis, EVs can be broadly divided into two dominant classes, namely exosomes and
microvesicles (MVs). Exosomes are 30-150 nm EVs that initially demonstrate formation as
intraluminal vesicles inside multivesicular bodies (MVBs) and are released after fusion of MVBs
org July 2021 | Volume 12 | Article 7115651
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with the plasma membrane (3, 6, 9, 10). Microvesicles are formed
by the outward budding of the plasma membrane, a process
regulated by the translocation of phospholipids (9, 11). However,
according to ISEV, there is no consensus on specific markers of
each EV subtype, therefore assigning an EV to a specific
biogenesis remains a challenging process (8).

In the extracellular space, exosomes can undergo fusion with
the plasma membrane of recipient cells and deliver their
packaged cargo into the cytosol. Exosomes are highly
heterogeneous vehicles that can transport a wide variety of
molecules, including lipids, proteins, and nucleic acids, such as
mRNAs and miRNAs. The transport of these molecules can
occur within the exosome itself or via attachment with the
surface of recipient molecules, as evidenced in the case of
major histocompatibility complex (MHC) molecules (12).
Healthy cells release exosomes under normal physiological
conditions that play a role in several cellular processes, for
example, intercellular communication by facilitating the
carriage and delivery of multiple molecules that can modulate
crucial processes, such as growth, differentiation, and stress
response (13, 14). Thus, considerable research attention is
focused on the biology of EVs. However, according to Edgar
(15), emerging interest in exosome biology is attributable to the
association of exosomes with disease development. Indeed,
infectious, inflammatory, and neurodegenerative diseases, as
well as cancer, exhibit specific biomarkers that are carried by
their respective exosomes (16–18).
HISTORY OF EXOSOME-BASED
VACCINES

EV release was initially thought to be a random process; however,
in 1983, two independent studies using different animal models
discovered that reticulocytes released transferrin receptors inside
EVs (19, 20). Barz et al. demonstrated that different lymphoma
variants could produce EVs with distinct profiles of proteins and
lipids that could be associated with tumor immune escape and
cancer invasion (21). A year later, Schirrmacher and Barz observed
that tumor-derived exosomes (TDEs) displayed antigens similar to
their corresponding tumor cells (22). The same study was the first
to show the anti-tumor effects of exosomes on cytotoxic
lymphocytes (CTLs). In 1987, Johnstone et al. coined the term
exosomes as a reference for EVs carrying transferrin receptors
(23). Raposo et al. demonstrated the role of exosomes in antigen
presentation by revealing MHC class II molecules in exosomes
derived from B lymphocytes, which induced specific MHC class II
T cell responses (24). These findings reveal that exosomes can be
exploited as biomarkers and can be used in immunotherapeutic
strategies for vaccine development.

The concept of a cancer vaccine is not new; it dates back to the
early 70s. However, the feasibility of a vaccine against cancer is
challenged by several issues, such as transplant rejection (25, 26).
Tumor peptides have generated promising results and have
shown potential applicability as a cancer therapeutic agent;
however, peptide-based vaccines exhibit poor immunogenicity
Frontiers in Immunology | www.frontiersin.org 2
(27–29). In 1998, Zitvogel et al. (30) published a study in which
they found that DEXs (exosomes derived from dendritic cells)
express functional MHC class I and II molecules. They observed
that tumor peptide-pulsed dendritic cells (DCs) released DEXs
presenting tumor antigens on the membrane, which induced
in vivo CTL priming and consequent tumor growth suppression.
This study was the first to support the development of a novel
cell-free vaccine using exosomes, representing a milestone in
exosome-based vaccine research.

In the new millennium, Wolfers and colleagues have reported
that TDEs represent a source of T-cell cross-priming which is
realized via transfer of antigens to DCs, and this induces CTL
anti-tumor responses in vitro and in vivo (31). During in vitro
stimulations, TDEs were more effective in eliciting protection
against autologous tumors than other cancer immunization
strategies, such as irradiated tumor cells, apoptotic bodies, or
tumor lysates (31, 32). In 2004, the Zitvogel group published two
articles that comprehensively described the transfer of MHC
class I molecules from DEXs to naïve DCs for efficient CTL
activation, and the role of toll-like receptors in combination with
DEXs in triggering an MHC-restricted response in CD8+ T cells
using in vitro stimulations and HLA-A2 transgenic mice (33, 34).
In the same year, exosomes released by plasmacytoma cells were
successfully used as a cancer vaccine; in this case, plasmacytoma
exosomes conferred protection to the animals through reduction
in tumor growth by 80% after a single vaccination (35). The use
of exosome-based vaccines has since spread to different research
areas outside cancer therapy. Exosomes derived from DCs
previously co-cultivated with Toxoplasma gondii generated a
strong and specific immune response to induced acute and
chronic toxoplasmosis (36). Further investigation using
Toxoplasma gondii has been detailed in section 5. Exosomes
derived from an antigenic extract of Salmonella enteritidis strain
were isolated and cultivated with serum samples obtained from
naturally infected and healthy chickens (37). After completion of
the exosome treatment, surface structures from Salmonella, such
as flagellin and porins, were found to be immunogenic in serum
samples collected from infected chickens but did not exhibit
immunogenicity in healthy ones. These results represented a
concrete evidence highlighting that Salmonella-derived
exosomes could be used in the preparation of vaccines (37).
Recently, a vaccine was designed by using a plasmid to generate
Salmonella exosomes containing highly immunogenic
membrane antigens and it showed satisfactory immune
responses against several Salmonella strains (38).

From this point onward, exosome research increased due to
the development of more sophisticated techniques, such as
exosome engineering for drug delivery systems and artificial
antigen presentation models (Figure 1). In the mid-2000s, the
first results from clinical trials on exosome-based vaccines were
reported (39–43). Clinical trials using exosome-based vaccines
have been detailed in section 6. Currently, several exosome-based
vaccine candidates are under development for diseases such as
cancer, AIDS, hepatitis B, and other infectious diseases (44–48).
The vaccines have been discussed in further detail in the
subsequent sections.
July 2021 | Volume 12 | Article 711565
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EXOSOME-BASED VACCINES AS A
CANCER THERAPEUTIC STRATEGY

Tumor cells can evade immune surveillance through several
regulatory mechanisms, such as reduced immune recognition
or the establishment of an immunosuppressive tumor
microenvironment (49). In this scenario, cancer cells can
undergo proliferation and facilitate the recruitment of immune
and stromal cells to favor tumor progression, which can lead to
metastasis (50). Cancer immunotherapy has emerged as a clinical
strategy for controlling the immune system and for reactivating
anti-tumor immune responses (51). Immunotherapy approaches
include targeting of immune tolerance via co-inhibitory
checkpoints, adoptive T-cell therapy, and cancer vaccination (52).

Cancer vaccines differ from traditionally engineered vaccine
for infectious diseases in the intervention approach. Traditional
vaccines are preventive, on the other hand, cancer vaccines are
focused on the therapeutic aspect. However, there are
prophylactic interventions to reduce cancer incidence,
morbidity, and mortality for virus-related cancers, such as
hepatitis B (HBV) and human papilloma virus (HPV) (53).
Therapeutic cancer vaccines can target a wide variety of
antigens expressed by cancer cells, including antigens that are
exclusively expressed in cancer cells, also known as tumor-
specific antigens (TSAs), for example, mutated P53 and RAS.
Cancer vaccines can also target antigens that have low levels in
normal but highly expressed in tumor cells, the tumor-associated
antigens (TAAs), such as MAGE-1, HER2, and HPV (54–56).
There are also different platforms available, such as peptide-
based, DNA-based, protein-based, viral-based, whole cancer
cells, recombinant factors, and pulsed DCs (53, 56–58).
Currently, only three cancer vaccines are approved for clinical
use by FDA to treat early-stage bladder cancer (TheraCys®),
metastatic castration-resistant prostate cancer (PROVENGE),
and metastatic melanoma (IMLYGIC®). These vaccines have
produced slightly improved overall survival of patients with
early-stage disease (58). For patients with advanced or
Frontiers in Immunology | www.frontiersin.org 3
metastatic tumors, cancer vaccines are likely to have a
therapeutic role in a combination therapy approach (59).

Despite suboptimal results, recent cancer vaccine interventions
are clinically promising and have shown potential applicability,
especially with respect to overall patient survival (60). According
to Melief et al., a robust cancer vaccine design must enable the
induction of potent effector CD4+ and CD8+ T-cell responses
(60). Target antigen selection is challenging; selection is based on
overexpressed antigens in tumors relative to normal tissue (61).
Owing to the immunosuppressive tumor microenvironment,
cancer vaccines should be administered in combination with
adjuvants to overcome immunosuppression (62). Adjuvants are
key components of several successful vaccines that boost the
vaccine’s immune response, quality, and efficacy (63). An
interesting strategy for vaccines based on TAAs is the use of a
combination of adjuvants and immunomodulatory antibodies
(62). Exosomes exhibit features for application as adjuvant
carriers, such as optimal size, biocompatibility, stability in
systemic circulation, and target-specific delivery (64). Recently,
an exosome-based adjuvant delivery system was developed using
genetically modified murine melanoma B16BL6 cells, in which
the exosomes derived from these cells containing CpG DNA were
injected three times with a 3-days intervals and successfully
induced immunostimulatory signals in mice 7 days after the last
immunization (65). These results shed light on the novel use of
exosomes as adjuvant carriers for future cancer vaccine
development. Adjuvant strategies to increase cancer vaccine
efficacy have been thoroughly reviewed by Bowen et al. (62).

To design a successful cancer vaccine, researchers must also
consider administration routes and optimal delivery vehicles. DC
injection is a common delivery system that triggers initiation and
controls the direction of antigen-specific immune responses (64).
However, DC-based immunotherapy has shown inconclusive
results in clinical trials. Moreover, DC vaccines are an expensive
therapeutic strategy for implementation in large populations,
and they are difficult to ensure standardized production and lose
efficacy over long periods of storage (49, 66). DEXs have emerged
FIGURE 1 | Timeline illustrating main discoveries related to exosome-based vaccines. CTL, cytotoxic lymphocyte; DEXs, exosomes derived from dendritic cells (DCs);
NSCLC, non-small cell lung cancer; MSCs, mesenchymal stem cells; TDEs, tumor-derived exosomes; OMV, outer membrane vesicle; COVID-19, coronavirus disease-19.
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as a viable option for cancer vaccination because they possess
higher stability for a longer period than DCs because of their lipid
composition. DEXs also possess more peptide-MHC I and -MHC
II complexes than DCs, thereby rendering the use of DEXs a less
time- and space-consuming strategy (Figure 2A) (66–68).
Additionally, DEXs are more resistant to immunosuppressive
mechanisms in the tumor microenvironment than DCs (69).
Exosomes are reportedly more capable of inducing
immunocompetence in DCs than in microvesicles. An in vivo
comparison of immunostimulatory potential between
microvesicles and exosomes derived from ovalbumin (OVA)-
pulsed DCs showed that only exosomes induced antigen-specific
CD8+ T cells and increased the proportion of germinal center B
cells. Exosomes were also superior in terms of OVA levels, while
microvesicle-associated OVA was barely detectable; however,
microvesicles and exosomes both induced higher OVA-specific
IgG production relative to controls (70).

Several studies revealed that DEXs can activate CD4+ and
CD8+ T cells, indicating the ability of DEXs successfully carry
antigen-MHCI/II complexes in vivo and in vitro (34, 71–73).
Once activated, CD8+ T cells can become memory T cells. Wang
et al. using a melanoma mice model, induced the CD8+ T cells
differentiation to CTLs via DEXs from mature DCs. Three
months after the immunization, the immunized mice group
was boosted with DEXs and the number of CD8+ T cells
expressing antigen-specific T cell receptor (TCR) was
expanded six- to seven-fold in immunized mice. Another
experiment in this study was to challenge immunized mice and
control groups with melanoma cells three months after
immunization protocol. Immunized mice were tumor free and
control mice died of lung metastases. Moreover, these antigen-
Frontiers in Immunology | www.frontiersin.org 4
specific CD8+ T cells express CD44, a marker for memory T cells
(74). The immunological memory induced by DEXs was also
observed in CD4+ T cells of mice treated with OVA-pulsed
DEXs, which induced an immune response towards to Th1 type.
Interestingly, in this study, an efficient long term memory
response of OVA-specific Th1 cells after a boost was
dependent of prior B cell activation (75). CD4+ cells after
uptake OVA-pulsed DEXs could stimulate efficient antigen-
specific CTL responses and long-term T CD8+ cell memory in
immunized C57BL/6 mice against OVA-transfected melanoma
cells expressing OVA challenge after three months of complete
immunization (76). On the other hand, DEX vaccines failed to
induce antigen-specific T cell responses in clinical trials (further
discussed in section 6). Preclinical results showed that DEXs
released by DCs treated with interferon-g (IFN-g) express high
levels of molecules capable to induce a strong CD8+ T cell
activation, such as CD40, CD80, CD86, and CD54 (77).
However, this enhancing DC strategy did not translate into
results in a phase II clinical trial, which the peptide-specific T
cell responses were not detectable (43).

Recently, a combination of cancer vaccination and
checkpoint blockade strategies was designed to induce anti-
tumor responses in vitro and in vivo. Exosomes released by
modified anti-CTLA-4 antibody and OVA-pulsed DCs
(DEXsOVA-CTLA-4) were enriched in MHC I/II molecules and
were found to exert strong T-cell activation and proliferation in
vitro. Vaccination with DEXsOVA-CTLA-4 increased the migration
of CD4+ and CD8+ T cells to the tumor site and elevated the ratio
of CTLs/Tregs in the microenvironment of B16 melanoma
tumor model after 12 days (78). Hao et al. demonstrated that
exosomes derived from OVA-pulsed DCs and their uptake by
A B

FIGURE 2 | Exosomes derived from dendritic cells (DEXs) are potential targets for cancer therapeutic strategy. (A) Simplified illustration of a personalized vaccine
using DEXs. (B) DEXs can directly catalyze the transfer of peptide-MHC complexes from their membrane surface to T cell membrane surface (cross-dressing).
Moreover, DEXs can stimulate T cell responses in an indirect manner via cross-dressing with dendritic cells or via exosome uptake and processing, following the
peptide-MHC complex presentation to T cells. DEXs can also induce activation and proliferation of NK cells by establishing interaction of the NKG2D ligand on DEXs
with NKG2D receptors on the NK cell membrane.
July 2021 | Volume 12 | Article 711565
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CD4+ T cells stimulated the proliferation and differentiation of
central memory CTLs and inhibited Treg suppression in vitro
using BL6 melanoma cells. Also, in this study, C57BL/6 mice
immunized with OVA-pulsed DEXs showed an elevated number
of OVA-specific CD8+ CD44+ T cells three months after the
immunization in comparison to control group (42). Long-term
functional CTL memory was observed in animals injected with
OVA-pulsed DCs and was then challenged with OVA-expressing
B16 melanoma cells (79). Different mechanisms of antigen
presentation by DEXs have been proposed (Figure 2B) (80,
81). Recipient DCs may establish interaction with antigen-loaded
DEXs via the endosomal pathway, followed by the transfer of the
peptide-MHC complex to the DC surface membrane for antigen
presentation to T cells (82). Furthermore, a second indirect
antigen presentation mechanism called cross-dressing occurs
when an acceptor DC captures DEXs by facilitating the
merging of membranes and retains the peptide-MHC complex
on the DC surface without processing (80, 83). The direct
interaction of DEXs with T cells seems to demonstrate poor
efficiency in stimulating T cell responses, therefore DEXs have
less T cell stimulation potential than their parent DCs (66, 84).
Some authors suggest that exosomes are not able to interact
directly with effector cells, thus prior capturing and processing
the exosomes by DCs is a superior pathway of priming specific
T cells via DEXs (75, 81, 85, 86). A study using the direct
interaction of DEXs with T cells showed that DEXs from mature
DCs are better at stimulating T cells than DEXs from immature
DCs (87). Robbins and Morelli suggest that the low ability of
exosomes to stimulate T cells in vitro is probably due to the small
size and dispersion of exosomes caused by Brownian motion
(88). These authors also suggest that T cell stimulation by
exosomes can be enhanced when exosomes are immobilized
and at high concentration (88).

Damage-associated molecular patterns (DAMPs) are
signaling molecules released by dying cells that trigger immune
cells to activate defensive mechanisms (89). For example, tumor-
derived DAMPs establish interaction with Toll-like receptors
(TLRs), which directly lead to the activation of T cells and
indirectly result in the induction of the release of inflammatory
cytokines (90). Damo and colleagues developed different
exosome vaccines derived from OVA and TLR ligand-pulsed
bone marrow DCs (91). Their results showed that the TLR-3
ligand-DEXs vaccine (OVA + poly I:C) stimulated higher
antigen-specific CD8+ T-cell proliferation and effector
functions and increased the population of TNFa+CD4+ T
cells in the lymph nodes of vaccinated mice with melanoma
compared to other vaccine formulations 19 days after priming.
Additionally, this group showed that purified DEXs successfully
carried melanoma epitopes and induced potent anti-tumor
immune responses, thereby slowing tumor progression.
Recently, a DEX-based vaccine combined with microwave
ablation was reported to inhibit tumor growth in hepatocellular
carcinoma (HCC) mouse models compared to microwave
ablation (a common therapy for HCC patients) alone, in this
case, the tumor disappeared 10 days after microwave ablation in
combination with DEX injection (92). Additionally, HCC features
Frontiers in Immunology | www.frontiersin.org 5
a high expression level of a-fetoprotein (AFP), which has been
used as an HCC antigen for monitoring and diagnosis (93). DEXs
from AFP-enriched DCs generated strong antigen-specific
immune responses in vitro tumor suppression after 26 days in
HCC mice under a vaccination regimen of a weekly injection for
three weeks (71).

In addition to carrying MHC complexes on their surface,
DEXs carry proteins that can stimulate cells of the innate
immune system. For example, a study showed that DEXs
expressing BAT3 on the surface, which is a protein responsible
for engaging natural killer (NK) cell activation, induced NK cell-
mediated cytokine release in vitro (94). DEXs induced a strong
NK cell activation and stimulated the release of IFN-g in a dose-
dependent manner via TNF in mice (95). DEXs also express
several other ligands on their surface that can mediate innate
immune functions, such as TNF, FasL, and TRAIL (95).
Moreover, the DEX membrane contains the activating receptor
NKG2D ligand, which is responsible for the activation and
proliferation of NK cells (96).

Although DCs have been pulsed with TLRs, biomarkers, and
tumor antigens derived from lysates, TDE-pulsed DCs were
reported to generate the most remarkable results as a potential
anti-tumor vaccination. As mentioned earlier, TDEs provide a
broad range of TAAs for antigen presentation. TDEs also
transfer mRNAs and non-coding RNAs, such as miRNAs and
long non-coding RNAs (lncRNAs) (97, 98). Recent data suggests
that mRNAs packaged inside TDEs are responsible for
stimulating the immune response by MHC I cross-presentation
to DCs (99–101). For example, TDEs derived from CD40L/4-
1BBL-expressing Mel526 melanoma cells induce potent DC
activation in vitro (100). The interaction of 4-1BBL with its
receptor 4-1BB results in the formation of a complex that induces
CD8+ T cell activation and expansion (102). Interestingly,
peptides derived from introns and exons of mRNAs derived
from mouse melanoma cells act as tumor-associated peptides
that can be delivered to DCs and result in the promotion of
CD8+ T cell activation and proliferation (99). A recent study
using sequencing technology showed that exosomes derived
from plasma of 150 patient with cancer contained abundant
levels of lncRNAs that could act as potential biomarkers for
cancer diagnosis, specially 5 lncRNAs that can serve as HCC
biomarkers diagnosis (103). Exploitation of lncRNAs derived
from TDEs seems promising as a vaccination approach. For
example, LINC02195 is an lncRNA capable of regulating MHC I
molecules during antigen processing and presentation (104).
Furthermore, a signature was identified as a prognostic
predictor of laryngeal cancer using the lncRNAs of TDEs (105).

A vaccine designed using TDE-loaded DCs showed superior
immune response induction compared to tumor lysate-loaded
DCs as evidenced by results obtained in mouse myeloid leukemia
and renal cell carcinoma models (106). Recently, the same effect
was observed in lung cancer, in which TDE-pulsed DCs induced
a reduction in the population of regulatory T cells (Tregs) in
vitro, while they suppressed tumor growth and increased animal
survivability in vivo (107). DCs pulsed with TDEs derived from
different types of cancers (such as leukemia, renal carcinoma,
July 2021 | Volume 12 | Article 711565
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glioblastoma, and pancreatic cancer) elicit anti-tumor immune
responses (108–112). DC activation and maturation can be
induced by the high-mobility group nucleosome-binding
protein 1 (HMGN1), a well-known Th1-polarizing alarmin
(113, 114). TDEs bound to the N-terminal portion of HMGN
were found to induce persistent anti-tumor immunity in
orthotopic HCC mice (115).

In most studies, TDEs derived from patient sera have been
found to be biocompatible and exhibit low immunogenicity.
However, it is relevant that TDEs play roles in all steps of
cancer progression, including metastasis and they can be
immunosuppressive in certain types of cancer (115–117). The
immune-suppressive potential of TDEs has been reported to
inhibit the effector activity of CD4+ and CD8+ T cells and NK
cells (118). Recently was demonstrated that TDEs can carry the
programmed death ligand (PD-L1), which is responsible for
T cell exhaustion (119). Moreover, TDEs can block the
differentiation of DCs, induce apoptosis, and diminish the
overall T cell responses in different types of cancer (120–122).
In addition, several studies show that TDEs have potential to
suppress the effects of therapeutic agents (123, 124), for example,
TDEs are associated to acquired chemoresistance (125).

TDEs may also exert a dual effect, improving DC vaccine
efficiency in vitro, while favoring tumor progression in vivo
(117). Immunomodulatory molecules combined with TDEs
may induce enhanced anti-tumor immune responses. For
example, a vaccine designed with TDEs released by mouse
cancer cell lines subjected to treatment with IFN-g and
interferon receptor factor-1 (IRF-1) was found to increase the
number of infiltrated CD4+ and CD8+ T cells and reduce tumor
size in C57BL/6J female mice transfected with Hepa 1-6
Frontiers in Immunology | www.frontiersin.org 6
hepatoma cells or MC-38 colon carcinoma cells after 21 days
of the exosome injection (46). Additionally, in a recent study
reported by Shi et al., a vaccine with exosomes derived from IFN-
g-modified RM-1 prostate cancer cells under a vaccination
regimen of 4 injections (on days 0, 4, 8, and 12), decreased the
number of Tregs and reduced the tumor metastatic rate in
C57BL male mice with lung metastasis (126). These findings
indicate that pulsing DCs with a wide variety of molecules can
help produce exosomes capable of generating a robust anti-
tumor immune response (Table 1). These methods represent
promising and potentially individualized TDE- and DEX-based
vaccine strategies for cancer immunization.
EXOSOME-BASED VACCINES
FOR TREATMENT OF VIRAL
INFECTIOUS DISEASES

Similar to cancer, exosomes act as a double-edged sword because
of their ability to carry and deliver molecules to target cells in
infectious diseases. Exosomes play a crucial role in the
pathogenesis of infection, but also trigger immune responses to
confer protection against pathogens (134). This effect can be
observed in the context of viral infections, where exosomes
derived from infected cells can deliver viral content to
surrounding cells, but can also induce antiviral immune
responses (135). The “Trojan exosome” hypothesis proposed by
Gould et al., describes the evolutionary similarities of viruses and
exosomes with regard to their biogenesis and transmission
pathways, suggesting exosomes as a potential tool for
TABLE 1 | Different experimental models and design using exosomes to induce anti-tumor immune responses against several types of cancer.

Experimental model Cancer
type

Experimental design Clinical outcome Reference

C57BL/6 mice; Hepa1-6, 4T1,
Hela, and EL4 cell lines

HCC Intravenous injection of DCs pulsed with
TDE-N1ND

Generation of long-term memory T cells and robust
anti-tumor immunity

(115)

C57BL/6 and IRF3-KO mice;
E0771 cell line

Breast Cancer cells treated with topotecan TDEs from treated cells contain immunostimulatory
DNA

(127)

C57BL/6 mice; A549 and LLC cell
lines

Lung Vaccination with 3 doses of DCs pulsed
with TDEs

TDEs promoted DC maturation, which increased
tumor-infiltrating CD8+ T cells in mice

(107)

Zipras/myc-9-infected C57BL/6 Prostate Vaccination with 4 doses of TDEs pulsed
with IFN‐g

Prolonged survival time, attenuated expression of
PD-L1, reduced tumor metastasis rate

(126)

C57BL/6 and CD45.1 mice – Antigen transfer from DEXs released by
plasmacytoid DCs to conventional DCs

Cross-priming of naïve CD8+ T cells (128)

C57BL/6 and BALB/c mice;
Hepa1-6, RAW264.7, LLC, and
4T1 cell lines

Lung and
liver

Vaccination with a single dose of exosomes
from cancer-bearing mice after photothermal
therapy

Promoted infiltration of T cells into the tumor tissue (129)

Transgenic HLA-A2/HER2 mice;
4T1 and BT474 cell lines

Breast Vaccination with a single dose of DEXs from
HuRt-specific DCs transfected with an
adenoviral vector

Activation of CD8+ T cell cytolytic functions against
breast cancer cells in vitro and reduced tumor
growth in vivo

(130)

BALB/c and C57BL/6 mice; H22,
B16, and CT26 cell lines

Melanoma,
liver, and
colon

Vaccination with 3 doses of TDEs released by
different cancer cell lines

Promoted DC maturation and elicited T cell anti-
tumor responses

(131)

HepG2 and K562 cell lines HCC Isolation of exosomes released by cancer cells
treated with anti-cancer drugs

TDEs exhibited heat shock proteins in their surface
that activated NK anti-tumor response

(132)

4T1 Breast Modified TDEs with microRNAs to enhance
their immune stimulation function

Modified TDEs induced DC maturation in vitro (133)
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vaccination against human immunodeficiency virus (HIV) (136).
The exosomal biogenesis pathway that is hijacked by HIV for
viral spread can be exploited as a potential therapeutic
approach (137).

Efforts are ongoing to evaluate the potential of exosome-based
vaccines against HIV. Dr. Jim Xiang’s research group pioneered
this research area and developed a vaccine termed as Gp120-
Texo. This vaccine was designed with DEXs derived from DCs
transfected with an adenoviral vector, AdVGp120, which
expressed the HIV-specific envelope glycoprotein Gp120 (138).
Gp120-Texo induced strong and long-term HIV-specific CD8+

T-cell responses independent of CD4+ T cells and DCs in mice
(44, 138). Later, the Xiang group designed a vaccine to induce a
specific immune response against Gag (Gag-Texo) (139), a group
of proteins responsible for HIV maturation and infection (140).
Gag-Texo induced Gag-specific immunity in animal models of
chronic infection, suggesting that this vaccine might induce CTL
responses to attack HIV-infected cells (139). Nef is an HIV
protein associated with multiple cellular functions, such as the
survival of infected cells and vesicular trafficking (141). An
exosome-based vaccine was engineered by incorporating a Nef
mutant (Nefmut) into exosomes. In this case, Nefmut-exosomes
were absorbed by DCs, which then presented the antigens,
thereby eliciting CTL immune responses in mice against
several viral antigens, such as those for HIV, Ebola, influenza,
HBV, and hepatitis C virus (HCV) (47, 142, 143).

Even with current diagnostics and therapeutics that enable
viral suppression, HBV continues to represent a major healthcare
concern worldwide (144). HBV is frequently associated with the
development of chronic liver diseases, such as HCC (145).
Exosomes released by HBV-infected cells contain several
proteins encoded by the HBV genome, as well as miRNAs that
regulate gene expression in host cells (146–148). This sheds light
on the potential use of exosomes to understand HBV
transmission and HBV-host interactions. However, there is a
lack of literature on exosome-based HBV vaccination. Few
studies have investigated the potential of a general exosome-
based vaccine platform for multiple viral antigens, including
HBV. Additionally, a vaccine formulation designed with
unmodified exosomes as adjuvants for the recombinant HBV
antigen showed promising results, in which exosomes induced a
Th1 immune response, thereby enhancing the levels of IFN-g in
mice (149). These studies are in the early phase, and further
investigations are warranted to identify therapeutic targets for
consideration as vaccine candidates against HBV using exosomes
as delivery systems or adjuvants.

Influenza virus infection is another example of a healthcare
concern that causes significant morbidity and mortality
worldwide (150). Despite the wide variety of vaccine types
available for influenza infection, studies have shown that
exosomes can be used as a new platform for designing
influenza vaccines, with exhibition of advantages over classical
vaccines (151, 152). For example, airway exosomes released
during influenza virus infection can carry host proteins with
anti-influenza properties and can help trigger immune responses
(153). A study using LC-MS/MS showed that exosomes derived
Frontiers in Immunology | www.frontiersin.org 7
from infected cells also carried similar proteins as those reported
in the influenza virions, representing an alternative pathway for
the infection of new host cells (154). Lung and serum-derived
exosomes from mice infected with influenza virus exhibit high
levels of miR-483-3p, and this is associated with the induction of
pro-inflammatory cytokine release (155, 156). According to the
authors, further studies are warranted to determine whether the
transfer of miR-483-3p is involved in the activation of innate
immune responses or in the inflammatory pathogenesis of
influenza virus infection. Another exosome-based vaccination
approach to combat the influenza virus includes EVs released by
gram-negative bacteria, which are referred to as outer membrane
vesicles (OMVs) (157). Several recent studies have reported that
OMV-derived vaccines can induce strong immune protection
against the influenza virus in vivo (158–161).
EXOSOME-BASED IMMUNIZATION
STRATEGY FOR NON-VIRAL
INFECTIOUS DISEASES

The release of exosomes by non-viral pathogens such as bacteria
and parasites, plays an important role in pathogenesis by
establishing interactions with the host immune system and by
transferring resistance factors (162). However, exosomes and
OMVs derived from bacteria have been reported to be potent
immune modulators, rather than aiding pathogenesis (163). The
potential of OMVs as immune activators has been investigated
using models of different infectious diseases such as pertussis
(whooping cough), which is caused by Bordetella pertussis, a
gram-negative bacterium (164). Currently available vaccines aid
the successful reduction of the morbidity and mortality caused
by pertussis, but they are also associated with severe adverse
effects and weak immune protection (165). According to the
World Health Organization (WHO), there is no consensus
regarding the antigenic composition of an optimal pertussis
vaccine (https://www.who.int/biologicals/areas/vaccines/
apertussis/en/). Several studies have now shown that a
B. pertussis OMV-based vaccine can overcome this composition
issue, representing an attractive vaccination model for pertussis
(166–168). A recent OMV-based vaccine conferred protection to
mice against lung infection more effectively than the current
commercial pertussis vaccines (48). Although overshadowed by
gram-negative bacteria, EVs derived from gram-positive bacteria
have also recently gained attention as a potential vaccine platform
for several infectious diseases. EVs released by Staphylococcus
aureus were modified to possess no toxicity and to serve as
vaccine candidates. Genetically engineered EVs showed
immunogenic effects and protected mice against lethal sepsis
caused by S. aureus (169). Additionally, EVs derived from
Streptococcus pneumoniae incubated with murine DCs were
rapidly internalized and enhanced the release of tumor
necrosis factor (TNF)-a, which constitutes the inflammatory
response (170).
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Investigations of exosome-based vaccines for infectious
diseases are not limited to viruses and bacteria. Toxoplasmosis
is a globally occurring infectious disease caused by the coccidian
protozoan Toxoplasma gondii (171). Vaccines with live and
attenuated tachyzoites are available for animals; however, these
vaccines are not effective and safe for humans (172). Therefore,
the development of a toxoplasmosis vaccine for humans is of
considerable interest for public health. However, few studies
have reported the effects of DEXs derived from DCs pulsed with
T. gondii or Toxoplasma-specific antigens (36, 173). In a recent
study, DEXs released by DCs stimulated with T. gondii lysate
were inoculated intranasally and ocularly in mice, which
subsequently triggered humoral and mucosal immune
responses against Toxoplasma infection (174).

Schistosomiasis is a major parasitic disease caused by
Schistosoma mansoni, affecting a myriad individuals and
causing over 280,000 deaths annually worldwide (175). Thus
far, there is no vaccine available for schistosomiasis, which
underscores the need for the development of vaccines against
this disease. Few authors have suggested the use of exosomes as a
cell-free vaccination platform against S. mansoni infection (176–
178). Exosomes released by S. mansoni adult worms contain
miRNAs and proteins involved in host-parasite interactions,
such as invasion, nutrient acquisition, and immunomodulation
(178). A study showed that S. mansoni-derived exosomes
harbored several potential vaccine candidates, including
proteins involved in multiple life cycle stages, underlining their
potential utility in different stages of the parasite’s life cycle (176).
These findings represent a promising avenue for further
investigation of the potential applicability of exosomes in the
development of vaccines against infectious diseases.
CLINICAL TRIALS USING
EXOSOME-BASED VACCINES

Clinical trials using exosomes can be divided into three
categories with different approaches. First, exosomes can be
used as carriers to deliver drugs to specific targets. Second,
exosomes derived from mesenchymal stem cells. And last,
incorporating specific mRNAs and miRNAs into exosomes
elicit responses in patients (179). In 2005, results from two
phase I clinical trials using DEX vaccines were obtained. The
first trial reported the use of DEXs loaded with HLA-restricted
melanoma-associated antigen (MAGE) peptides, which were
infused into patients with HLA A2+ non-small cell lung cancer
(NSCLC) (41). After the administration of four weekly doses, the
vaccine was well tolerated by all patients. However, only one-
third of the patients presented with MAGE-specific T-cell
responses, while two of the four analyzed patients showed an
increase in NK cell activity (41). The second trial reported the use
of DEXs derived from DCs pulsed with MAGE and inoculated
them to conduct immunization of melanoma patients. No major
toxicity event was reported by any patient, except for the
occurrence of a grade I fever (five patients out of fifteen);
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however, no MAGE-specific response of CD4+ and CD8+ cells
was observed in peripheral blood. Interestingly, NK cell effector
functions were also induced by the DEX vaccine, where eight of
the thirteen patients presented with an increased number of NK
cells infiltrating the tumor site (40).

According to Fu and colleagues, the lack of an immune
response to these vaccines can be associated with the DC type
selected by researchers in these clinical trials (69). They used
immature DCs, while other studies showed that exosomes
derived from mature DCs induced more potent T-cell priming.
A phase II clinical trial reported the use of DEXs derived from
mature DCs pulsed with IFN-g in patients with NSCLC, and no
toxicity was observed, except for the occurrence of grade III
hepatotoxicity in one patient. In this case, the DEX vaccine did
not induce a cancer-specific T-cell immune response but resulted
in the induction of NK cell functions (43). According to the
authors, IFN-g may lead to an upregulated expression of PD-1
ligands on DEXs, a well-known immune checkpoint that
suppresses T-cell activity. Although these vaccines were
designed to activate specific MHC-restricted T-cell responses,
DEXs proved to be effective in activating NK cells in an MHC-
independent manner. Interestingly, DEX-based vaccines have
focused on direct CTL activation as an independent process in
other immune cells. However, Näslund et al. showed that CD4+

T cells and B cells were necessary for the DEX activation of CTL
anti-tumor response (85).

Recently, a non-randomized phase I/II clinical trial showed
promising results with a vaccine designed using exosomes derived
from DCs pulsed with SART1, a biomarker of squamous cell
carcinoma of the esophagus. Pulsed DCs obtained from patients
could generate exosomes that were well tolerated and induced
antigen-specific CTLs in seven patients (180). One patient of this
study remained stable for 20 months after DEXs therapy,
although he developed lung metastasis after the stable period.
The other six patients had progressive disease and died in a period
up to 10 months after vaccination. These findings indicate
that the development of a personalized exosome-based
immunotherapy is feasible, although incredibly challenging.
Patient indication criteria and the preparation of highly
competent DCs for vaccine formulation are keystones of a
successful exosome-based treatment (180). According to Xu
and colleagues, it is important to investigate the anti-tumor
immunity induced by DEXs-based vaccines to confirm whether
DEXs can be used as tumor antigens for an exosome-based
vaccine (52).

In addition to DEX vaccines, other clinical trials using different
exosome-based vaccines have been reported. One phase I clinical
trial reported the use of exosomes derived from ascites (AEXs) in
combination with granulocyte-macrophage colony-stimulating
factor (GM-CSF) as immunotherapy for colorectal cancer.
Injection of AEXs for colorectal cancer was safe and well
tolerated by all patients during the four weekly doses
administered. Patients with advanced colorectal cancer subjected
to treatment with AEXs plus GM-CSF demonstrated a strong
anti-tumor cytotoxic T-lymphocyte response against the
carcinoembryonic antigen (181), a colorectal cancer biomarker
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(182). Exosome-based vaccines have also been developed for the
treatment of chronic diseases other than cancer. A phase II/III
clinical trial was conducted using exosomes derived from
umbilical cord MSCs in patients with chronic kidney diseases,
such as type 1 diabetes and interstitial nephritis (45). The
participants in the study reported no significant adverse
effects during or after the treatment. The use of exosomes
derived from MSCs improved overall kidney function and
inflammatory immune activity. Currently, tests involving
the safety and tolerance of aerosol inhalation of exosomes
derived from MSCs are part of a clinical trial comprising
healthy volunteers (NCT04313647). Another clinical trial
involving he investigation of the use of exosomes derived from
MSCs as a therapeutic strategy is underway against macular
holes (NCT03437759).

Clinical Trials Using Exosomes as a
Potential Vaccine Against Coronavirus
Disease (COVID-19)
More recently, due to the coronavirus pandemic, clinical trials
for exosome-based therapy have shifted from cancer to COVID-
19 treatment for future vaccine development (183). To this date,
there are in total, 12 active clinical trials using exosome
interventions at ClinicalTrials.gov. A phase I (NCT04747574)
and a phase II (NCT04902183) independent clinical trials are
recruiting patients with moderate or severe COVID-19 infection
to evaluate the safety and efficacy of exosomes overexpressing
CD24 of two doses with a patient follow-up for 23 days. CD24 is
a costimulatory molecule expressed on several hematopoietic
cells, especially progenitor cells, such as B cell progenitors (184).
However, CD24 is also associated with autoimmune diseases
(185, 186). Two phase I and II clinical trials are being conducted
to investigate the safety and efficiency within 28 days after the
first treatment of aerosol inhalation of bone marrow MSC-
derived exosomes in severe patients hospitalized with SARS-
CoV-2 pneumonia and COVID-19 (NCT04602442 and
NCT04276987). And another phase I/II clinical trial
(NCT04798716) is investigating the safety and efficiency of an
intravenous infection of MSC-derived exosomes every other day
on an escalating dose of 2:4:8 in the treatment of severe patients
with COVID-19. According to these clinical trials description,
MSC-derived exosomes may reduce lung inflammation and
pathological impairment. Thus far, only one trial has reported
results (NCT04491240), and no adverse events have been
reported in patients after inhalation of 3 ml of MSC-derived
exosomes twice a day for 10 days. However, there is no
information about the source of MSCs used to generate
exosomes and other relevant information concerning the
aerosol formulation in this clinical trial. Additionally, another
ongoing phase I/II clinical trial (NCT04389385) is investigating
the safety and efficiency of inhaled exosomes derived from
COVID-19 specific T cells that were activated and expanded
in vitro via viral peptide exposure.

However, to this date, the clinical trials do not offer much
information concerning the usage of exosomes to induce
immunogenic properties and/or long-term memory response.
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The actual scenario of clinical trials using exosomes against
COVID-19 is still evaluating safety and efficacy of exosome
treatments. When completed, the ongoing clinical trials can
provide the foundation for the conduction of future studies
using MSC-derived exosomes in healthy patients. With their
ability to elicit anti-inflammatory effects and modulate immune
responses (187), MSC-derived exosomes may be important for
the future design and development of COVID-19 vaccines.

Recently, a statement published by the ISEV and the
International Society for Cell and Gene Therapy (ISCT)
encouraged the conduction of further research and clinical trials
using exosomes as a therapeutic strategy against COVID-19
(188). However, this statement also underscores the need for
good clinical practice and rational clinical trial design.
CONCLUSION

Initially, EVs were considered to demonstrate the sole function of
cellular waste elimination; however, EVs are now recognized as
crucial mediators of intercellular communication because of their
capacity to deliver different molecules and transfer signals over
long distances to modulate several physiological mechanisms.
The immunomodulatory properties of EVs provide insights into
their use as a cell-free therapeutic strategy for different diseases.
Several studies have reported promising results on EV-based
vaccines against different types of diseases, including cancer and
numerous infectious diseases. However, exosomes from cancer
cells modulate many aspects of intercellular communication,
which they can play a crucial role in tumor progression and
suppress anti-tumor activities. Understanding the dual effects of
exosomes represent a major challenge for future therapies using
exosome-based vaccines. Clinical trials showed modest results,
with no antigen-specific response induced by exosome vaccines,
i.e., MHC I/II-restricted TAAs did not stimulated anti-tumor
properties in effector T cells. Further studies are needed to
understand the pharmacokinetic of exosome-based vaccines.
On the other hand, clinical trials revealed the ability of
exosome-based vaccines in recruitment and activation of innate
immunity. Further investigation is warranted for the
development of new techniques for loading EVs with specific
antigens or drugs, and for engineering EVs to display more
efficiency in cargo delivery. When in combination with other
therapies, exosome-based vaccines are more promising, for
example, different studies showed that PD1/PDL1 blocking
therapy combined with DEXs resulted in effective T cell
activation (189). However, difficulties such as lack of quality
control and standards for EV characterization and purification
must be overcome. Also, logistical issues, such as manufacturing,
storage, and administration of exosome-based vaccines need to be
addressed (190). Additionally, exosome-based vaccination
encompasses various issues on exosome biocompatibility for
broad clinical usage and for the establishment of large-scale
immunization programs. There are several challenges, including
the development of an effective cell-free vaccine platform to use
exosomes for the treatment of various diseases. A focus on such
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aspects and challenges is necessary for future exosome-based
vaccine investigations.
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