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Abstract
Genomic selection (GS) is now practiced successfully across many species. However, many questions remain, such as long-
term effects, estimations of genomic parameters, robustness of genome-wide association study (GWAS) with small and 
large datasets, and stability of genomic predictions. This study summarizes presentations from the authors at the 2020 
American Society of Animal Science (ASAS) symposium. The focus of many studies until now is on linkage disequilibrium 
between two loci. Ignoring higher-level equilibrium may lead to phantom dominance and epistasis. The Bulmer effect 
leads to a reduction of the additive variance; however, the selection for increased recombination rate can release anew 
genetic variance. With genomic information, estimates of genetic parameters may be biased by genomic preselection, but 
costs of estimation can increase drastically due to the dense form of the genomic information. To make the computation 
of estimates feasible, genotypes could be retained only for the most important animals, and methods of estimation should 
use algorithms that can recognize dense blocks in sparse matrices. GWASs using small genomic datasets frequently find 
many marker-trait associations, whereas studies using much bigger datasets find only a few. Most of the current tools use 
very simple models for GWAS, possibly causing artifacts. These models are adequate for large datasets where pseudo-
phenotypes such as deregressed proofs indirectly account for important effects for traits of interest. Artifacts arising in 
GWAS with small datasets can be minimized by using data from all animals (whether genotyped or not), realistic models, 
and methods that account for population structure. Recent developments permit the computation of P-values from 
genomic best linear unbiased prediction (GBLUP), where models can be arbitrarily complex but restricted to genotyped 
animals only, and single-step GBLUP that also uses phenotypes from ungenotyped animals. Stability was an important part 
of nongenomic evaluations, where genetic predictions were stable in the absence of new data even with low prediction 
accuracies. Unfortunately, genomic evaluations for such animals change because all animals with genotypes are connected. 
A top-ranked animal can easily drop in the next evaluation, causing a crisis of confidence in genomic evaluations. While 
correlations between consecutive genomic evaluations are high, outliers can have differences as high as 1 SD. A solution to 
fluctuating genomic evaluations is to base selection decisions on groups of animals. Although many issues in GS have been 
solved, many new issues that require additional research continue to surface.
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Introduction 
Genomic selection (GS) is now implemented in all major 
farm animal species. Its main purpose is accelerating genetic 
trends by increasing the accuracy of selection, particularly for 
young animals, and reducing generation interval. The increase 
in selection accuracy may be particularly important for low 
heritability traits where conventional selection is slow. Many of 
the reports indicate that genetic trends under GS have indeed 
accelerated.

The advantages of GS may diminish in the long run. Intensive 
selection leads to a reduction of the additive genetic variance 
because of the Bulmer effect, with a resulting impact on genetic 
gain according to the breeders’ equation (Van Grevenhof et al., 
2012). Because gene frequencies can change faster for genes 
associated with higher heritability traits, pleiotropy may 
intensify antagonistic genetic correlations (Georges et al., 2019). 
Epistatic modifications (Mackay, 2014; Ma et al., 2019) that were 
slow prior to GS may accelerate under GS, reducing the utility of 
old data. Some studies suggested that some of these phenomena 
have already occurred. VanRaden et  al. (2014) reported that 
realized accuracies in Holstein are higher when assuming lower 
heritabilities. Hidalgo et al. (2020) found that the heritability for 
some traits in pigs was halved, and genetic correlations between 
production and fertility traits became more extreme.

Finding whether genetic parameters have changed over 
time requires estimation of these parameters generation by 
generation. Parameter estimation methods before GS such as 
restricted maximum likelihood (REML) and Bayesian via Gibbs 
sampling could analyze large datasets because the mixed model 

equations were sparse (Misztal, 2008). Conversely, mixed model 
matrices are dense under GS; thus, computations are more 
complex. According to Henderson (1984), estimation is unbiased 
if all data used for selection are included in best linear unbiased 
prediction (BLUP). If unbiased estimation under GS requires 
all genomic, pedigree, and phenotypic data used for selection 
to account for genomic preselection (Patry and Ducrocq, 2011; 
Masuda et  al., 2018), then computations for large commercial 
datasets will be daunting.

Many of the studies use small genomic datasets for a 
genome-wide association study (GWAS). They frequently find 
many associations (Galliou et  al., 2020, Leal-Gutiérrez et  al., 
2020), whereas studies using much bigger datasets find only a 
few (e.g., Jiang et al., 2019b). Assuming that studies with large 
datasets are more trustworthy, then many associations from 
small studies must be spurious. Possible reasons for spurious 
signals include data/population structure, and in particular, 
omission or simplified treatment of ungenotyped data, 
simplified analytical models, and problems with computing 
P-values in more complex analyses. For more reliable GWAS, 
all pertinent data (whether genotyped or not) need to be used, 
realistic models should be applied, and methods should account 
for population structure.

Genetic predictions with BLUP before GS were stable even 
when accuracies were low, except when animals acquired new 
phenotypes or new daughters with phenotypes. The industry 
was pleased with the stability of BLUP. However, genomic 
predictions are less stable; a top-ranked animal can easily 
drop in the next evaluation. Thus, the industry has a crisis 
of confidence in genomic evaluations. Genomic evaluations 
change because all animals with genotypes are connected. In 
particular, new phenotypic data for one animal cause small 
but correlated changes in all animals. Additionally, model 
modifications such as blending level of genomic relationships 
with pedigree relationships and scaling of the genomic 
relationships cause further changes. While correlations 
between consecutive genomic evaluations are high, outliers 
can have substantially bigger differences. The question is 
whether fluctuations in genomic estimated breeding values 
(GEBVs) are harmful to the industry or they are just an integral 
part of GS.

The objectives of this study were: 1) to examine theoretical 
issues affecting genetic selection, 2)  to discuss strategies for 
parameter estimation under GS, 3)  to look at GWAS from the 
perspective of large datasets, 4)  to look at GWAS from the 
perspective of small datasets when the use of all available 
information is crucial to eliminate spurious responses, and 5) to 
discuss degrees of fluctuation of GEBV and ways the industry 
can manage these fluctuations.

Theoretical Issues Affecting Genetic 
Selection

Higher-order linkage disequilibrium

Linkage disequilibrium (LD) is an important phenomenon 
relevant to both GWAS and GS. The focus of research until now 
has been on LD between two loci.

It has been overlooked that for three loci (A, B, and C) a third-
order LD coefficient could appear :

DABC = pABC − pADBC − pBDAC − pCDAB − pApBpC (1)

Abbreviations

A × A additive by additive
BLUP best linear unbiased prediction
CDCB Council on Dairy Cattle Breeding
D × D dominance by dominance
EMMAX Efficient Mixed-Model Association 

eXpedited
FAANG functional annotation of animal 

breeding
GBLUP genomic best linear unbiased 

prediction
GEBV genomic estimated breeding value
GREML restricted maximum likelihood with 

genotyped animals
GS genomic selection
GWAS genome-wide association study
LD linkage disequilibrium
LE linkage equilibrium
MAF minor allele frequency
QQ plot quantile–quantile plot
QTL quantitative trait loci
REML restricted maximum likelihood
RRM random regression model
SDa additive genetic standard deviation
SEP standard error of prediction
SNP single-nucleotide polymorphism
ssGBLUP single-step GBLUP
ssGREML single-step restricted maximum 

likelihood with genotyped and 
ungenotyped animals

SSGWAS single-step GWAS
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where pABC is the frequency of the ABC triplet; pA, pB, and pC are 
the gene frequencies; and DAB, DBC, and DAC are the pairwise 
disequilibrium coefficients. The third-order LD can be interpreted 
as nonindependence among single-nucleotide polymorphism 
(SNP) triplets unaccounted for by pairwise coefficients. The 
maximum third-order LD occurs when the three loci are at 
intermediate allele frequencies and second-order disequilibria 
are zero and range between −1/8 and 1/8.

There are few estimates of third-order LD in livestock species. 
Gomez-Raya et al. (2018) found third-order LD to be common in 
a composite line of Iberian pigs based on 26,347 SNPs from 306 
sows, probably due to admixture.

Phantom genetic parameters

Third-order LD is relevant in the context of spurious values of 
genetic parameters when using SNP markers, such as apparent 
dominance or epistatic variances when they do not exist. Consider 
three loci and the existence of third-order LD only. The first 
model consists of two quantitative trait loci (QTLs; Q/q and R/r) 
and one marker (M/m); if there is epistatic variance in the QTL, 
then a dominance variance would appear in the marker. The 
second model includes one QTL (Q/q) and two markers (M/m and 
N/n). If the QTL is additive, only an apparent additive by additive  
(A × A) variance would be suggested by the markers, and if the QTL 
is dominant, only an apparent A × A and an apparent dominance 
by dominance (D× D) variance would appear in the markers.

Imperfect LD can generate the illusion of epistasis even 
when the underlying genetic architecture is purely additive. de 
los Campos et al. (2019) showed that phantom epistasis could 
be a very serious problem in GWAS (with rejection rates against 
the additive model greater than 0.28 for nominal P-values of 
0.05, even when the model is purely additive) and demonstrated 
that the magnitude of the problem was even greater with large 
sample sizes.

Distinction between inferential and prediction 
problems

Phantom dominance or epistasis creates inferential problems 
limiting the possibility to learn about causal effects because 
either epistasis or dominance is detected when they do not 
exist. However, models that do not accurately represent the 
genetic architecture of a trait could be useful for improving 
prediction models. In 10,000 simulations of random values of 
gametic frequencies and genetic effects, we found that in 0.5% 
of cases V′ Amark > VAqtl (one QTL and two markers) and in 1.7% 
of cases V′ Amark > VAqtls (two QTLs and one marker), where V′ A is 
the apparent variance explained by the markers and VA the true 
additive variance, respectively. Recently, Schrauf et al. (2020) in 
a simulation study inspired by publicly available Arabidopsis and 
rice datasets illustrated that, due to phantom epistasis, epistatic 
models may also predict the genetic value of an underlying 
purely additive genetic architecture better than additive models, 
when the marker density is low.

Genetic vs. genomic correlation

In an additive context, we could expect a missing heritability for 
one trait, but could we also expect a missing genetic correlation 
between two traits? This is a difficult question, and, according 
to Gianola et  al. (2015), genomic correlation could be greater 
than, lower than, or even of opposite sign to the true genetic 
correlation. Gianola et  al. (2015) studied several cases of a 
simple model with two QTLs and two markers. In case 1, there 
was no pleiotropy, and two QTLs were in linkage equilibrium 

(LE), thus the genetic correlation was zero; but because of LD 
between markers, there was a nonzero genomic correlation. In 
case 2, the only source of genetic correlation between traits was 
LD between QTLs, which could be completely lost in a genomic 
analysis. In case 3, two QTLs affected both traits (pleiotropy), 
and genetic and genomic correlations differed in magnitude 
and even in sign depending on the pattern of LD. In conclusion, 
speculating about genetic correlations, and even about their 
causes (e.g., pleiotropy), using genomic data is often conjectural.

Changes in genetic parameters with selection

Changes in environmental variance
The search for more uniform animal performance has 
increased its economic importance in livestock. Genetic control 
of environmental variance offers opportunities to increase 
this uniformity. Classical models normally assume that the 
environmental or residual variance is constant. However, there is 
evidence that environmental variance can also be under genetic 
control with a heritability of about 0.10. This has been shown in 
pigs (birth weight, stillbirths, and litter size), sheep (litter size), 
poultry and beef cattle (weight), and dairy cattle (milk yield). 
Therefore, it is possible to decrease environmental variance 
by selection, but large phenotypic and genomic datasets are 
needed (see the recent review of Iung et al., 2020).

Changes in genetic variances with inbreeding
The implementation of GS has increased rates of inbreeding 
mainly due to higher prediction accuracies and shorter 
generation intervals. It is important to estimate EBVs and 
inbreeding using the same source of information (i.e., either 
based on pedigree or genomic information). Thus, the rate 
of inbreeding per generation in Holstein increased by 1.4% in 
the last 10 yr. A  higher rate of inbreeding could compromise 
fitness traits and long-term genetic gains. There are methods 
to manage inbreeding in a GS program. Genomic information 
can be utilized to identify and eliminate lethal recessives and 
to perform optimal contributions and optimal mate allocations.

Changes in genetic variances due to the Bulmer effect
It is well known that directional selection creates negative LD 
(i.e., + − + −). This is not obvious because ++++ chromosomes 
are the most favored, and thus one might expect positive LD. 
However, in the simplest demonstration, Maynard Smith 
(1998) considers a haploid model ab, aB, Ab, and AB with equal 
frequencies of 0.25. Phenotypic values are 0, 1, 1, and 2, and 
phenotype fitness values are (1 − s), 1, 1, and (1 + s), where s is 
the selection coefficient. Before selection, the LD is 0.25 × 0.25 − 
0.25 × 0.25 = 0, and, after selection, LD will be 0.25 (1 − s) × 0.25 
(1 + s) − 0.25 × 0.25 = −s2/16.

Reductions in selection response with BLUP due to the 
Bulmer effect are independent of heritability and depend only 
on selection intensity. Their values have ranged from 0.22 to 
0.27. Reduction in selection response is greater with BLUP than 
with phenotypic selection. However, the selection response is 
still larger with BLUP than with phenotypic selection.

The Bulmer effect has been shown: 1)  in old experiments 
(1970s) with Drosophila where suppression of crossing-over 
reduced the long-term phenotypic selection response, especially 
for small effective population size; 2)  in many simulation 
results; and 3)  in analyses of empirical data. For example, in 
Manech Tête Rousse dairy sheep (1,842,295 records of milk yield 
and 530,572 females), the loss of genetic variance was about 13% 
for females. The Bulmer effect had more impact (10%) than the 
buildup of coancestry (3%) in 30 yr (Macedo et al., 2021). 
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Van Grevenhof et al. (2012) established that the reduction in 
response due to the Bulmer effect was the same for GS as for 
selection based on traditional BLUP, and it was independent of the 
accuracy of selection. However, it seems that intensive changes 
caused by GS can further reduce the genetic variation and 
strengthen undesirable genetic correlations (Hidalgo et al., 2020).

A positive aspect of GS is that we can act on the within-
family variance (Mendelian sampling variance). Thus, we can 
better use the Mendelian sampling variance by selecting parents 
on an index composed of GEBV and gametic variabilities of 
selection candidates. According to Bijma et  al. (2020), GS can 
increase the probability of breeding a top-ranking individual by 
36% and response to selection by 3.6% in the Holstein–Friesian 
dairy cattle population. In addition, optimal mating partners 
that maximize the variance of the offspring can be identified.

Selection and recombination

The other side of the coin of the Bulmer effect is that if 
we increase recombination rate, we can enhance selection 
efficiency. A  higher recombination rate would reduce LD 
between causative variants and release genetic variance.

Now the question is if there is genetic variance for the 
recombination rate. The answer is positive as shown in various 
lines of evidence (reviewed by Battagin et  al., 2016): 1)  old 
experiments with Drosophila and Tribolium where selection 
succeeded in both increasing and decreasing recombination 
rates; 2) domesticated mammals had higher chiasma frequencies 
than wild mammals; 3) heritability estimates of recombination 
rates were substantial (0.12 to 0.22 in sheep, 0.22 to 0.26 in cattle, 
0.05 to 0.07 in pigs, 0.16 to 0.17 in chicken, and 0.30 in humans); 
and 4) QTLs and genes affecting recombination rate have been 
detected either for general and for specific regions. For example, 
Ring Finger Protein 212 acts as a regulator for crossing-over 
during meiosis. Lastly, targeted recombination is taken seriously 
by plant breeders.

Although in principle an increase in the rate of recombination 
can enhance the efficiency of selection, it can also break down 
favorable combinations. For example, the contribution of 
A  × A  variance to selection response depends on the rate of 
recombination. Thus, the selection response is equal to:

Rt = iσP(th2 +
VAA

VP
) (2)

with free recombination, and:

Rt = iσP(th2 + t
VAA

2VP
) (3)

with no recombination, where Rt  =  response to selection at 
generation t, i = intensity of selection, σP = phenotypic standard 
deviation, h2  =  heritability, VAA  =  A × A  genetic variance, and 
VP = phenotypic variance. In the context of GS, the situation is 
more complex because recombination could lower the accuracy 
of GS because it erodes LD between markers and QTLs unless 
causal genes are included in the SNP panel.

Genetic architecture of complex traits

How do we expect the genome to be organized as a consequence 
of the joint action of pleiotropy, epistasis, recombination, and 
selection? There are two main proposals: 1)  a modular model 
(restricted pleiotropy model; Wagner and Altenberg, 1996) 
consisting of groups of linked elements coding for the same 
functional trait that can evolve more or less independently of 

other modules coding for a different functional trait, in such a 
way that the behavior of elements inside a module depends little 
on factors external to the module; 2) an omnigenic model (Liu 
et al., 2019) that has core genes that affect the trait directly and 
peripheral genes that affect core genes through regulatory effects 
in such a way that almost every gene affects many characters 
(universal pleiotropy) and almost every character is affected by 
many genes. Although the core genes are the relevant genes, 
most of the heritability is determined by variation in peripheral 
genes. The last model will impose a higher cost on multitrait 
selection.

Parameter Estimation Under GS
Genetic parameter estimation was well established before the 
genomic revolution. It involved choosing a complete dataset 
or a subset if the complete dataset was too large, then using 
one of the two well-established methodologies resistant to 
selection biases, such as REML or Bayesian via Gibbs sampling 
(see Misztal (2008) for a review). Both methodologies relied on 
the mixed model equations being sparse and, therefore, easy to 
store even for millions of equations, and REML computations 
were facilitated by efficient sparse matrix inversion procedures 
(Misztal, 2008). REML methodology would support datasets with 
up to a million animals, with cubic increases in computations 
by trait. General REML becomes unstable with many traits. 
Bayesian methodologies offered lower memory requirements 
but the running time in terms of the number of samples had to 
be determined experimentally. Increase in computations with 
multiple traits could be linear.

Changes due to genomic information

When genomic information is available, parameters could 
be obtained using SNP-only models with software such as 
GS3 (Legarra et  al., 2011). In this case, either only phenotypes 
of genotyped animals are considered or genotyped animals 
use pseudo-phenotypes such as deregressed proofs, with 
corresponding problems (Legarra et  al., 2014). Therefore, the 
focus of this section is limited to single-step genomic BLUP 
(ssGBLUP), which can accommodate both genotyped and 
ungenotyped animals directly.

The use of genomic information in REML using ssGBLUP 
(ssGREML) leads to dense equation systems. The inverse of the 
pedigree relationship is usually constructed using Henderson’s 
rules (Henderson, 1984), with at most nine nonzero elements 
per animal. The inverse of the relationship matrix H in ssGREML 
combines pedigree and genomic relationships and contains a 
genomic relationship matrix G. Matrix G is full, and thus it has 
a strong effect on the sparsity of the mixed model equations 
and subsequently on computing costs. Consider a single-trait 
model with two effects, 1 million animals with phenotypes and 
a nearly complete pedigree. The number of nonzero elements in 
the mixed model equations would be approximately 5 million, 
a number easily stored on a current computer. With added 
genomic information from 3,000 animals, the number of nonzero 
elements in the mixed model equations will double to about 
10 million; hence, they will no longer be sparse. With 50,000 
genotyped animals available at many breeding organizations, 
the number of nonzero elements in the mixed model equations 
will be over 1 billion. However, regular sparse matrix techniques 
are inefficient for matrices with dense blocks. Thus, Masuda 
et  al. (2014, 2015) developed a sparse matrix package that 
identifies dense blocks and processes these blocks efficiently (up 
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to 100 times faster than previous algorithms). When included in 
ssGREML, a four-trait analysis of a model with 200,000 animals, 
including 15,000 genotyped animals, would finish in about 10 h. 
Increases in computations would be cubic with the number of 
traits and the number of genotyped animals.

Data selection and parameter estimation

High computing times with genomic information raises the 
question of whether parameter estimation should exclude 
genomic information, especially when computations are 
expensive. When genomic information is not used for selection, 
the only benefit from genomic analyses would be reduced SE of 
estimates (Forni et al., 2011). When genomic information is used 
for selection, the expectation of the Mendelian sampling is no 
longer 0, and nongenomic analyses are biased by preselection 
(Patry and Ducrocq, 2011; Masuda et  al., 2018). The extent of 
biases will depend on the intensity of selection, the type of 
genotyping, and the selection of datasets for analyses. Cesarani 
et al. (2019) simulated populations with and without selection, 
with random and selective genotyping, and with few and 
many generations of data. Analyses included ignoring genetic 
information (REML), ignoring genotypes from ungenotyped 
animals (GREML), and using all information (ssGREML). Biases 
with unselected populations were small especially with more 
than one generation of data. Biases were particularly strong for 
GREML when the best animals were genotyped. ssGREML was 
relatively unbiased but it had the highest cost.

Another study (Wang et  al., 2020) looked at the impact of 
the proportion of selective genotyping on biases. With selective 
genotyping, the additive genetic variance was inflated up to six 
times, and the phenotypic variance that is usually very stable 
across models almost doubled in some analyses. It is unclear 
whether the above results are valid or are artifacts of details 
of the implementation of ssREML. In general, estimates by 
ssGREML are affected by compatibility between pedigree and 
genomic relationships as well as by effective quality control. One 
test for the compatibility is estimating variances with simulated 
data without selection. In such a case, the estimates should be 
identical for REML and ssGREML, regardless of the strategy for 
genotyping.

Changes in parameters over time

One consequence of GS could be faster changes of genetic 
parameters. In particular, if the additive genetic variance is 
decreasing and unfavorable genetic correlations are increasing, 
expected genetic gains based on prior parameters will not be 
realized. However, estimating parameter changes is difficult. 
Under an additive model, when all data used for selection are 
included in the estimation, the estimated parameters correspond 
to those of the base population. Therefore, if the base population 
does not change, the estimated parameters will be the same 
even if the parameters for the youngest generations change.

Changes over time can be estimated either with a random 
regression model (RRM) over time or using data slices (Tsuruta 
et al., 2004). With an RRM over time, parameters can be functions 
of time. However, the shape of the function depends on 
functions used in RRMs. A linear function will restrict changes 
to quadratic for variances and linear for covariances, whereas 
with a quadratic function, changes will be the fourth degree for 
variances and quadratic for covariances. Using a higher degree 
polynomial improves the ability of the RRM to describe more 
complex changes, but at a cost of more parameters, possibly 
with insufficient data to properly estimate those parameters. 

Another problem with the use of RRM with genomics is high 
cost, increasing with higher-order polynomials. With data 
slices, computations involve only a fraction of the data, greatly 
decreasing computations. However, the size of the data slice 
creates a tradeoff between modeling fast changes and biases 
from using truncated data.

A good illustration of choices when estimating parameter 
changes in pigs over time is in the study by Hidalgo et al. (2020). 
As an RRM with the complete dataset was taking months to run, 
these authors opted for estimating parameters using 3-yr data 
slices, each slice including up to three pig generations. Because 
REML was too expensive for a two-trait model (cubic cost with 
traits), Hidalgo et al. (2020) used the optimized Gibbs sampler 
Gibbs3f90, where computations increase approximately only 
linearly with the number of traits. Additionally, computations 
were reduced by pruning genotypes of young animals and 
pruning pedigrees to two generations of ancestors.

Recommendations

Parameter estimation is likely to be relatively unbiased with 
any dataset in an unselected population, although using 
genomic information would reduce SEs of estimation. However, 
when selection present, it is prudent to use at least two to 
three generations of data. With GS, it is important to include 
the genomic information for animals with phenotypes, and 
genotypes from progeny without phenotypes can be removed 
to reduce computations. Models with few traits can be analyzed 
with REML especially if algorithms use efficient sparse matrix 
techniques for dense blocks. Models with large numbers of 
traits are best analyzed with a Gibbs sampler. When parameter 
changes are expected, the least expensive option is to estimate 
parameters using data slices, with pedigrees and genotypes 
truncated to limit computations.

Methods for GWASs

Current status

GWASs seek to map or find genes and genomic regions related 
to traits or diseases via interrogating genotype–phenotype 
relationships. Association studies emerged after QTL mapping 
in plants and animals and linkage mapping in humans. With 
the development of efficient genotyping technology covering 
the whole genome, GWAS started to populate after 2005. 
Currently, GWAS has been applied to study nearly all available 
traits across model and non-model organisms. As of August 5, 
2020, the human GWAS Catalog contained 4,671 publications 
and 196,813 associations, and the Animal QTLdb had collected 
2,308 publications and 191,422 associations across seven animal 
species (MacArthur et al., 2017; Hu et al., 2019; Tian et al., 2020). 
There were a total of 142,261 QTLs reported for cattle from 
1,001 publications curated into the Animal QTLdb database. 
These QTLs involve 646 different traits that comprehensively 
characterize an animal regarding production, reproduction, 
health, body conformation, and efficiency.

GWAS has evolved in many ways in the past 20 yr. 
Sample size of GWAS has increased from hundreds in first-
generation studies to hundreds of thousands such as the 
UK Biobank studies in humans (https://www.ukbiobank.
ac.uk/) and studies involving industry-generated databases 
in livestock animals (Jiang et  al., 2019b). More and more 
traits are being studied in GWAS, ranging from directly 
observable phenotypes, such as diseases, body type, and 

https://www.ukbiobank.ac.uk/
https://www.ukbiobank.ac.uk/
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reproduction, to molecular or intermediate traits, such as 
levels of gene expression, methylation, proteins, metabolites, 
and even recombination rates. Recently, the availability of 
a comprehensive set of phenotypic and medical records in 
humans offered the possibility of phenome-wide association 
studies for better understanding genetic associations (Denny 
et  al., 2010). Breeding values in livestock species have been 
routinely calculated based on hundreds or more relatives for 
selection purposes. These breeding values provide much more 
accurate phenotype data than individual animal phenotypes 
for GWAS, but the variation in reliability needs to be accounted 
for, especially in small samples (Garrick et al., 2009). Genotype 
data in GWAS have also improved with the development of 
genotyping and sequencing techniques. The earliest GWAS 
included thousands of SNPs, while some of the recent GWASs 
used whole-genome sequences. Nonetheless, imputation is 
always an economic way of increasing the number of variants 
and coverage of the genome.

GWAS methods

All GWAS methods seek to model the relationship between 
genotype and phenotype. The classical quantitative genetics 
model assumes the genotype–phenotype relationship to be 
P = G + E, where P is phenotypic value, G is genotypic value, and E 
is environmental effect. Despite different levels of assumptions, 
GWAS models need to be close to this quantitative genetics 
model to be valid.

A single-marker test is the most popular method of GWAS. 
This method takes the form of a logistic regression for case–
control studies of diseases and a linear regression for GWAS 
of quantitative traits. Historically, the single-marker test 
evolved from a simple regression to a regression with principal 
components to account for population structure (Price et  al., 
2006), then to a mixed model approach to account for sample 
relatedness (Yu et  al., 2006). A  mixed model with a single-
marker test can be formulated as P = A + SNPi + E, where A is 
a random animal effect or individual genotypic value and SNPi 
is a fixed effect for a candidate SNP. The relatedness between 
samples can be modeled as a variance–covariance matrix of 
A  via a genomic or pedigree relationship matrix (VanRaden, 
2008). Compared with the classical quantitative genetics model, 
this mixed model replaced G with A + SNPi and introduced some 
redundancy between A and SNPi. Because SNPi is modeled as a 
fixed effect and A as random, the mixed model GWASs lose little 
power due to the overlap.

In addition to single-marker tests, GS models are often 
used in livestock GWAS (Fernando and Garrick, 2013; Misztal 
et  al., 2014a; Aguilar et  al., 2019). Instead of testing one 
marker at a time, GS models include all SNPs in the model, 
thus, P = SNP1 + SNP2 + . . .+ SNPm + E, where SNPi is the effect 
of SNPi, i = 1, …, m. Comparing this model and the classical 
quantitative genetics model, G is replaced with SNP1 + SNP2 
+ … + SNPm, assuming that genome-wide SNPs capture 
most of the QTL effects in the genome. Because this model 
is often solved by assuming random SNP effects or under a 
Bayesian framework, a frequentist statistical test or P-value 
is lacking, and SNP effect sizes or proportions of explained 
genetic variance are commonly used as evidence to support 
associations. Recently, Aguilar et al. (2019) developed a single-
step GWAS (SSGWAS) approach to implement P-values for 
single-marker GWAS studies within the ssGWAS framework. 
Still, LD between SNPs may impact a full-model GWAS 
approach more than a single-marker mixed model test; thus, 

a full-model GWAS could be less powerful but more accurate 
than a single-marker test.

Tips and quality assurance of GWAS

Like any other data analysis research, data quality is essential 
to ensure a valid GWAS. Quality checks are especially important 
for small-sample GWAS because data issues can easily lead to 
many more false-positive than true-positive results. Quality 
assurance procedures can be applied both before and after a 
GWAS analysis. We can check phenotype and genotype data 
before performing an association test. Generally, phenotypic 
values need to approximately follow a normal distribution, and 
outliers removed. We can check the quality of genotype data 
by checking Mendelian inheritance in the pedigree, perform a 
Hardy–Weinberg equilibrium test, and, depending on sample 
size, filter minor allele frequencies (MAFs) at 5% or 1% levels. 
Studies with small sample sizes need to use more stringent 
MAF cutoff levels to ensure that there are enough individuals 
carrying a minor allele in the sample (e.g., no less than 10).

After GWAS, we can still check the quality of the results 
using a quantile–quantile plot (QQ plot) or a Manhattan plot of 
P-values. In a QQ plot, we expect to see a uniform distribution 
of P-values by assuming that the majority of SNPs are not 
associated with the trait. In a Manhattan plot, we expect the top 
GWAS signals to be supported by clusters of SNPs in LD with the 
underlying causal variant(s). Those singled out significant SNPs 
in a Manhattan plot are likely due to data quality or analysis 
issues that sneaked through the quality control procedures.

GWAS in dairy cattle and intersection with 
functional genomics data

There are some unique features in livestock GWAS, particularly 
in dairy cattle. Firstly, the livestock industry has generated large 
volumes of genotype and phenotype data for selective breeding. 
For example, the Council on Dairy Cattle Breeding (CDCB) 
in the United States maintains a dairy genomics database 
with millions of genotyped cattle and hundreds of millions of 
phenotypic records on a variety of economically important traits 
(https://www.uscdcb.com/). While GS has been successful with 
these data, they also provide uniquely powerful opportunities 
for GWAS and other genetics research. To date, this database 
has enabled many large-sample, powerful GWASs that revealed 
QTLs and genomic regions for many production, reproduction, 
health, and body conformation traits in dairy cattle (Cole et al., 
2011; Jiang et  al., 2017; Jiang et  al., 2019a, 2019b). Secondly, a 
sizeable number of animals in dairy cattle populations have 
highly accurate breeding values estimated with data from all 
relatives that can have close to 100% reliability, particularly bulls 
with thousands of daughter records. By using a smaller number 
of dairy bulls with large numbers of progeny phenotypes, 
sequence-level GWAS and fine-mapping studies with millions 
of SNP variants become easily achievable (Jiang et al., 2019a).

After so many GWAS studies conducted and reported in the 
literature, a common question is what is next after GWAS? One 
answer is to go after causal variants. Although the dairy genomics 
database provides powerful data for dairy cattle GWAS, the high 
level of LD in the cattle genome makes the identification of causal 
variants difficult. The ongoing effort of the Functional Annotation 
of Animal Genomes (FAANG) (Giuffra and Tuggle, 2019) project 
will generate useful information to help find causal variants 
under GWAS peaks. However, there could be many years before 
we can easily identify causative variants after a GWAS.

https://www.uscdcb.com/
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An easier target after GWAS is to generate knowledge on 
where the causal/functional variants are in the genome. This 
knowledge can help fine-mapping studies and provide useful 
prior information for GS. We have conducted a few preliminary 
studies by integrating GWAS results and functional genomics 
datasets in cattle. Firstly, we explored transcriptome data across 
multiple tissues in cattle (Fang et  al., 2020). Specifically, we 
identified tissue-specific expressed genes and tested whether 
GWAS signals are enriched in genes specifically expressed in 
some tissues. As a result, we detected relevant tissues for 45 dairy 
traits, including immune-related tissues for fertility, brain and 
neural tissues for milk production, and growth-related tissues 
for body conformation. Secondly, we explored methylome data 
in cattle sperm and found interesting intersections of sperm 
methylation data and GWAS results for male fertility traits 
(Fang et al., 2019). Lastly, we studied the intersection of histone 
marks and GWAS signals in cattle (Liu et al., 2020). By cross-
mapping human epigenomics data to the cattle genome, we 
reported relevant tissues based on epigenome information for 
many dairy traits, including immune tissues for health and 
reproduction traits, multiple tissues for milk production and 
body conformation traits, and thyroid for genome differences 
between beef and dairy cattle. With more functional genomics 
data being generated by current FAANG efforts, more useful 
enrichment between GWAS results and functional genomic 
regions will be revealed that can improve the power of fine 
mapping and accuracy of GS.

GWAS for complex models accounting for 
population structure with GBLUP and ssGBLUP

GBLUP and ssGBLUP
GBLUP is extensively used in the animal breeding industries for 
incorporating genomic information into the genetic evaluation 
of livestock species. Single-step GBLUP (Misztal et  al., 2013) 
additionally accounts for ungenotyped individuals and has 
been adopted by many breed associations and private entities 
managing large-scale breeding programs. Although the main 
goal of GBLUP is the prediction of breeding values, a secondary 
interest focuses on performing GWASs.

Several methods have been proposed and successfully 
applied for embedding GWAS into genomic prediction models. 
Most of the methods commonly avoid formal hypothesis testing 
and resort to the estimation of SNP effects, relying on visual 
inspection of graphical outputs to determine candidate regions 
(Wang et  al., 2012; Garcia et  al., 2020). This approach requires 
visual inspection of Manhattan plots to determine association 
peaks. With the advent of high throughput phenomics and 
transcriptomics, a more formal testing approach with automatic 
discovery thresholds is more appealing for two reasons. First, it 
may not be feasible to inspect thousands of Manhattan plots and 
sort the position of each association peak, and second, when 
QTLs are mapped for large numbers of traits, it is necessary to 
correct for multiple testing.

With the widespread usage of ssGBLUP for genomic 
prediction across the industry, it is important that any GWA 
model incorporates information not only from genotyped 
individuals but also from their ungenotyped relatives that have 
been extensively phenotyped.

Genome-wide association tests from GBLUP and ssGBLUP
When all phenotyped animals are also genotyped, the animal-
centric GBLUP model is represented by equation 4:

y = Xβ + a+ e (4)

where y is the vector of phenotypic values, β is the vector of 
fixed effects, X is the incidence matrix of fixed effects, a is 
the vector of breeding values, and e is the vector of residuals. 
Vectors a and e are assumed to follow a Gaussian distribution, 
thus a ∼ N (0,Gσ2

A) and e ∼ N (0, Iσ2
e ). Matrix G is the genomic 

relationship matrix (VanRaden, 2008) that is computed using 
the matrix of standardized genotypes Z as G= Z Z′.

Alternatively, an SNP-centric GBLUP (Meuwissen et al., 2001) 
model is presented in equation 5:

y = Xβ + Zg+ e (5)

where y, X, b, Z, and e are as defined above and g ∼ N (0, Iσ2
g) 

is the vector of random SNP effects, where σ2
gis the variance of 

each SNP effect. The vector of breeding values a in equation 4 is 
equal to Zg in equation 5.

Strandén and Garrick (2009) showed that estimates of the 
SNP effects in equation 5 can be obtained by back-solving from 
the solutions to the vector of breeding values a in equation 4 
using the expression ĝ = Z′G−1â. Gualdrón Duarte et al. (2014) 
showed that instead of directly using g for performing genome-
wide association, one could build a formal test statistic by 
computing the variance associated with estimated SNP effects 
(equation 6):

var (ĝ) = Z′G−1Zσ2
A − Z ′ G−1CaaG−1Z (6)

where Caa is the portion of the mixed model equations associated 
with elements in vector a from equation 4, and then dividing the 
back-solved estimated SNP effects by their SEs (equation 7). For 
further details, see the section on Significance testing below:

ti = ĝi/
»
var(ĝi) (7)

It is not necessary to compute the whole matrix product in 
equation 6, only the products involving diagonal elements. This 
can be easily parallelized even for a very large number of SNP. 
Also, G−1 and G−1CaaG−1 must be computed only once per trait.

Alternatively, consider augmenting the model in equation 4 
by including a single fixed SNP effect, one at a time to test for 
association (equation 8):

y = Xβ + a+ zibi + e (8)

where zi is the column of the standardized genotype matrix Z 
corresponding to the ith SNP, and bi is the fixed effect of the 
allelic dosage of the ith SNP on the phenotype, and all the other 
quantities are as described for equation 4.

Instead of refitting equation 8 for every fixed SNP effect, 
the Efficient Mixed-Model Association eXpedited (EMMAX) 
procedure (Kang et al., 2010) involves first fitting the null model 
(equation 4) and estimating its variance components, and then 
solving the mixed model equations of equation 8 using the 
variance ratios estimated from equation 4.  Finally, a test of 
association is obtained by dividing the estimated SNP effects in 
equation 8 by their SEs (equation 9):

ti = b̂i/
»
var(b̂i) (9)
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Bernal Rubio et  al. (2016) published an analytical proof that 
shows the mathematical equivalence between equations 7 and 
9. Specifically:

ĝi =
σ2
u

var(bi )
b̂i (10)

and

var(ĝi) =

(
σ2
u

)2

var(b̂i)
 (11)

This is an important result because it shows that all the 
statistical properties of EMMAX (Kang et  al., 2010; Teyssèdre 
et al., 2012; Legarra et al., 2018) apply to the test of association 
derived from back-transformation of breeding values (equation 
7). Computing the test via back-transformation can be done in a 
computationally efficient way without having to recompute the 
mixed model equations for each SNP replacement.

Genome-wide association for ssGBLUP
The calculation of var (ĝ) for GBLUP was extended to ssGBLUP 
permitting the construction of a formal test statistic by 
computing the variance associated with estimated SNP effects 
(Aguilar et  al., 2019; Lourenco et  al., 2020). Let the vector 
of breeding values a in equation 3 be partitioned into two 

subvectors, a =

ñ
a1

a2

ô
, where a2 corresponds to the subvector 

of genotyped animals and a1 corresponds to the subvector 

of non-genotyped animals. Then, the estimation algorithm 
proceeds as follows:

 1. Create the ssGBLUP equations
 2.  Obtain the sparse inverse matrix of the left-hand side 

of the mixed model equations C.
 3.  Extract the submatrix corresponding to the 

genotyped animals, Ca2a2, from matrix C. This 
submatrix contains the prediction error (co)
variances of the estimated breeding values of the 
genotyped animals, â2, i.e., Var (a− â2) = Ca2a2.

 4.  Backsolve for estimates of SNP effects as follows: 
ĝ|û = 1

2Σpiqi
G−1 â2

 5.  Obtain individual prediction error variances of SNP 
effects using the expression from equation 6:

Var (ĝi) =
1

2
∑

piqi
z′iG

−1
Ä
Gσ2

a − Ca2a2
ä
G−1zi

1
2
∑

piqi

where zi is the ith column of matrix Z, corresponding to 
genotypes of marker i across individuals:

 6. Calculate the test statistic from equation 7:

ti = ĝi/
»
var(ĝi)

Significance testing

Under the null hypothesis of no association, the test statistic in 
equations 7 or 9 follows a standard Gaussian distribution, thus 

an associated two-tailed P-value for the test is computed with 
equation 12:

pi = 2(1− Φ −1 (|ti|) (12)

where Φ −1 is the inverse cumulative density function of the 
standard Gaussian distribution.

Gualdrón Duarte et al. (2014) performed stochastic plasmode 
simulations and empirically confirmed the null distribution of 
the test statistic. Wang et al. (2020) compared the distribution 
of this test statistic to alternative tests and showed that, for 
relatively low marker densities, where some markers explain 
a large proportion of the phenotypic variance, this test is 
suboptimal and loses power because the markers in question 
are used in G of equation 4.  Moreover, these authors propose 
corrections for this test statistic to regain some power. 
Conversely, these authors showed that for the typical situation of 
dense markers, where each marker explains a small proportion 
of the phenotypic variance, this test statistic performs well and 
there is no need to apply corrections.

Once a set of association P-values for each SNP is computed, 
a multiple test correction is recommended to establish a 
significance threshold. Gualdrón Duarte et al. (2014) showed with 
plasmode simulations that establishing a Bonferroni threshold 
for a highly colinear SNP set results in overly conservative 
thresholds. Because the extent of LD in livestock species if much 
larger than in humans (Qanbari, 2020), a Bonferroni threshold 
is probably not recommended for GWASs in animal science. 
An empirical permutation Bonferroni threshold is likely better, 
but it is computationally demanding, and it must be applied 
separately for each phenotypic trait. A  Bonferroni correction 
usually controls the type-one error rate at the experiment-wise 
level but at the expense of a dramatic decrease in power. In 
these circumstances, a less stringent, yet robust multiple test 
correction procedure such as estimating the proportion of false 
positives (Fernando et al., 2004) offers a good tradeoff between 
controlling false positives and false negatives. Fernando et  al. 
(2004) demonstrated that the proportion of false positives 
controls type-one error rate even for correlated tests and that 
it can be applied to many of the traits simultaneously (as it 
happens in transcriptomics analyses) to control the proportion 
of false positives for the whole experiment.

Confidence intervals for the position of a QTL peak

Once a significant association peak is detected using the test 
in equation 7, a confidence interval can be computed by using 
a jackknife procedure (Hayes, 2013). In brief, the dataset is split 
into two parts by randomly assigning each observation to one of 
the two sets. A genome-wide association is performed for each 
data partition and the position of the association peak in each 
partition is recorded. The procedure is repeated K times and the 
standard deviation of the association peak is computed for each 
data partition using equation 13:

se (x̄) =

Ã
1
4K

K∑
k=1

(v1k − v2k)
2 (13)

where v1k and v2k are the positions of the association peaks for 
data partitions 1 and 2 in iteration k. Lastly, a 95% confidence 
interval for the position of the peak is obtained with equation 14:

v ± z97.5se(x̄) (14)
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where vis the position of the association peak estimated 
using the full dataset, and z97.5  =  1.96 is the value of the 97.5 
percentile of the standard Gaussian distribution. The described 
procedure does not have to be applied genome-wide, but locally, 
including only a set of SNPs around the association peak. This 
procedure can be used to find plausible genomic intervals for 
the association peak, which are particularly useful for post hoc 
bioinformatic analyses, such as searching for genes and other 
annotated genomic features (Casiró et  al., 2017; Velez-Irizarry 
et al., 2019).

Estimation of proportion of variance explained by a 
QTL tagged by an association peak

The variance explained by a putative QTL is an important 
genetic parameter that is often reported in association studies. 
The variance associated with a QTL peak can be computed 
in two ways with the procedure described above. The most 
common way consists of selecting a window around the 
association peak. This can be done, for instance, using the 
confidence interval method presented above or by selecting an 
arbitrary interval (Gualdrón Duarte et al., 2016) or by inspecting 
the Manhattan plot and searching for all the SNPs that are 
significantly associated with the trait (Bernal Rubio et al., 2015). 
Subsequently, two relationship matrices are computed: Gw 
based on the SNP included in the selected window and G-w based 
on all the other SNPs. Then, a linear mixed model is fit including 
two random effects, one associated with each relationship 
matrix (equation 15):

y = Xβ + a−w + aw + e (15)

where a−w ∼ N (0,G−wσ
2
−w) and aw ∼ N (0,Gwσ

2
w). Lastly, the 

proportion of the variance explained by the association peak is 
obtained using equation 16:

h2
w =

σ̂2
w

σ̂2
−w + σ̂2

w + σ̂2
e
. (16)

There are two computational bottlenecks when using this 
procedure. The first one is the recomputation of the two 
relationship matrices, especially the computation of G−w.  
The second one is solving the mixed model equations. 
Computation of Gw may also be computationally onerous, 
depending on the number of animals, but this matrix is 
generally much smaller than G−w because it includes only a 
few SNPs (in the order of tens or hundreds of SNPs vs. tens 
of thousands).

A computationally less onerous approximation (Casiró 
et al., 2017) consists of resorting to equation 8, where the SNP 
is assumed to be a fixed effect, and then the variance explained 
by the ith fixed SNP effect is approximated using equation 17:

σ̂2
i = var(zi)b̂

2
i

 (17)

where var(zi) is the variance of the ith column of the Z matrix 
and b̂i can be obtained using equation 8. It is important to note 
that all these procedures only produce gross approximations 
to the explained variance, and they will likely overestimate 
the variance explained by the QTL represented by the 
association peak, but these expressions may be useful to 
prioritize QTLs according to the relative magnitude of their 
effect sizes.

Increased Fluctuations of Genetic 
Evaluations with GS
GS introduced considerable changes in the field of animal 
breeding and genetics since its first implementation in 2009. The 
most important change was the increase in genetic gain resulting 
from the decrease in generation interval and greater accuracy 
of prediction of GEBV. However, the widespread adoption of 
GS brought some challenges, namely high computational 
demands and the need for new methods. Additionally, reports 
have emerged on differences in variance components (Hidalgo 
et  al., 2020) and inbreeding levels (Makanjuola et  al., 2020) 
when genomic information is used. Those differences do 
not necessarily imply that genomic information is causing 
a reduction in additive genetic variance or an increase in 
inbreeding. It means that the use of a new source of information 
and recent methods results in contrasting values to those from 
pedigree-based approaches. Once selection is based on genomic 
information, it is fair to use this information in all steps of the 
selection process to avoid biases.

Additional changes that have been reported since GS started 
being used relate to GEBV. Fluctuations in GEBV in subsequent 
evaluations have been observed even for animals that have no 
phenotypes added to the evaluation. Questions on the reason 
for such fluctuations are frequent in the livestock industry. This 
is because, under traditional BLUP, animals without new data in 
subsequent evaluations had stable EBV even when their accuracy 
was low. However, changes in EBV could still be observed for 
some animals when fixed effects were redefined, independently 
of accuracy levels. Provided that no model changes are made, 
EBV changes are limited to animals that have new data and those 
directly related to them through the pedigree. In fact, under 
BLUP, the EBV of an animal is conditioned only on the breeding 
value of its sire and dam. As pedigree links are sparse, EBV can 
be considered stable because most of the animals will have no 
changes. The high stability of EBV from BLUP generated great 
confidence in the method. Additionally, stability is an important 
factor because bulls are priced according to their genetic merit, 
and large, unexpected changes in EBV would create oscillations 
in the semen market.

Pedigree relationships in BLUP are only expectations of the 
proportion of alleles shared among individuals, whereas in 
GBLUP or ssGBLUP the genomic information is used to better 
capture relationships at the gene level. Relationships based on 
SNPs are termed realized relationships, being, therefore, based 
on the observed proportion of shared alleles that are identical 
by state. Because of that, all genotyped animals can have some 
level of relationship even though they do not share common 
ancestors in the current population.

Although the pedigree relationship matrix (A) is sparse, the 
genomic relationship matrix (G) is dense, which means animals 
are more connected. Because of the stronger connections, when 
phenotypes are added to a portion of the genotyped animals in 
the evaluation, changes in GEBV are more frequent because this 
information is shared among nearly all genotyped animals. When 
only a portion of the pedigree animals is genotyped, ssGBLUP 
(Aguilar et al., 2010; Christensen and Lund, 2010) is the method of 
choice because it combines pedigree and genomic relationships 
into a realized relationship matrix (H). Another feature of 
ssGBLUP is that genomic information is back propagated (i.e., 
implicitly imputed) to non-genotyped animals that are related 
to genotyped animals through the pedigree (Legarra et al., 2009). 
This means relationships among non-genotyped animals are 
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enhanced by the genomic information of their relatives, which 
can create additional fluctuations in GEBV for non-genotyped 
animals.

To investigate changes in EBV and GEBV when phenotypes 
for some animals are added to the evaluation, we mimicked 
an evaluation system with two yearly runs using an American 
Angus dataset. The first evaluation used 4.26 M phenotypes 
for postweaning gain until July 2017 (Jul2017) and the second 
evaluation used 4.38 M phenotypes until December 2017 
(Dec2017). The number of animals in the pedigree and with 
genotypes was kept constant between the two subsequent 
evaluations at 10,661,517 and 509,072, respectively. A  total 
of 54,798 genotyped and 69,996 non-genotyped animals 
had phenotypes added to the Dec2017 evaluation. For each 
evaluation, EBV and GEBV were computed by BLUP and ssGBLUP, 
respectively, using the BLUPF90 software suite (Misztal et  al., 
2014b). Figure 1 shows the distribution of changes in EBV and 

GEBV from Jul2017 to Dec2017 for genotyped and non-genotyped 
animals with and without added phenotypes. Negative values 
mean a decrease in breeding values from Jul2017 to Dec2017.

Changes in BLUP EBV and ssGBLUP GEBV for non-genotyped 
animals that had no data added from Jul2017 to Dec2017 (Figure 
1a) were minimal, averaging 1.5% and 1.8% of one additive 
genetic standard deviation (SDa), respectively. The small 
differences between the distribution of EBV and GEBV can be 
attributed to the contributions of genotyped relatives to non-
genotyped animals (i.e., enhanced relationships). When looking 
at genotyped animals without added phenotypes in subsequent 
evaluations (Figure 1b), changes in EBV and GEBV had a wider 
distribution but EBV changes had a higher frequency of very 
small differences (i.e., close to zero), whereas GEBV changed 
more for a larger number of animals. These are the most 
concerning changes to breeders because new data were not 
added to those animals; however, they are genotyped and are 

Figure 1. Distribution of EBV from BLUP and GEBV from ssGBLUP for (a) non-genotyped animals without added phenotypes, (b) genotyped animals without added 

phenotypes, (c) non-genotyped animals with added phenotypes, and (d) genotyped animals with added phenotypes. Changes were expressed as a percentage of the 

SDa of 27.01. 
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more related through H, which means they share more alleles 
with animals that had additional phenotypes in the Dec2017 
evaluation. Although these changes are surprising to breeders, 
they are expected based on GS theory. The average change in 
GEBV for genotyped animals without added phenotypes was 
2.4% of 1 SDa and in EBV was 2.0%; however, changes were more 
extreme for EBV (up to 2 SDa) than for GEBV (up to 0.8 SDa). The 
distribution of changes for EBV and GEBV for non-genotyped 
animals with added phenotypes was very similar (Figure 1c), 
with a slightly higher frequency of extreme changes for EBV. 
For genotyped animals with phenotypes added from July2017 to 
Dec2017 (Figure 1d), many more animals had smaller changes 
in GEBV than in EBV. The maximum change was 2.8 SDa for EBV 
and 0.9 SDa for GEBV. 

If the question is why more extreme changes are observed 
for EBV than for GEBV, the answer is simple; although average 
changes are higher for GEBV, the changes in (G)EBV are 
bounded by the accuracy of (G)EBV. As more information is 
used to compute GEBV than EBV, their accuracy is higher, and 
consequently, their possible changes are less extreme. When 
changes from Jul2017 to Dec2017 for all genotyped animals 
were investigated as a function of individual accuracy and SE 
of prediction, we observed more changes in EBV and GEBV for 
animals with lower accuracy (Figure 2).

Many animals had changes in EBV that were over 1.96 times 
the standard error of prediction (SEP) (Figure 2a). The 1.96 × SEP 
corresponds to the 95% confidence interval of possible changes 
for EBV. When the absolute changes in GEBV were plotted against 
the possible changes (Figure 2b), values were much smaller than 
the possible changes, and very few animals had changes over 

1 SD of GEBV. Although more animals have general changes in 
GEBV than in EBV when additional phenotypes are added to the 
evaluation system, these changes are of lower magnitude.

In the context of genomic evaluation and assuming no new 
phenotypes are added, any change in the genomic relationship 
matrix can cause changes in GEBV. Misztal et al. (2020) showed 
that when the core animals used to construct the inverse of G 
in the algorithm for proven and young (Misztal et al., 2014c) are 
updated, the average change in GEBV is 5% of 1 SDa. Although 
the correlation between GEBV using different core groups is 
greater than 0.99, the maximum change can be as high as 1 
SDa. The same authors also showed that modifications in the 
proportion of the pedigree relationship matrix that is blended to 
G to avoid singularity problems can cause considerable changes 
in GEBV.

Although the changes discussed here are from the methods 
based on genomic relationships, GEBVs from SNP effect methods 
are similarly subject to changes when new phenotypes are 
added to the evaluation system or when the training population 
is updated. The inclusion of new genotyped animals also causes 
changes in both methods.

Before GS was implemented, changes in EBV were mainly 
due to model changes, redefinition of contemporary groups, new 
variance components, and new data. In the latter, fluctuations 
are more substantial for animals with added phenotypes and 
their relatives through A, which is usually a limited group of 
animals. Although the average change in EBV is low, there are 
more extreme fluctuations than with GEBV; thus, changes in EBV 
for low accuracy animals are artificially low. Changes in GEBV 
are caused by the same factors as for EBV; however, changes 

Figure 2. Absolute changes in EBV and GEBV as a function of individual accuracies. Evaluations were based on July 2017 and December 2017 data, and accuracies were 

based on the SEP from BLUP (i.e., pedigree and phenotypes). Different classes of individual accuracies are based on information from pedigree and phenotypes only. 
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occur for larger numbers of animals because all genotyped 
animals are somehow related through G. Although GEBVs have 
higher average changes, generally, changes are less extreme, a 
reflection of the higher accuracy of GEBV.

Change in GEBV for more animals when new phenotypic 
data are added is an inherent factor of the genomic evaluation 
system simply because genomic information connects more 
animals. One way to minimize the impact of these changes is 
to market groups of sires (e.g., semen from groups of sires) with 
high average accuracy instead of individual sires. Another way is 
to recognize that these changes are based on the GS theory and 
are part of the system.

Conclusions
Although GS has been widely successful, many remaining issues 
are still being identified and addressed. More theoretical studies 
following analyses of large field datasets are needed to fully 
understand the effects of long-term GS. Parameter estimation 
with genomic information requires careful selection of data to 
minimize computations and biases. Methods for GWAS need to 
include strong LD and effects of inadequate modeling, especially 
with small datasets. Fluctuations of genomic predictions reflect 
limited prediction accuracies and can be managed to reduce risk 
and achieve high genetic gains.
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