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The last decade has been somewhat of a renaissance period for the field of macrophage biology. This renewed interest, combined
with the advent of new technologies and development of novel model systems to assess different facets of macrophage biology,
has led to major advances in our understanding of the diverse roles macrophages play in health, inflammation, infection and repair,
and the dominance of tissue environments in influencing all of these areas. Here, we discuss recent developments in our
understanding of lung macrophage heterogeneity, ontogeny, metabolism and function in the context of health and disease, and
highlight core conceptual advances and key unanswered questions that we believe should be focus of work in the coming years.
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INTRODUCTION
Macrophages are largely sessile, tissue dwelling phagocytes that
are present in every organ of the body. The biology of
macrophages has been studied for well over one hundred years
since being described by Elie Metchnikoff at the end of the
nineteenth century. However, arguably, it is the last 10–15 years
that has seen major revisions of key concepts in macrophage
biology, from nomenclature of subsets and activation states to the
ontogeny of these cells. For instance, while macrophages have
historically been described as M1 (“classically-activated”) or M2
(“alternatively-activated”) largely based on in vitro culture
systems1, it is now beyond doubt that a binary classification such
as this is inadequate to capture the complexity of macrophage
plasticity and activation states, particularly in vivo2. Technological
advances have revealed tremendous diversity and heterogeneity
between macrophages from different tissues and even within
different niches of the same tissue in terms of phenotype,
transcriptome and metabolome3,4. While macrophages generally
excel at the ‘silent’ clearance of debris, apoptotic host cells and the
capture and destruction of microbial intruders, it is now clear they
also play far broader roles and are exquisitely tailored to meet the
demands of the local tissue microenvironment in which they
reside. Indeed, the in vivo tissue environment may be the major
determinant governing macrophage development, recruitment,
activation and function, highlighting the importance of careful
consideration of the distinctive properties that different tissues
possess, in steady state and during inflammation, to fully
understand the role of macrophages in different locations
throughout the body.
In this article, we review recent developments in the under-

standing of macrophage heterogeneity, ontogeny and function in

lung health and during inflammation, immunity and tissue repair.
Using pulmonary fibrosis as an example, we discuss how
dysregulated macrophage behaviour can contribute to lung
pathology and how mouse models have revealed the complexity
of the macrophage response to lung injury. Along the way we
identify key areas that we believe warrant further investigation.

DEFINING PULMONARY MACROPHAGES IN THE HEALTHY
LUNG
Macrophages are distributed throughout the lung and can broadly
be divided into those present in the airways/alveoli and those in
the tissue interstitium/parenchyma. While it has been clear for
decades that pulmonary macrophages exist in both airways and
tissues, it is only recently that we have come to appreciate the
degree of heterogeneity and diversity between different macro-
phage subsets in each location. In particular, the advent of single
cell technologies, such as single cell RNA sequencing (scRNA-seq),
has allowed tissue macrophage heterogeneity to be assessed in a
completely unbiased manner across several species5–11.
In mice, alveolar macrophages (AlvMϕs; see Box 1) in the healthy

lung are defined by their high and uniform expression of CD11c,
SiglecF and CD169 (Siglec1; sialoadhesin), and lack of CD11b
expression12–14. Their residence in the airways can be confirmed
by performing bronchoalveolar lavage (BAL) where they are the sole
macrophage population in health15, although it is important to note
that this method only retrieves a fraction of the macrophages
resident in the airways. Murine interstitial macrophages (IntMϕs)
express high levels of CD11b, but lack expression of SiglecF12–14.
Compared with AlvMϕs, considerably less is known about the IntMϕ
compartment, likely reflecting the fact that these macrophages are
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difficult to isolate from lung tissue using standard enzymatic
protocols. Indeed, flow cytometric analysis of whole mouse lung
digests suggests that IntMϕs form a small fraction of the overall
macrophage compartment in health, with AlvMϕs outnumbering
them by 5–10-fold15,16. Whether this is also the case in humans is
currently hard to determine with certainty, as no comparable set of
surface markers has yet been identified to unequivocally distinguish
human AlvMϕs from IntMϕs in BAL, sputum or in lung tissue digests.
Nevertheless, limited fluorescence microscopy of mouse and human
lung, which circumvents the need to dissociate solid tissue, suggests
that tissue (IntMϕs) are more abundant than suggested by flow
cytometry17–19. Thus, the notion that these cells represent a minor
macrophage population should be reconsidered (Box 2).
It is also important to note that due to the overlapping

expression of CD11c, CD11b and SiglecF by other myeloid cells, in
particular CD11c+ dendritic cells (DCs) and SiglecF+CD11b+

eosinophils, expression of these surface markers alone is not
sufficient for the characterisation of murine lung macrophages.
Instead, a more rigorous approach is needed to define bona fide
murine pulmonary macrophage subsets, with a growing con-
sensus that the optimal strategy is by their co-expression of the
high affinity FcγR1 (CD64) and Mer-tyrosine kinase (MerTK), a key
efferocytic receptor12,15,20. In health, AlvMϕs and IntMϕs can then
be identified amongst the CD64+MerTK+ fraction by their distinct
CD11c/CD11b profiles and other phenotypic traits (Fig. 1). As
discussed below, distinction between these anatomically distinct
cells becomes less apparent when homeostasis is perturbed.
Moreover, recent work has shown that some DCs can acquire
expression of CD64 in certain contexts21, emphasising the need
for multi-parameter analysis when characterising these cells.
Notably, neither AlvMϕs nor IntMϕs can be defined using the
M1/M2 nomenclature system. Indeed, in the healthy lung both
populations co-express markers historically considered “M1” and
“M2” specific14,15. For instance, murine AlvMϕs constitutively co-
express CD11c and Ym-1 (encoded by Chil3) which have been
used by some as defining features of so-called “M1” and “M2”
macrophages22,23. However, Ym-1 expression by homeostatic
AlvMϕs is independent of IL-4–IL-4R signalling15, the axis
controlling “alternative” activation of macrophages, and CD11c
expression is independent of exposure to microbial products or
inflammatory cytokines thought to drive so-called “M1” polarisa-
tion24,25. This highlights the inadequate nature of the M1/M2
nomenclature in defining macrophages in vivo and that as a field
we need to abandon using it26.
Recent studies employing scRNA-seq have begun to reveal

additional heterogeneity in the murine pulmonary macrophage
compartment. Whereas AlvMϕs appear to be relatively

homogeneous6, the IntMϕ compartment harbours at least two
distinct subsets defined by their expression of CD206 (mannose
receptor)14,18,27. The anatomical locale in which each of these
subsets are found remains contentious. CD206− IntMϕs that
mostly express MHCII+ have been suggested to be enriched in the
interstitial tissue adjacent to the alveoli, whereas their CD206+

MHCII− counterparts appear more numerous in the interstitium
surrounding the bronchi18. Multi-parameter fluorescence micro-
scopy has also started to elucidate the nature of the niche in
which these subsets may exist. For instance, CD206–MHCII+

IntMϕs can be found to interact with nerves, whereas CD206+

MHCII– cells may occupy a perivascular niche27. Transcriptional
profiling has revealed other useful markers for the identification of
these subsets, including Lyve-1, folate receptor beta (FRβ) and
CD36, which appear to be more highly expressed by perivascular
CD206+ MHCII– macrophages. Work by the Khanna group
identified a population of CD169-expressing IntMϕs28, although
it seems these largely overlap transcriptionally with the
CD206–MHCII+ IntMϕs identified by others. CX3CR1 has also been
suggested as a defining marker of these subsets27, although other
studies have shown that CX3CR1 is expressed equally across these
subsets14,18,29. Thus, while it is clear that the murine IntMϕ
compartment is heterogeneous, consensus is yet to be reached on
the best strategy to define these cells.
The identity of macrophage subsets in the human lung has also

become clearer recently. Human AMϕs express high levels of HLA-
DR, CD11b and CD206 together with CD169 and MARCO7,13,30.
CD163 appears to define two subsets of AMϕ in lung tissue from
humans and non-human primates. However, whereas CD163hi

AMϕs are abundant in BALF, CD163lo AMϕs are relatively rare13,
questioning whether they truly represent AlvMϕs. Importantly,
while SiglecF has become somewhat of a de facto marker of
murine AlvMϕs, its human paralog, Siglec8, is absent from AMϕs
in man13. Despite only partial conservation in terms of phenotype
between mice and humans, recent transcriptional profiling
suggests that these cells share a core gene signature, including
expression of PPARG, FABP4, FFAR4, FN17,31–34 (Fig. 1). The
phenotypic and transcriptional identity of human IntMϕs during
health is limited by access to healthy lung tissue. Nevertheless,
they appear to be defined as HLA-DR+CD11b+CD36+ cells lacking
CD169 expression13, a phenotype that has recently been
confirmed using humanised mice35. Moreover, heterogeneity
similar to that seen in mice is likely to exist amongst human
IntMϕs27, with one study suggesting the intensity of HLA-DR and
CD36 a defining characteristic7.

MACROPHAGE FUNCTION IN HEALTH
As immunologists, we tend to consider the primary function of
macrophages is to act as the first line of defence against
pathogens. Indeed, the positioning of macrophages in the airways
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means that they will be one of the first cells to encounter air-
borne pathogens and altering the ability of airway macrophages
to detect, engulf and kill respiratory pathogens leads to increased
susceptibility to a variety of bacteria, viruses and fungi36–41.
However, as described below, to avoid excessive and potentially
harmful pro-inflammatory responses being mounted against
environmental antigens encountered by airway macrophages,
these cells are held in a state of relative hyporesponsiveness via a
range of powerful inhibitory mechanisms42. In the absence of
infection, the principal role of airway macrophages is the
regulation of pulmonary surfactant, the lipid-protein complex
produced by the respiratory epithelium to lubricate the lungs and
allow frictionless expansion/contraction. Consistently, the AlvMϕ
transcriptional signature is dominated by genes associated with
lipid metabolism in mouse and man7,43,44. Macrophages are
indispensable for this function, as spontaneous pulmonary
alveolar proteinosis (PAP) develops in mice and humans with
absent or dysfunctional AlvMϕs45–50. Likewise, dead, dying and
senescent cells accumulate in the absence of functional airway
macrophages, demonstrating their key efferocytic role43. Airway
macrophages may also maintain the integrity and responsiveness
of the respiratory epithelium. For instance, production of
immunoregulatory cytokines, such as TGFβ and IL-10, may modify
epithelial cell function through regulation of ion and fluid
transport42,51 and AlvMϕ-derived fibronectin may act as a
proliferative factor for airway epithelial cells52. Suppressor of
cytokine signalling (SOCS)-containing vesicles released from
AlvMϕs may regulate the responsiveness of the epithelium to
e.g., TLR ligands53,54.
Compared with AlvMϕs, the mechanisms of regulation and

homeostatic functions of IntMϕs are poorly understood55, although

it is clear that all murine IntMϕ subsets are avidly phagocytic and can
capture E.coli bioparticles in vivo14,18, suggesting they may act as a
second line of defence should the epithelial barrier be breached.
Their constitutive production of IL-10 under normal physiological
conditions, in both mouse and man18,29,56–58, suggests an immunor-
egulatory role. It is likely this involves supporting regulatory T cells
locally in the lung parenchyma, given that IntMϕs are thought to be
non-migratory59. However, IntMϕs may also alter T cell responses
indirectly through IL-10-dependent modulation of DC migration and
priming activity56.
Exposure to bacterial CpG DNA leads to IntMϕ expansion and

augmentation of IL-10 production29, suggesting these cells may be
inherently anti-inflammatory. Indeed, Cx3cr1-mediated deletion of
Il10 leads to increases susceptibility to allergic asthma in mice60.
Production of platelet-derived growth factor (PDGF) by IntMϕs
suggests they may also support fibroblast and epithelial home-
ostasis61. Finally, given their occupation of distinct anatomical
niches, it is intriguing to speculate they may differentially contribute
to nerve and vascular endothelial cell homeostasis, similar to their
counterparts in the gut wall62.

LUNG MACROPHAGE ONTOGENY
Macrophage origins in health
Historically, macrophages were thought to be part of a linear
mononuclear phagocyte system where tissue macrophages were
continually replaced by blood monocytes, which themselves are
replaced by dedicated bone marrow progenitors63. However, over
the last 10 years there has been a conceptual revolution in our
understanding of macrophage ontogeny with the discovery that
many tissue macrophages derive from embryonic progenitors and

Fig. 1 Heterogeneity, phenotypic profiles and functions of macrophages in the healthy lung. The lung macrophage compartment is
heterogeneous, with at least two populations occupying distinct anatomical niches in the healthy lung. Macrophages are present in the
bronchoalveolar space, including the alveoli where gaseous exchange occurs. Alveolar macrophages (AlvMϕs) are defined by their expression
of CD11c, MARCO and CD169 in both mice and humans, although additional species-specific markers must be used to define them accurately.
AlvMϕs are crucial for regulating surfactant produced by the respiratory epithelium as well as maintaining epithelial integrity and
responsiveness. Their high phagocytic capability allows them to clear apoptotic/senescent cells and inhaled particles efficiently. They also act
as the first line of defence against air-borne pathogens, although the relative role of resident AlvMϕs versus elicited, monocyte-derived
macrophages in immune protection varies depending on the nature of the insult (see text and Fig. 3). Macrophages are also found in the
interstitial space between the alveoli and the capillary beds, as well as surrounding larger airways (bronchi). These interstitial macrophages
(IntMϕs) are phenotypically distinct from AlvMϕs and at least two subsets exist in mouse and man defined by differential expression of MHCII
(HLA-DR), Lyve-1 and/or CD36. IntMϕs may act as a second line of defence under the epithelial barrier and basement membrane. In health,
they may support the stromal/structural compartment through growth factor supply, as well as maintaining T cells and acting a rich source of
IL-10. Although nerve- and blood vessel (BV)-associated IntMϕs have been described, whether these represent obligate niches is under
debate.
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maintain themselves autonomously through in situ self-renewal64–74.
While some older studies had demonstrated the ability of
macrophages to self-renew75, it is the development of elegant
lineage tracing models that has led to major advances in our
understanding of macrophage origins. For instance, genetic fate
mapping using mice with tamoxifen-inducible Cre recombinase
under the control of the Csf1r, Runx1, Cx3cr1 or Tie2 promoters has
shown that brain microglia derive from yolk sac progenitors and
require little, if any, contribution from blood monocytes across the
life of an animal64,65,67,69,76. Using similar systems, it was shown that
yolk sac progenitors contribute minimally to lung AlvMϕs77. Instead,
tracing of foetal and adult haematopoiesis using Flt3Cre mice shows
haematopoietic stem cell (HSC)-derived cells make a major
contribution to AlvMϕs65,68,74. This, combined with the fact that
AlvMϕs develop within the first few days of life in mice and humans
in parallel with alveolisation of the lung13,78,79, led to the idea that
they derive predominantly from foetal monocytes. That AlvMϕs are
unaffected in adult monocytopenic Ccr2–/– mice and show little
exchange in the context of parabiosis or tissue protected bone
marrow chimeric mice supported the notion that these cells self-
maintain throughout adult life in the absence of inflammation or
infection68,78. Moreover, analysis of AMϕ longevity in the human
context supported these observations in mice. By analysing
macrophages obtained by transbronchial biopsies of recipients of
sex mismatched lung transplants in a longitudinal manner, Eguíluz-
Garcia et al. showed that the majority of AMϕs remain of donor
origin in this setting, suggesting human AMϕs maintain themselves
autonomously in situ80, a finding supported by an independent
study analysing AMϕs obtained by bronchoalveolar lavage81.
However, several recent studies have started to challenge this

model. First, longitudinal analysis of Flt3Cre-Rosa26LSL-YFP reporter
mice showed increases in labelling of AlvMϕs over time, indicative
of age-dependent contribution of HSC-derived cells to the
AlvMϕpool, a phenomenon not seen in brain microglia65. This
highlights the need for longitudinal analysis when considering
macrophage dynamics, something that was not always performed
in early lineage tracing studies64,74. Indeed, longitudinal analysis of
Ms4a3Cre reporter mice, which allow tracing of all cells deriving
from bone marrow granulocyte-monocyte progenitors (GMPs),

supports the idea that AlvMϕs require replenishment from bone
marrow-derived monocytes over the life course71 (Fig. 2). These
data are consistent with recent work assessing AlvMϕ turnover
using so-called ‘MISTRG’ humanised mice, which have genes
encoding human M-CSF (also known as CSF-1), GM-CSF (also
known as CSF-2), IL-3 and thrombopoietin ‘knocked-in’ to their
respective mouse loci to support human myeloid cell develop-
ment, as well as a transgene encoding human SIRPα to prevent
engulfment and destruction of human cells35,82. Moreover, the idea
of AlvMϕ replenishment by monocytes is supported by a recent
study using scRNA-seq to determine AMϕ longevity in the context
of sex-mismatch lung transplants where the majority of donor
AMϕs appear to be replaced by recipient cells83. Why different
studies using transplanted tissue reach discordant conclusions is
unclear, but could reflect differences in methodologies used, for
instance scRNA-seq versus fluorescence in situ hybridisation (FISH)
for X/Y chromosomes, or the degree of injury caused by
transplantation-related ischaemia and reperfusion. Clearly further
work is warranted to clarify the dominant replenishment mechan-
isms underlying the homeostatic maintenance of AlvMϕs.
The developmental origin of IntMϕs has started to be

unravelled in the past few years, although these cells have
attracted much less attention than their AlvMϕ counterparts.
Genetic fate mapping indicates an initial contribution of yolk sac
progenitors to the IntM pool65,77, but these appear to be largely
replaced, first by foetal liver-derived macrophages and then by
HSC-derived macrophages during the early post-natal period27,65

(Fig. 2). CCR2-dependent bone marrow-derived cells continue to
replenish IntMϕs during adulthood, albeit at a low rate, and
despite the heterogeneity described above, IntMϕ subsets appear
to display similar replenishment kinetics27,84. Notably, despite
clear evidence of progressive replenishment by monocytes, intact
Ccr2–/– mice have normal numbers of IntMϕs18,29, serving as a
cautionary note that Ccr2–/– mice cannot be used in isolation to
determine the contribution of monocytes to tissue macrophage
pools, at least in health. This suggests potential redundancy
between chemokine receptors involved in monocyte navigation85

and/or that compensatory mechanisms maintain macrophages in
the context of monocytopenia. Indeed, both AlvMϕs and IntMϕs

Foetal liver-
derived Mφ

Yolk sac-
derived Mφ

Bone marrow-
derived Mφ

Alveolus

Newborn Neonatal/
juvenile

Interstitium

Adult
(young)

Adult
(aged)

Fig. 2 Pulmonary macrophage ontogeny during health. The contribution of distinct progenitors to the pulmonary macrophage
compartments is highly dynamic and alters with age. During embryonic development (in mice) yolk sac-derived macrophages colonise the
lung and these remain present at birth. However, these are outnumbered by foetal liver-derived progenitors that enter the lung prior to birth,
some of which move into the airways upon alveolarization within the first days of life. During the neonatal period, where there is massive
tissue growth, all macrophages show high levels of proliferation to occupy the newly created niches. This is sufficient to expand the AlvMϕ
compartment with little, if any, contribution from bone marrow-derived monocytes. However, recent work has suggested that during
adulthood under homeostatic conditions AlvMϕs are replenished, albeit at low rates, by bone marrow-derived, CCR2-dependent monocytes.
These monocytes replace IntMϕs at a higher rate, although in the unperturbed lung, the IntMϕ compartment likely contains macrophages
derived from the yolk sac, foetal liver and bone marrow, with the latter dominating numerically.
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can and do proliferate under normal physiological conditions15,68.
While this appears to be insufficient to maintain these popula-
tions, it may be sufficient in the absence of monocytes. It is also
important to appreciate that self-renewal and derivation from
monocytes are not mutually exclusive mechanisms of macro-
phage maintenance and, in certain contexts, monocyte-derived
macrophages proliferate more readily than their embryonic
counterparts73,86,87. Replenishment by monocytes has been
proposed to arise in response to niche availability88, although
the factors that govern ‘availability’ remain poorly understood and
it is unclear if this differs in distinct subanatomical niches within
the lung. Alternatively, there is evidence that different precursors
have distinct metabolic states that may determine their long-term
persistence in the lung, suggesting that cell-intrinsic properties
may also govern replenishment kinetics89.

Macrophage origin following injury, inflammation or
infections
The mechanisms that govern macrophage expansion or repopula-
tion following injury, infection or inflammation appear to be
dependent on the nature of the insult. Acute inflammation or
severe infection often leads to loss of tissue resident macro-
phages, a phenomenon described as the ‘macrophage disap-
pearance reaction’ (Fig. 3). For instance, sterile inflammation
induced by instillation of LPS in mice leads to a transient loss of
AlvMϕs and expansion of IntMϕs in the tissue (unpublished
observations). IntMϕ expansion is impeded by Ccr2 deficiency29,
suggesting a major role for monocyte recruitment in this process.
In contrast, AlvMϕ repopulation during inflammation resolution
appears to rely exclusively on local proliferation71. In contrast,
following a more substantial inflammatory insult, such as that
induced by administration of bleomycin or silica to model lung
fibrosis or infection with influenza, leads to replacement of
resident AlvMϕs with monocyte-derived cells90,91. Consistent with
this, monocyte-derived cells come to dominate the AMϕ
compartment in individuals with severe Sars-CoV-2 infection5.
Whether this reflects direct effects of severe inflammation on the

self-renewal capacity of AlvMϕs, or if severe inflammation leads to
structural alterations, such as breakdown of basement membrane
and epithelial integrity, is unknown. While classical monocytes can
enter the airways in response to injury or infection, there is
evidence that monocyte-derived, elicited macrophages in the
interstitium may also transition to the airways. Whether these
alternative differentiation routes influence the fate and function of
these cells is currently unclear.

ENVIRONMENTAL IMPRINTING OF LUNG MACROPHAGES
The diversity of macrophages within the lung results from their
plasticity and ability to respond to local environmental cues. In
this regard, the pulmonary environment is unusual, even in
comparison to other barrier sites, in terms of the wide range of
environmental features it presents that can influence immune cell
recruitment, activation and function, and that will have a particular
impact on lumen-dwelling AlvMϕs. These include the unique
makeup of the airway fluids (predominantly composed of
surfactant and mucins), commensals (bacteria, viruses and fungi)
and nutrient levels (e.g., both host and microbial derived
metabolites), all of which can change markedly during
inflammation.
As well as acting as a lubricant, pulmonary surfactant

constituents can also influence AlvMϕ behaviour. For instance,
in the absence of surfactant protein D (SP-D) AlvMϕs display an
unusual CD11bhi phenotype and constitutively produce TNFα92.
While phenotypic alterations are not evident in AlvMϕs from naïve
SP-A deficient mice93, SP-A may amplify IL-4Rα-mediated AlvMϕ
activation while regulating their responsiveness to exogenous
stimulation through direct interactions with Toll-like receptor 4
(TLR4) and MD-293–95. As collectins, surfactant conformation can
dictate their function in a context-dependent manner, with
structural changes altering their binding to targets and in doing
so conferring pro- vs anti-inflammatory ability96.
The other major constituent of pulmonary fluids is mucus, as vital

for lubricating the airways as surfactant, and also for entrapment
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Fig. 3 Pulmonary macrophage dynamics during inflammation and resolution. In inflammation caused by agents such as pathogens,
pollutants or allergens, most resident AlvMϕs are lost and replaced by monocyte-derived Mϕs and perhaps ex-IntMϕs. This occurs in parallel
to accumulation of other inflammatory cells such as neutrophils and eosinophils, recruitment of which to the airways is facilitated by
chemokines and disrupted barrier integrity. During resolution of the damage caused by acute inflammation, and/or in the face of chronic low-
level inflammation, residual AlvMϕs can self-renew through proliferation, clear up dying or dysfunctional cells in the airways, as well as be
replenished through conversion of monocyte-derived macrophages and ex-IntMϕs which are transcriptionally, epigenetically and functionally
conditioned by the airway environment to take on AlvMϕ identity.
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and cilliary clearance of inhaled particles and microbes97. Addition-
ally, mucus can be important for control of bacterial infection,
regulation of hydration, resolution of inflammation, and modulation
of immune and epithelial cell function98,99. The main mucins
expressed in the lung are Muc5b and Muc5ac, with Muc5b being
essential for maintenance of healthy airways97,99, while Muc5ac is
up-regulated during inflammation100–102. Each of these mucins has
different properties that determine their dominant function. Mucus
also provides a home for commensal lung microbes97, which can
exert a dramatic effect over airway function, for example through
invasion/colonisation, consumption of nutrients, and production of
metabolites – all of which can influence pulmonary inflammation
and macrophage activation and function. Although most is currently
known about bacteria and their products in this context, more
widespread metagenomic approaches will increase our under-
standing of the abundance and diversity of bacterial, viral and fungal
commensals in the lung, and how this changes during inflammation
and disease.
In terms of nutrients, the airways present AlvMϕs with one of

the lowest glucose environments in the body, a tissue adaptation
that has likely evolved to prevent outgrowth of glucose-hungry
opportunistic bacteria103,104. Indeed, epithelial cells lining the lung
express high levels of glucose transporters apically105, with which
they can rapidly and efficiently reduce glucose levels in the
airways, with the blood and tissues underlying the epithelium
possessing over twelve times the levels of glucose than are found
in the airway fluids103,105. This low-glucose environment, coupled
with abundant lipid-rich surfactant, likely plays a central role in
governing AlvMϕ metabolism and function. Indeed, it is now clear
that metabolism is a central factor in governing macrophage
activation and function, with the general principle being that
glycolysis may be more associated with ‘type 1’ macrophages,
while lipid metabolism tends to be more typical of ‘type 2’
macrophages (reviewed by106,107). However, the majority of the
work that has established this paradigm has relied on in vitro
assessment of bone marrow or monocyte-derived macrophages,
with much less understanding of how tissue environments
influence macrophage metabolism in vivo. In the context of the
lung, we and others have shown that AlvMϕs display a distinctive
metabolic profile, expressing elevated levels of genes associated
with lipid metabolism and peroxisome proliferator-activated
receptor gamma (PPARγ), and reduced expression of genes
associated with glycolysis15,20. Further, we have shown that
glycolysis is a key determinant of AlvMϕ activation and function
in type 2 inflammation15, suggesting that glycolytic ability, and
availability of glucose, may be centrally involved in enabling
AlvMϕ activation and function in the airways.
During inflammation, with compromised epithelial integrity, the

balance of airway nutrients can change markedly, with reports of
elevated airway glucose evident in a range of disease settings,
including COPD, cystic fibrosis and asthma108–111. This may be
particularly relevant in chronic conditions where metabolite balance
in the airways can be modified long-term, with consequent long-
term alteration of AlvMϕ metabolism and function. In more acute
settings, such mechanisms may enable a window of opportunity for
glycolytic ‘boosting’ of AlvMϕ function that will reduce as the
epithelium heals and metabolite levels recalibrate, in essence
providing a metabolic rheostat for fine-tuning of AlvMϕ activation
and function directly linked to how local substrate levels change in
line with levels of tissue damage vs resolution.
In contrast to AlvMϕs, less is currently known about metabolic

control of IntMϕ activation and function. IntMϕs residing in the
more nutrient-rich environment of the lung tissue appear much
more glycolytically active than their AlvMϕ counterparts, and are
consequently more effective at producing the reactive oxygen
species necessary for killing intracellular bacteria such as
Mycobacterium tuberculosis 20,112. In this way, IntMϕs may be less
susceptible to substrate-related functional control than AlvMϕs,

though this likely changes if IntMϕs migrate into the airways in
the context of inflammation as they adapt to this new
environment. Indeed, a key outstanding question is to what
extent does the metabolic status of monocyte-derived macro-
phages play in their differentiation to AlvMϕs during and
following an inflammatory insult. It is important, however, to
remember that the methods to extract tissue macrophages can
have profound effects on their biology, including their transcrip-
tional and metabolic status. Given that IntMϕs are embedded in
the tissue, it is plausible that some of the differences seen in their
metabolic profile may reflect their response to extraction.
As described above, there is continual bi-directional crosstalk

between macrophages and the structural/stromal cells that
comprise their niche, and this crosstalk leads to niche-specific
outcomes for macrophage recruitment, differentiation and func-
tion. Removing macrophages from their niche leads to phenotypic
and transcriptional changes, directly demonstrating the need for
continual crosstalk with structural cells3. In the airways, AlvMϕs are
highly dependent on GM-CSF for their development and
maintenance78,113–117, consistent with their high expression of
GM-CSF receptor. Consequently, disruption to the GM-CSF-GM-
CSFR axis leads to defective AlvMϕ differentiation and the
development of PAP in both mice and humans45–50. Recent work
using GM-CSF reporter mice and cell-specific deletion of GM-CSF
has identified alveolar type 2 epithelial cells as the indispensable
source of GM-CSF during the pre- and post-natal stages of AlvMϕ
development from foetal progenitors117. Interestingly, although
innate lymphoid cells (ILCs) are major sources of GM-CSF in the
steady state lung, haematopoietic deletion of GM-CSF does not
affect AlvMϕ development117. Moreover, although it has been
proposed that GM-CSF may control AlvMϕs indirectly through
induction of Il6, Il13 and Csf1 expression in lung basophils118,
genetic depletion of basophils has little, if any, effect on AlvMϕ
number or phenotype117. Indeed, that CD11c-mediated deletion
of Csf2rb, which encodes one of the GM-CSFR subunits, or Stat5,
which lies downstream of GM-CSFR, leads to aborted differentia-
tion of AlvMϕs119,120 supports the notion that GM-CSF acts directly
on developing AlvMϕs.
As mentioned above, crosstalk between AlvMϕs and alveolar

epithelial cells also involves the TGFβ-TGFβR axis. TGFβ is a potent
immunomodulatory cytokine which is abundant in the mouse and
human lung in health. It is produced in a latent form and must be
converted to active TGFβ to have biological effects. In the airways,
integrin-mediated activation is thought to be the principal
mechanism of TGFβ activation. Specifically, the αvβ6 integrin,
which is expressed by alveolar epithelial cells, is crucial for
generating active TGFβ121. Consequently, genetic disruption of
Itgb6, which encodes integrin β6, leads to development of
emphysema due to excessive production of MMP12 by dysfunc-
tional AlvMϕs; a phenotype that can be rescued by constitutive
expression of TGFβ1121,122. Human AMϕs are known to have a
gene signature consistent with TGFβR signalling123 and myeloid-
specific deletion of TGFβR in mice leads to aborted AlvMϕ
development, demonstrating a need for cell intrinsic TGFβR for
this process124,125. Interestingly, although many cells can produce
TGFβ, macrophages themselves are thought to be an important
source123,124. Moreover, AlvMϕs can facilitate integrin-mediated
release of active TGFβ through production of amphiregulin, at
least in the context of helminth infection126. Loss of TGFβR
signalling leads to reduced expression of GM-CSFR, suggesting
cooperation between these factors124. However, the indispensable
nature of TGFβ in their development makes assessing its role in
regulation of AlvMϕ behaviour during homeostasis difficult.
Nevertheless, TGFβ is thought to upregulate the inhibitory
receptor CD200R1, which is known to be key for maintaining
the activation threshold of AlvMϕs127. Consistent with this, loss of
autocrine TGFβ leads to spontaneous production of pro-
inflammatory cytokines and chemokines by AlvMϕs123.
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Both GM-CSF and TGFβ induce expression of the transcription
factor PPARγ, which is considered the master transcription factor
for AlvMϕs43,124. Mice with myeloid-specific deletion of Pparg also
develop PAP, consistent with regulation of molecules involved in
lipid catabolism by PPARγ43,128,129. Given that PPARγ is expressed
by macrophages in other tissues, including splenic red pulp
macrophages and macrophages of the erythroblastic islands in
the bone marrow129,130, until recently, it remained unclear how
specificity was conferred to AlvMϕs. We recently uncovered the
transcription factor early growth response 2 (EGR2) as a key
evolutionarily conserved regulator of AlvMϕ differentiation down-
stream of PPARγ in the lung but not spleen125. Interestingly, mice
with Egr2 deficient AlvMϕs and individuals with mutations in EGR2
do not appear to develop spontaneous PAP125,131, demonstrating
that PPARγmust cooperate with other transcriptional regulators to
regulate distinct aspects of AlvMϕ biology. For instance, EGR2
appears particularly important for regulating expression of
adhesion molecules, chemotactic machinery and apparatus for
the detection and elimination of respiratory pathogens125. EGR2
appears to maintain expression of CCAAT/enhancer-binding
protein beta (C/EBPβ), which has been implicated in AlvMϕ
differentiation132. The transcription factors Bhlhe40 and Bhlhe41
have also been shown to control the phenotypic identity and
proliferative capacity of AlvMϕs, and seem to rely on TGFβR
signalling in a PPARγ-independent manner133. The histone
deacetylase (HDAC) sirtuin 1 (SIRT1) also plays a key role in
regulating the proliferative activity of AlvMϕs134. Finally, Bach2 (B
lymphoid transcriptional repressor BTB and CNC homology 2) has
been shown to be essential for surfactant regulation by AlvMϕs135.
Thus, while much progress has been made in understanding the
transcriptional control of lung macrophages, if and how these
transcriptional regulators interact or cooperate to control the
discrete molecular programmes required for homeostatic function
of AlvMϕs is only starting to be understood and warrants further
study using state-of-the-art technologies.
The environmental control of IntMϕs is much less well

understood. Despite high expression of CX3CR1 by at least some
IntMϕs, their survival, phenotype and proliferative capacity is
unaffected by Cx3cr1 deficiency14. Unlike their alveolar counter-
parts, IntMϕs rely on signalling through CSF1R for their develop-
ment and maintenance as evidenced by their depletion with anti-
CSF1R antibody treatment28 and failure to develop from Csf1r–/–

precursors in a competitive bone marrow chimera setting136. The
relative role of the ligands for the CSF1R, M-CSF and IL-34, has not
been examined exhaustively. For instance, although cDC2s are
reported to be affected in Il34LacZ/LacZ mice137, these cells were
simply defined as CD11c+CD11b+ non-AlvMϕs and it is highly
likely this compartment contains both IntMϕs and cDC2s.
Similarly, analysis of Csf1op/op mice, which have a naturally
occurring inactivating mutation in the Csf1 gene, has shown an
effect on the abundance of CD169+ but not CD169– IntMϕs28,
suggesting differential reliance on M-CSF by discrete IntMϕ
subsets. Application of novel reporter and conditional “KO” mice,
such as those used to identify the cellular sources of M-CSF in the
lymph node and spleen138,139, should help discern the relative
roles and cellular origin of M-CSF and IL-34 in regulating survival
and differentiation of IntMϕ subsets.
The downstream molecular pathways that govern IntMϕ

differentiation remain largely elusive. Although expression of
Maf, Mafb, Irf5, Jun and Atf3 have been identified through scRNA-
seq studies as highly expressed by murine IntMϕs6,125, if and how
these transcription factors control their differentiation remains
unexplored. Furthermore, given that some of these (e.g., IRF5)
have been implicated in AlvMϕ homeostasis140, high expression
does not always equate to specificity. Importantly, although
dispensable for the phenotypic identity and survival of IntMϕs, β-
catenin signalling has recently been implicated in the control of
the metabolic profile of IntMϕs, in response to the Wnt family

molecule Rspondin3 derived from pulmonary endothelial cells141.
IntMϕs are intimately associated with extracellular matrix and
interaction with collagen via the collagen receptor, LAIR1, appears
to alter the composition of the IntMϕ pool. Notably, LAIR1 appears
to regulate CSF1R expression142 and therefore interactions with
the ECM may regulate macrophage longevity, although this
remains to be tested experimentally.
Thus, it is clear that the lung environment exerts multiple layers

of control over macrophage development, activation and function
in health and during inflammation. This highlights the current
over-reliance on in vitro methods to research lung macrophages,
particularly for human research, which are likely of questionable
relevance. Innovative new approaches are needed that better
reflect the lung environment, such as ‘lung on a chip’143–146,
organoids147,148, and maintenance of whole lung tissue ex vivo.

MACROPHAGES IN PULMONARY FIBROSIS
Despite their key roles in lung homeostasis, macrophages are
implicated in the pathogenesis of many chronic lung pathologies,
including pulmonary fibrosis (PF). PF is a common feature of a
group of conditions known as interstitial lung diseases (ILDs),
where excessive ECM deposition leads to irreversible scarring of
the lung (reviewed by149,150). In many cases the cause of
pulmonary fibrosis is not identified (idiopathic pulmonary fibrosis
(IPF)), whereas in others it can be attributed to exposure certain
occupational substances (e.g., asbestos, silica) or drugs (e.g.,
bleomycin, methotrexate). Moreover, there are indications that
following severe coronavirus disease 19 (COVID-19), certain
individuals develop pulmonary fibrosis151, although whether this
results in permanent, irreversible scarring is still being understood.
While the prevailing school of thought is that PF arises from

ineffective repair of airway epithelium following repetitive injury,
there is now compelling evidence that macrophages contribute to
PF pathology152 and that targeting macrophages could be
beneficial in human disease153. First, there is vast macrophage
accumulation in the lung parenchyma during PF and experimental
fibrosis where they co-localise with collagen-producing myofibro-
blasts and support their proliferation and function through
production of PDGFα, PDGFβ, TGFβ1 and Galectin-330,154–157.
Macrophages have also been shown to be rich sources of
osteopontin (encoded by Spp1/SPP1)32,90,155,158, which has long
been established as a pro-fibrotic mediator, in part through
activation of TGFβ1158. Osteopontin-producing macrophages are
found in the airways and parenchyma of IPF individuals159,
although highest expression is attributed to MAFB+PPARG–

macrophages, which most likely represent IntMϕs32. Moreover,
high expression of inhibitors of collagenolytic enzymes, including
tissue inhibitor of metalloproteinases 1 (TIMP1) and TIMP2 is a
feature of fibrosis-associated macrophages154. Studies in mice
have shown macrophages to be able to produce certain collagens
(e.g., collagen VI), and collagen VI deficiency limited to the
haematopoietic compartment ameliorates experimental
bleomycin-induced fibrosis160. Interestingly, however, elevated
expression of matrix metalloproteinases, such as MMP-9, MMP-12
and MMP-14, also defines fibrosis-associated macrophages across
species. Thus, the relative contribution of collagen production
versus collagen clearance remains poorly understood.
Macrophage accumulation results, at least in part, from de novo

recruitment of CCR2+ monocytes in both experimental models
and human PF161. The presence of CCR2+ monocytes and their
macrophage progeny correlates with the presence of fibrotic
tissue in mouse and man161, and bleomycin-induced experimental
fibrosis can be exacerbated by adoptive transfer of classical
monocytes162. Consistent with this, experimental fibrosis is
blunted in monocytopenic Ccr2 deficient mice161,163,164, by
neutralisation of the CSF1-CSF1R axis154 or by rendering
monocyte-derived macrophages susceptible to apoptosis165.
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Moreover, one of the few treatments for PF, pirfenidone, has
recently been shown to reduce accumulation of CCR2+ mono-
cytes in bleomycin-induced experimental fibrosis161. However, the
Akira group has suggested that developmentally distinct, pro-
fibrotic monocytes termed “segregated-nucleus-containing atypi-
cal monocytes” (SatM) arise in the context of experimental lung
fibrosis and are responsible for driving disease166. So-called ‘SatM’
appear to depend on the transcription factor C/EBPβ, but derive
from FcεR1+ granulocyte/macrophage progenitors (GMPs) and
not macrophage/DC progenitors (MDPs)166. Indeed, work since
has described distinct pathways to generate monocytes from
GMPs and MDPs in health and following infection167. How these
SatM relate to the CCR2-dependent monocytes described in other
studies remains unclear.
Whether pro-fibrotic macrophages are limited to the lung

parenchyma or if monocyte-derived AMϕs also contribute to
fibrosis is still under debate90,125,154,156. In support of the latter,
sustained epithelial injury is a feature of human PF155,168 and
reducing epithelial damage through administration of a specific
inhibitor of sphingosine kinase 1, which is elevated in IPF lungs,
reduces experimental fibrosis, at least in part by reducing
recruitment of fibrogenic monocytes169. Attributing key patho-
genic roles to macrophage subsets is made difficult by the
breakdown in clear phenotypic boundaries between parenchymal
and AlvMϕs in the context of inflammation and fibrosis, and by
the fact that, at least some, IntMϕs may differentiate into AlvMϕs
during lung repair125,156. PF incidence and severity positively
correlates with age170–172 and given monocytes may progressive
replace embryonically-derived AlvMϕs with age, it is intriguing to
speculate that these two phenomena could be related. In addition
to blood-derived monocytes, it is plausible that macrophages in
the pleural cavity may contribute to the pro-fibrotic pool of
macrophages in the lung. Consistent with this notion, fibrosis in
IPF patients is often concentrated in the subpleural region150 and
there is transcriptional similarity between pleural and MHCII–

IntMϕs in mice27,173. Moreover, it’s been suggested serous cavity
macrophages may contribute to tissue repair in neighbouring
solid organs following injury in mice174,175. However, elegant
intersectional genetics and a combination of injury models have
shown that, while pleural GATA6+ macrophages may accumulate
on the pleural membrane, they do not migrate deep into the lung
parenchyma nor are they essential for fibrogenesis or
resolution176.
Why macrophages become excessively pro-fibrotic is only

starting to be understood, although, again, this probably reflects
their plasticity. IL-4, IL-13, IL-33 and TGFβ have all been implicated
in altering macrophage behaviour in PF (reviewed by152), but the
relative and combinatorial roles of these factors is poorly
understood. Recently, overactive Notch signalling has been
implicated in the pro-fibrotic behaviour of macrophages, as
deletion of RBPJ reduces fibrosis in mice through abrogating TGFβ
production by Ly6ChiMHCII+ monocyte-derived macrophages177.
Whether these effects are attributable to airway or IntMϕs is
difficult to discern in this study177. TGFβ is of particular interest
given its long-standing role in tissue fibrosis178. Recent work has
uncovered discrete functions of TGFβ isoforms in the fibrotic
process179. However, if and how excessive TGFβ isoforms
influence macrophage function in the fibrotic niche in vivo has
not been tested directly.
Like in many pathologies, the role of macrophages in lung

fibrosis is very much context dependent. The self-resolving nature
of some experimental models allows macrophage dynamics and
behaviour to be assessed during fibrosis regression and resolution,
something that cannot be gleaned from human disease. This has
revealed that severe lung injury leads to almost complete
replacement of embryonically derived AlvMϕs with monocyte-
derived cells90,125. We have recently shown that this process is
highly dependent on the transcription factor EGR2 and that

EGR2-dependent monocyte-derived AMϕs are indispensable for
resolution of fibrosis and restoration of airway homeostasis125,
findings consistent with older non-specific depletion studies in
mice162. There is evidence this may involve direct clearance of
collagen by (monocyte-derived) AMϕs. For instance, genetic
ablation of milk fate globule epidermal growth factor 8 (Mfge8),
a receptor typically associated with efferocytosis, leads to failed
collagen clearance following bleomycin-induced injury180. More-
over, macrophage-derived ApoE may facilitate binding and
targeting of type I collagen for phagocytosis via the low-density
lipoprotein receptor-related protein 1 (LRP1)181. Pro-resolution
roles of monocyte-derived AMϕs are also seen following influenza
infection and their absence can result in the development of
fibrosis, at least in mice182. Such functions may include metabolic
rewiring of monocyte-derived macrophages as deletion of Acod1,
the enzyme required for generation of the metabolite itaconate,
leads to persistent fibrosis183. Thus, while generally considered as
key pro-fibrotic cellular players, monocyte-derived AMϕs appear
to have a crucial role in re-establishing lung homeostasis and may
hold great promise for therapeutic targeting to promote fibrosis
regression and lung repair.

CONCLUSION
The past few years have seen a leap forwards in our under-
standing of pulmonary macrophage development, heterogeneity
and function, and how environmental features of the lung can
exert a dramatic influence over these processes in both disease
and in health. A major challenge for the coming years is to
develop much greater clarity on how different inflammatory
conditions alter pulmonary macrophage subset diversity and
function, in particular in the context of human disease, to identify
core mechanisms that might enable development of the targeted
therapeutics of the future.
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