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Abstract

Chronic pain is one of the most prevalent health problems in the world today, yet neurological markers, critical to diagnosis
of chronic pain, are still largely unknown. The ability to objectively identify individuals with chronic pain using functional
magnetic resonance imaging (fMRI) data is important for the advancement of diagnosis, treatment, and theoretical
knowledge of brain processes associated with chronic pain. The purpose of our research is to investigate specific
neurological markers that could be used to diagnose individuals experiencing chronic pain by using multivariate pattern
analysis with fMRI data. We hypothesize that individuals with chronic pain have different patterns of brain activity in
response to induced pain. This pattern can be used to classify the presence or absence of chronic pain. The fMRI experiment
consisted of alternating 14 seconds of painful electric stimulation (applied to the lower back) with 14 seconds of rest. We
analyzed contrast fMRI images in stimulation versus rest in pain-related brain regions to distinguish between the groups of
participants: 1) chronic pain and 2) normal controls. We employed supervised machine learning techniques, specifically
sparse logistic regression, to train a classifier based on these contrast images using a leave-one-out cross-validation
procedure. We correctly classified 92.3% of the chronic pain group (N = 13) and 92.3% of the normal control group (N = 13)
by recognizing multivariate patterns of activity in the somatosensory and inferior parietal cortex. This technique
demonstrates that differences in the pattern of brain activity to induced pain can be used as a neurological marker to
distinguish between individuals with and without chronic pain. Medical, legal and business professionals have recognized
the importance of this research topic and of developing objective measures of chronic pain. This method of data analysis
was very successful in correctly classifying each of the two groups.
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Introduction

Chronic pain, defined as pain that persists for an extended time

after the injury has completed the healing phase [4–5], is one of

the most prevalent health problems in developed countries [1–3].

It is estimated that chronic pain affects more than 100 million

Americans [1,5–7]. The increased medical expenses, lost income

and lowered productivity make chronic pain one of the most costly

health problems in the world.

Despite the importance, interest, and expense associated with

chronic pain, there is still no widely accepted objective measure of

chronic pain. Diagnosis of chronic pain is based primarily on the

subjective reports of the individual [8,9], or subjective reports by

care providers. However, cognitive, communicative, and psycho-

logical impairments, as well as deception [9–15], preclude the

reliable use of self-reports in certain situations. While objective

measures of pain may not replace subjective pain ratings as argued

by Robinson et al., [8] and Sullivan et al., [16], it is likely that

brain based objective measures of pain may augment and facilitate

diagnosis, treatment, and promote better understanding of the

underlying cause of different types of pain [15,17–20]. For

example, while a doctor may identify the presence of a fever by

asking the patient if they feel hot or cold, an objective measure of

temperature taken by a thermometer greatly improves the

diagnosis.

Recently, several studies have focused on assessing the presence

and sensitivity of acute pain by applying multivariate pattern

analysis to brain imaging data [9,13,21–26] (See [27] for a

comprehensive review of applying machine learning algorithms to

pain neuroimaging). Many of these studies were successful at

classifying the presence or absence of pain in normal healthy

individuals using functional magnetic resonance imaging (fMRI)

brain activity data. Depending on the nature of the decoding task

and training/testing method, classification performance was as

follows: Thermal pain tolerance versus temperature sensation:
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91% using Gaussian process classification [21]; 86% using

relevance vector machines [21]; 91% and 86% respectively using

support vector machines [21,13]; 95% using least absolute

shrinkage and selection operator regularized principal components

regression [9]. Thermal pain detection versus thermal pain

tolerance: 71% using Gaussian process classification; [21]; 69%

using relevance vector machines [21], 68% using support vector

machines [21]. Thermal pain detection versus temperature

sensation: 71% using Gaussian process classification [21]; 68%

using relevance vector machines [21]; 91% using support vector

machines [21]; 61% using laser stimulated near-threshold painful

from non-painful trials [24]. The study by Wager et al., [9] in

particular defines a ‘neural pain signature’ that may be a universal

signature for pain composed of weighted activity from many brain

regions that may be generalized across subjects and is sensitive to

different types of pain. It is unclear, however, whether the ‘neural

pain signature’ derived from acute pain will generalize to chronic

pain [28].

There is evidence supporting the position that individuals with

chronic pain may have a functional reorganization in brain

regions associated with pain compared to individuals without

chronic pain [3,29–31]. This functional reorganization may be the

cause of their symptoms in the absence of any physical injury to

the body. This reorganization may manifest itself in the form of

differences in intrinsic brain connectivity reflected in resting state

networks that have been shown to differ in individuals with

chronic pain [31]. Cortical reorganization in individuals with

chronic pain has also been shown to manifest itself in regional

differences in grey matter density [5,30–35]. In particular the

study by Ung et al. [35] utilizes multivariate pattern analysis to

successfully classify the presence or absence of chronic pain using

morphological differences in the anatomical magnetic resonance

images (MRIs) of 47 patients and 47 normal controls with an

accuracy level of 76%.

We hypothesize, based on long-term reorganization in brain

processes associated with chronic pain, that individuals suffering

from chronic pain do have different patterns of brain activity that

can be recorded by fMRI. In this experiment we record

alternating periods of painful stimulation each followed by a

period of no stimulation using fMRI brain scanning. Since there is

known variability in subjective pain sensation in different

individuals [5] we chose to investigate brain activity in response

to each individual’s subjective maximum tolerable level in this

experiment. Multivariate pattern analysis, in this case, sparse

logistic regression (SLR) [36], is predicted to be able to recognize

differences of brain activity between individuals with chronic pain

and normal controls in response to induced pain. A leave-one-out

cross-validation procedure is used to train and test the SLR

classifiers based on differential activity in contrast images of

induced pain relative to rest in specific brain regions thought to be

involved with pain processing (Including: primary somatosensory

cortex, secondary somatosensory cortex, inferior parietal cortex,

insula, and anterior cingulate cortex [3]). A classifier is defined as a

set of variables (in our case, weights of the extracted features of the

SLR) that sorts the data samples into different categories. Using a

leave-one-out cross-validation procedure the total number of

classifiers is equal to the number of participants to be classified.

Each classifier is trained on data for all participants except the one

upon which it is tested.

Our study extends the use of fMRI data and multivariate

pattern analysis techniques to classify individuals with and without

chronic pain. Many applications of multivariate techniques to

fMRI data have been designed to classify types of stimulus,

conditions or trials within a single individual using the blood

oxygenation level dependent (BOLD) activity from several scans as

input from the same individual [13,21,24]. Our goal differs from

these studies in that it seeks to demonstrate generalized diagnostic

performance for identifying presence or absence of chronic pain

for individuals not used during training of the classifier.

Methods

Ethics Statement
All participants were informed of the experimental procedures

to be used. All procedures were approved by the New England

Institutional Review Board (NEIRB) in accordance with the

principles expressed in the Declaration of Helsinki. All participants

gave written informed consent prior to the experiment. Partici-

pants were paid for taking part in the experiment.

Subjects
Twenty-six screened individuals participated in this study.

Thirteen of the participants had chronic pain (chronic pain group)

and thirteen of the participants had no chronic pain (normal,

control group). The two groups of participants were matched for

gender (nine female and four male), handedness (ten right, two left,

one ambidextrous), and race (ten Caucasian, three Black African

American). None of the participants had a history of psychiatric

illness, organic brain disease, unstable medical illness, or history of

serious head injury. The mean age for the chronic pain group was

51.8 years (SE 1.89, range 43 to 65) and the normal group was

48.7 years (SE 2.37, range 38 to 62 years). There was no

significant difference in age between the two groups (T = 0.95,

p = 0.36).

All chronic pain subjects suffered from muscle-skeletal low back

pain. The diagnosis of muscle-skeletal low back chronic pain by

the participant’s physician was based on several different criteria

including: the duration of the participant’s complaint (minimum of

six months), radiological or MRI type exams, tests performed for

allodynia and hyperalgesia, confirmation of muscle atrophy,

physical weakness, numbness or altered feeling, sleep disorders,

memory dysfunction, and range of motion limitation. Additionally,

physicians may have augmented their analysis with subjective

participant-reported testing information such as the Pain Cata-

strophising Scale [37]; Waddell Signs [38], Visual Analog Scale

[39], and the Fear Avoidance Belief’s Questionnaire [40] for

example. None of the subjects in the normal control group

reported suffering from chronic pain.

Equipment
The equipment used in this experiment consisted of the

following:

1. Seimens 1.5 Tesla Entera MRI scanner.

2. Food and Drug Administration (FDA) approved constant

current stimulation device and pulse generation device.

3. Stimulating Electrodes.

4. Coaxial Shielded Lead.

Item one was used to gather and record data, and items two

through four were used to time and deliver stimulation. The

stimulation equipment used is compatible for use in the MRI

scanner.

Procedure
Participants filled out a questionnaire, were interviewed, and

then questioned prior to being included in the study. To prepare

for the experiment, the chronic pain participants were required
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not to take any medication for 12 hours prior to scanning. On the

day of the experiment, the level of stimulation that each

participant could withstand was determined by applying two

self-adhesive electrodes to the participant’s lower lumbar area, one

on each side of the spine. The electrodes were then connected to

the leads of the constant current generator and pulse timing

apparatus. A current of 0.4 mA was initially applied to the

participant and increased in 0.1 mA increments until the

participant indicated that this was the highest pain level that they

could withstand for the duration of the study. This level, for each

participant, was the level used during the fMRI experiment for

that participant. The stimulation level for the chronic pain group

(mean = 0.819 mA, SE = 0.116) and the normal group

(mean = 0.662 mA, SE = 0.063) was not significantly different

(T = 1.22, p = 0.25). The participants were instructed to remain

still throughout the fMRI scanning procedure. Subjects were

instructed to inform the experimenter if the pain level was too high

and that the experiment could be discontinued at any time.

Experiment
The experiment consisted of two conditions: electrical stimula-

tion alternated with no stimulation (rest). Electrical stimulation

while the participant lay in the scanner was conducted using the

same equipment and level as had been previously determined for

each individual. The electrical stimulation was delivered first for

14 seconds then followed by 14 seconds of no stimulation (rest).

This sequence was repeated 5 times. The experiment consisted of

two fMRI data gathering sessions (approximately 5.25 minutes

each) separated by one session in which a T1 high-resolution

(0.560.561 mm) anatomical brain scan was acquired (approxi-

mately 4.5 minutes) for each participant. The mean normalized

anatomical T1 MRI scans (axial slices from Montreal Neurological

Institute (MNI) z 250 to +85 in 3 mm steps) for the chronic pain

group and the normal control group, are displayed in Figure S1.

Total time for each participant in the MRI room was less than

15 minutes. The order in which subjects underwent scanning was

random.

fMRI Data Collection and Preprocessing
The experiment was conducted using a Seimens 1.5 Tesla

Entera scanner. Functional T2* weighted images were acquired

using a gradient echo-planar imaging sequence (repetition time

3670 ms, time to echo = 60 ms, flip angle = 90 degrees). A total of

36 interleaved axial slices were acquired with a 36363 mm voxel

resolution covering the cortex. A single run consisted of 86 scans

(approximately 5.25 minutes). Images were preprocessed using

SPM8 (Statistical Parametric Mapping version 8: Wellcome

Department of Cognitive Neurology, University College London).

Echo planar images (EPI) were unwarped and realigned. The

images were then spatially normalized to MNI space (26262 mm

voxels) using a template T1 image and the mean EPI image as the

source. The images were smoothed using an 86868 mm FWHM

Gaussian kernel.

Regional brain activity was assessed using a general linear

model employing a boxcar function convolved with a hemody-

namic response function (block design experiment). High pass

filtering (cutoff period 128 seconds) was carried out to reduce the

effects of extraneous variables (scanner drift, low frequency noise,

etc). Auto-regression was used to correct for serial correlations. For

each participant the contrast image of the electrical stimulation

condition relative to the no stimulation condition was determined.

We hypothesized that this contrasted image would differ for the

participant with chronic pain compared to those without chronic

pain.

Feature Selection for the SLR Decoder
One major challenge for analyzing fMRI data, is the problem of

over-fitting the data (an inability to generalize classification to

novel test data), since there are far more features than subjects. We

utilize two methods to reduce the number of features to overcome

problems associated with over-fitting.

The first method was to utilize a multivariate pattern analysis

technique, sparse logistic regression (SLR) [36]. SLR automatically

selects only a few relevant features to be used for training and

classification. This method has been shown to be quite effective for

fMRI data where there are many more features than there are

samples for training [36]. SLR is a Bayesian extension of logistic

regression in which feature selection and training of the model

parameters is performed simultaneously, selecting a few highly

relevant features to be used for classification. This avoids problems

related to over-fitting and enhances classification performance on

novel data [36]. SLR utilizes supervised learning to train a

classifier (SLR decoder) based on a known set of input stimuli. For

a review of multivariate techniques applied to fMRI data see

[36,41–46].

The second method is to reduce the initial number of features

by focusing only on brain regions known to be involved in pain

processing, specifically chronic pain processing. We carried out

our analyses only on brain regions found to be active during

induced pain by Giesecke et al., [3]. The brain regions active

during induced pain in both chronic pain subjects and normal

control subjects (without chronic pain) were:

1. primary somatosensory cortex,

2. secondary somatosensory cortex,

3. inferior parietal cortex,

4. insula, and

5. anterior cingulate cortex.

While the cerebellum was included in the Giesecke et al., [3]

study, it was not used in this study, since it wasn’t consistently

included in the field of view in the fMRI scanning for all the

subjects.

A mask was created using a standard MRI based anatomical

atlas (WFU PickAtlas SPM toolbox). The mask (6686 voxels) of

these regions of the brain (relative to 153595 voxels over the entire

brain) was used for training and testing the SLR decoder.

Training and Testing the SLR Decoder
Classification of each individual’s data was based on a statistical

contrast image from each subject (the statistical parametric

mapping (SPM) result of the electrical stimulation relative to no

stimulation contrast image SPM con_0001.img) consisting of the

masked voxels as described above. A leave-one-out cross validation

technique was used to train and test the classification performance

of the SLR. Using this cross-validation technique, 25 participants

were used to train a SLR decoder which was then tested on the

one sample that was left out. Independent SLR classifiers are

trained using this procedure until all 26 samples have been tested

in an unbiased manner. Performance was assessed by calculating

the percent-correct for each of the two groups.

Statistical Analyses
Non-parametric methods were used to assess the significance of

the performance of the SLR decoder using permutation testing of

1000 randomly shuffled labels [13,41]. This was accomplished by

determining the number of times the performance of the decoder

trained with accurate labeling was greater than the distribution of
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decoders trained with random labeling (assessed using p,0.05).

Mean posterior accuracy and the posterior probability interval

(serving as a confidence interval at p,0.05) were calculated based

on procedures reported in [47]. Statistical significance of the

selected features (using the false discovery rate (FDR) correcting

for multiple comparisons pFDR ,0.05, [48]) was determined in

the following manner: The number of cross-validation iterations,

out of 26, a feature (voxel) is selected by the SLR decoder using the

real labels is compared to the distribution of the number of cross-

validation iterations a feature is selected using 1000 permutations

of randomly shuffled labels. Essentially, a comparison is made

between the number of times a specific voxel is selected using the

correct labeling relative to chance (random labeling).

Standard random-effects analyses was used to assess differences

in brain activity between the two groups (using SPM8). A between

subjects t-test was used to determine differences between chronic

pain and normal control subjects over the masked voxels used to

train the SLR decoders (using the stimulation relative to rest

contrast images). Random-effects between subject t-tests, weight-

ing the brain activity by pain threshold level, were conducted to

determine whether differences in general properties of stimulation

are responsible for the SLR decoding performance obtained in our

study. An additional random-effects analysis was carried out for

the chronic pain group to assess the correlation between brain

activity and the duration since the onset of the chronic condition.

For the demographic variables of age and pain threshold level,

Kolmogorov-Smirnov goodness-of-fit tests were conducted to

determine if the data was normally distributed. The Wilcoxon

rank sum test was used to test differences in the medians of the

chronic pain group and the normal group for the variables of

interest when the data was found not to be normally distributed.

The same preprocessing and statistical parametric analysis

methods were carried out for all subjects in both the chronic pain

group and the normal control group. The chronic pain versus

normal group labeling that each subject belonged to was unknown

to the person conducting these analyses. Given that the procedure

is completely automated the programs do not have information

regarding the group that a particular subject belongs to. This is not

the case when training the multivariate pattern analysis classifiers.

The utilization of supervised machine learning techniques, in this

case sparse logistic regression, to train a classifier to distinguish

between two groups requires that the labels be known. During

testing, the classifier computes the predicted label of the individual

based on the feature weights learned during training. It is

important to emphasize that the classifier is completely blind to

the true labels of the samples during testing.

Results

The results of the SLR classification for the chronic pain and

normal group are given in Table 1. The percent correct was

determined by mean performance of the 26 classifiers trained

using the leave-one-out cross-validation method explained previ-

ously. Significance at p,0.05 was determined using permutation

tests of SLR classification over the randomly shuffled labels (1000

random samples) of the subjects in the training set. The overall

classification accuracy for both groups together was 92.3% (p,

0.05) with a D Prime of 2.924. The percent correct classification

for the chronic pain group (sensitivity) was 92.3% (p,0.05) and for

the normal group (specificity) was also 92.3% (p,0.05). Posterior

mean accuracy and posterior probability intervals were computed

using methods reported in [47] and given in Table 1.

The initial number of selected features before training was 6686.

This was reduced by using the automatic relevance determination
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(ARD) characteristic of SLR [36,49,50] to a mean number of 2.85

extracted features across the 26 independently trained SLR

classifiers (22 of the classifiers selected 3 features and 4 of the

classifiers selected 2 features). It should be noted that the features

are the individual voxels selected by the SLR classifier and the

weights are the values assigned to each feature used for sorting the

data into the different categories. Only five unique features (voxels)

were used across the 26 independently trained SLR classifiers. The

brain region of these selected voxels and their MNI coordinates

are given in Table 2.

The five features (voxels) selected defined three clusters of brain

activity: Two of the clusters were located in the left primary

somatosensory cortex S1, and one of the clusters was located in the

left inferior parietal cortex (Figure 1, Table 2). The features

located in the primary somatosensory cortex S1 had negative

weights (Figure 1 blue clusters) signifying that the chronic pain

group had lower activity relative to the normal group. The features

located in the inferior parietal cortex had positive weights (Figure 1

red cluster) signifying that the chronic pain group had greater

activity relative to the normal group.

All three clusters had features that were significant correcting

for multiple comparisons (Table 2). The only feature (voxel) that

was not significant, only being selected for one SLR classifier, was

adjacent to the feature (voxel) that was selected for the other 25

SLR classifiers.

Twenty-three of the correctly identified subjects had negatively

weighted features from the primary somatosensory cortex S1 and

positively weighted features from the inferior parietal cortex (IPC).

The two subjects that were incorrectly classified (one chronic pain

subject and one normal subject) involved features located in the

primary somatosensory cortex S1.

A standard random-effects (SPM8) between-groups two-sample

t-test was carried out using the same contrast images that were

used during training and testing of the SLR decoder. There were

no significant differences (positive or negative) between the chronic

pain group (N = 13) and the normal control group (N = 13) using a

corrected false discovery rate threshold of pFDR = 0.05. One

cluster of activity in the inferior parietal cortex was found for the

chronic pain over the normal control group within the pain related

regions of interest using a lenient threshold of p,0.005 (MNI 2

60,246,28; T = 2.88). For the normal control group over the

chronic pain group four clusters of activity were found bilaterally

in different parts of the postcentral gyrus in the somatosensory

cortex with a lenient threshold of p,0.005 (MNI = 248,222,58,

T = 4.79; 221,246,64, T = 4.19; 60,219,49, T = 3.44; 39,2

28,55, T = 3.00).

To determine whether differences in general properties of

stimulation were responsible for the SLR decoding performance

obtained in the study, random-effects between-subject t-tests were

conducted in which the brain activity (of the contrast images of

stimulation relative to rest) was weighted by each individual’s pain

threshold level. No significant difference in brain activity (positive

or negative), between the chronic pain group (N = 13) and the

normal control group (N = 13), was indicated using a corrected

false discovery rate threshold of pFDR = 0.05 over the same voxels

used to train the SLR decoder. The voxels selected by the SLR

decoder (see Table 2) did not show any significant differential

activity (p.0.05 uncorrected). Nor did a small-volume correction

region of interest analysis (with an 8 mm search radius) detect any

significant differential activity (p.0.05 corrected) around the

voxels selected by the SLR decoder (see Table 2).

To assess the correlation between brain activity and the

duration since the onset of the chronic condition, a random-

effects analysis was conducted for the chronic pain participants in

which the contrast images of stimulation relative to rest were

weighted by the duration since the onset of the suffering of chronic

pain. No significant correlation between brain activity (positive or

negative) and duration since the onset of the suffering of chronic

pain was indicated using a corrected false discovery rate threshold

of pFDR = 0.05 over the same voxels used to train the SLR

decoder. The voxels selected by the SLR decoder (see Table 2) did

not show any significant differential activity (p.0.05 uncorrected),

nor did a small-volume correction region of interest analysis (with

an 8 mm search radius) detect any significant differential activity

(p.0.05 corrected) around the voxels selected by the SLR decoder

(see Table 2).

The demographics of the chronic pain and normal control

subjects are given in Table 3. As indicated, handedness, gender,

and ethnicity are balanced across the two groups. Kolmogorov-

Smirnov goodness-of-fit tests, over the variables of age and pain

threshold level for each of the groups, indicated that the data was

not normally distributed. The nonparametric Wilcoxon rank sum

test was used to assess statistical differences (p,0.05 two-tailed)

between the chronic pain group and the normal group for age

(Median Chronic Pain Group = 52 years; Median Normal

Group = 46 years; p.0.1 not significant) and pain threshold level

(Median Chronic Pain Group = 0.75 mA; Median Normal

Group = 0.6 mA; p.0.1 not significant) (See Figure 2). There

was no correlation between age and stimulation level for either

group (Pearson Correlation p.0.1). Neither was there a correla-

tion between the duration of the chronic pain and pain threshold

level or age (Pearson Correlation p.0.1).

Table 2. MNI Coordinates for Sparse Logistic Regression Selected Voxels Weights Classifying Chronic Pain and Normal Individuals.

Brain Region of
Selected Voxels

Positive Weights MNI
x,y,z Coordinate

Negative Weights MNI
x,y,z Coordinate

Number of Cross-
Validation Iterations the
Voxel was Selected

Number of Cross-
Validation Iterations
Correctly Classified

Number of Cross-
Validation Iterations
Incorrectly Classified

L S1 BA3 242,225,58 25* 23 2

L S1 BA3 242,222,58 1 1 0

L S1 BA3 218,243,61 25* 23 2

L IPC BA40 257,249,25 14* 14 0

L IPC BA40 260,249,25 9* 9 0

L = Left; BA = Brodmann Area; S1 = Primary Somatosensory Cortex; IPC = Inferior Parietal Cortex.
*Denotes significance at p,0.05 correcting for multiple comparisons of the number of cross-validation iterations out of 26 a voxel is selected by the sparse logistic
regression SLR relative to the distribution of the maximum time a voxel is select by SLR over 1000 permutations of randomly shuffled labels of the subjects in the
training set. Note that the five selected weights form three separate clusters of brain regions. The clusters composed of two weights consist of neighboring voxels.
doi:10.1371/journal.pone.0098007.t002
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A Wilcoxon rank sum test was used to assess the statistical

difference (p,0.05 two-tailed) in pain threshold between male

(n = 8) and female (n = 18) participants (Median Male

Group = 0.9 mA; Median Female Group = 0.6 mA; p.0.1 not

significant). Even though our results show a tendency in the

direction of higher thresholds for males it was not statistically

significant. Although the results of several studies have shown that

males have higher thresholds to experimentally induced pain than

females (see [51] for review) there have been several studies that do

not find statistical differences between males and females [51,52].

Even though the chronic pain subjects had considerable

variability in the duration from the onset of the chronic pain

condition, the type of medication taken, and the duration the

medication was taken, the SLR decoder was able to classify

between the chronic and normal individuals with relatively high

(92.3%) success. The two individuals that were misclassified by the

decoder (one chronic pain and one normal control) do not appear

to be outliers with regards to the demographic variables (see

Tables 1 and 3).

To ensure the SLR classification results are not due to artifacts

caused by differential head movement between chronic pain and

normal subjects, between group analyses were conducted using the

SPM realignment parameters. The summed scan-to-scan differ-

ence in the realignment parameters (tested separately for the six

realignment parameters: Translation X, Y, Z dimensions, and

rotation pitch, roll, yaw dimensions) did not show any statistically

significant differences between the chronic pain and normal

groups (See Table S1). Analysis of the total deviation within a

session of the six realignment parameters also revealed no

statistically significant difference between the chronic pain and

the normal group (See Table S2).

A post-hoc calculation of power was conducted (using proce-

dures given in [53]) to determine the sensitivity of the results with

the sample size used in our study. Given the incidence of a positive

classification in the chronic pain group of 0.923 with a standard

deviation of 0.277, and the incidence of a positive classification in

the normal group of 0.077 with a standard deviation of 0.277

using a two-sided 95% confidence interval, the power is 100%

confirming the sensitivity of the results given the sample size for

each group. Power values of 80% are considered to be standard in

sample size calculations [53]. The posterior probability interval

[47] (given in Table 2) similar to a confidence interval indicates the

reliability at estimating the unknown population parameter given a

two-tailed 95% confidence level. The posterior probability interval

in our study using 13 subjects per group ranges from 75.7% to

97.7%, which is well above the chance level of 50%. Increasing the

number of subjects will decrease the posterior probability interval

and increase the reliability of the classification results.

Discussion

The results of the experiment show that multivariate pattern

analysis (specifically SLR) of the fMRI contrast image of induced

pain relative to rest can be used to classify individuals with chronic

pain with a mean accuracy of 92.3% (Table 1). This classification

performance reflects that of novel test samples of a single contrast

image (not included in the training), using a leave-one-out cross-

validation technique. This degree of classification accuracy is quite

impressive when one considers that no statistically significant

differential activity correcting for multiple comparisons is present

between the chronic pain group and the normal control group

using traditional univariate random-effects analysis over the same

data. Similarly, it is interesting to point out that the study by [3,54]

did not find consistent differences between chronic pain and

normal groups for acute pain stimulation using univariate

analyses. The high predictive performance of the multivariate

decoder and the lack of strong univariate differential activity,

strongly suggests that (multivoxel) patterns of activity are

neurological markers that can be utilized for identifying individ-

uals with chronic pain.

The SLR decoder selected features in the left inferior parietal

cortex and features from two different regions along the

postcentral gyrus in the primary somatosensory cortex (Figure 1,

Table 2). These regions are part of the so called ‘pain matrix’

[3,5,55,56]. This region of the inferior parietal cortex (MNI

coordinates 257, 249, 25) has been associated with heat

stimulation [57] and cold pain [58]. One region of the

somatosensory cortex (MNI coordinates 218,243,61) is consistent

with somatotopic representation of the trunk region [59,60],

whereas, the other (MNI coordinates 242, 225, 58) is consistent

with somatotopic representation of the hand [59,60]. It is

interesting to point out that individual decoders trained on voxels

from the primary somatosensory cortex were able to significantly

classify near-threshold pain versus no-pain in the study conducted

by [24] but were not able to significantly classify between painful

and nonpainful stimuli in normal individuals in the Brown et al.,

[13] study.

The use of several different brain regions by the SLR decoder is

consistent with the view of pain being a distributed process

[9,24,61]. While studies using a multivariate pattern analysis have

shown that classification of pain versus no pain significantly utilizes

activity in the insula [9,13] and anterior cingulate [9] these regions

did not contribute to classifying individuals with chronic pain from

normal individuals based on our results. These results suggest that

while these regions are important for distinguishing painful from

non-painful stimuli the processes in these regions may not differ

between individuals with chronic pain and normal individuals.

Another possibility may be that the activity in these regions is

similar to activity in the somatosensory and inferior parietal

regions selected by the SLR decoder. One characteristic of SLR is

that it will eliminate features that are similar in order to improve

generalization performance. This is perhaps one reason why

features are not bilaterally represented along the somatosensory

strip as one would expect given that electrical stimulation included

both left and right sides of the back. With a larger training sample

size it is likely that more features will be selected while maintaining

high generalization performance.

The goal of this study was not to classify between pain and non-

painful stimuli as has been done in many other studies [9,13,21–

26], but rather to classify individuals with chronic pain from

normal individuals by the patterns of the contrast in activity

recorded between painful stimulation relative to rest. It has been

conjectured that individuals with chronic pain may have a

Figure 1. The three brain regions defined by the voxels selected by the sparse logistic regression located in the primary
somatosensory cortex Brodmann Area BA 3 (MNI coordinates 242,225,58 and 218,243,61) consisting of negative weights (normal
group greater than chronic pain group) and the inferior parietal cortex BA 40 (MNI coordinates 257,249,25) consisting of positive
weights (chronic pain group greater than normal group). A. Shows the three regions rendered on the surface of the brain. These three
regions B. Somatosensory (MNI 242,225,58), C. Somatosensory (MNI 218,243,61), D. Inferior parietal cortex (MNI 257,249,25) rendered on surface
of MRI images sagittal, coronal, axial slices with MNI coordinates with an 8 mm sphere from center coordinate.
doi:10.1371/journal.pone.0098007.g001
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reorganization of processes within brain regions that is responsible

for their ongoing sensation of pain [3,29–31]. In the study

conducted by Ung et al., [35], multivariate pattern analysis over

anatomical MRI of gray matter density was used to successfully

classify individuals with chronic pain from normal controls with a

accuracy of 76%. The weights of the support vector machine

responsible for distinguishing the two groups were consistent with

grey matter density decreases in chronic pain individuals in the

right borderline amygdala, left medial orbital gyrus, and right

cuneus; as well as grey matter density increases in the right

cerebellum, regions of the temporal lobe, left primary and

secondary somatosensory cortices, left primary motor cortex, the

right calcarine sulcus, and the right dorsolateral prefrontal cortex.

Given the increased grey matter density in somatosensory cortex

in the Ung et al. [35] study one may expect that in our study,

individuals with chronic pain would show greater activity in these

pain related brain regions under equal ‘subjective’ pain conditions

than normal healthy individuals. (However, see [30,31,33] in

which grey matter atrophy was found in individuals with chronic

pain in many brain regions including the somatosensory cortex).

While greater activity was found in the chronic pain group in the

inferior parietal cortex (signified by positive weights meaning

chronic pain . healthy normal group), it was not the case for

activity in the primary somatosensory cortex (signified by negative

weights meaning chronic pain , healthy normal group). Our

results are more in line with studies [30,31,33] showing grey

matter atrophy in somatosensory cortex as a possible reason for

less activity being shown in response to electrical stimulation.

While one may predict greater neural reorganization with the

duration of chronic pain (denoted by changes in brain activity),

this was not indicated by the random-effects analysis of the

correlation between duration since onset of the suffering of chronic

pain with that of brain activity (see Results). It may be the case that

reorganization of neural processing mostly occurs within the first
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Figure 2. Plot of age (years) by pain threshold stimulation level
(Milliamps) for each of the chronic pain (red) and normal
control (blue) subjects.
doi:10.1371/journal.pone.0098007.g002
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six months from the onset of suffering and does not show a linear

relationship with time. In any case, the reorganization in brain

activity that takes place was differentiated from that of normal

controls by the SLR decoder even with only six months since the

onset of suffering chronic pain for some individuals.

There are several potential reasons why the SLR classifier

weighted activity in the somatosensory cortex in the direction of

normal individuals. Besides possible grey matter atrophy

[30,31,33], another possibility may be that individuals with

chronic pain have a reorganization in inhibitory networks used

to suppress pain that causes a reduction in somatosensory cortex

activity under intense pain. There is some evidence suggesting

potential motor inhibition during painful stimulation in chronic

pain individuals [62]. It has been shown in rats that induced motor

cortex stimulation can alleviate chronic pain and has the effect of

suppressing somatosensory evoked potentials [63]. While there are

studies reporting increased activity in somatosensory cortex to

painful stimulation for individuals with chronic pain relative to

normal individuals [29], it is possible that in the high pain

condition in our study, the individuals with chronic pain may be

using acquired pain coping strategies that suppress activity within

the somatosensory cortex. Indeed, there have been several studies

in which higher pain thresholds are found for individuals with

chronic back pain [64,65].

It is also possible that chronic pain individuals have some degree

of residual pain when stimulated that extends longer than healthy

normal individuals. Indeed it has been conjectured that chronic

pain may resemble that of a persistent memory trace that cannot

be extinguished [5,31]. It may also be the case that the

somatosensory cortex always has some degree of activation in

chronic pain individuals associated with their chronic sensation of

pain in the absence of any stimulation. This heightened response

in the resting state may also result in less differential activity for the

chronic pain individuals relative to healthy normal individuals.

There is some evidence that the resting state networks of

individuals with chronic pain may be different from that of

normal healthy controls [31,54,66]. Several aspects of this

differential activity need clarification in further research.

It is important to ensure that the classification performance of a

decoder is the result of the features under investigation and not

due to some extraneous confound that may be present between the

chronic pain group and normal groups. One potential confound

that could exist between the two groups is greater head movement

in the MRI scanner for individuals with chronic pain. However,

statistical analysis of the six realignment parameters did not reveal

any differences between the chronic pain and normal control

groups (See Tables S1 and S2).

An additional confound that one may expect under equal pain

conditions is differing levels of stimulation between the two groups.

Some studies have shown that pain sensitivity is a correlate of

chronic pain status [10]. When controlling for age, gender, and

ethnicity, we did not find any significant difference in the mean

threshold level of electrical stimulation between the chronic pain

and the normal control groups. Finding no difference between the

two groups is desirable, the results of the SLR decoder cannot

simply be explained by differential activation in brain regions

resulting from different stimulation levels. Indeed the analysis in

which the brain activity was weighted by each individual’s pain

threshold level, showed no significant difference between the

chronic pain group and the normal control group. While some

studies have shown lower thresholds for pain in individuals

suffering from chronic low back pain [3,10] this is not always the

case [29,64,65]. In the study conducted by [29] no difference in

electrical stimulation pain thresholds were detected between

individuals with chronic low back pain and normal controls. It

has also been shown in some studies that individuals with chronic

low back pain have higher heat pain thresholds than normal

controls [64,65]. Given the individual variability and the

inconsistency in the published literature on the direction and

significance of the difference between individuals with chronic low

back pain and normal controls it is unlikely that pain threshold

level will serve as a good diagnostic measure above that of the

fMRI based SLR decoder presented here.

It has been shown that there are differences in the pain

associated neural activity using different modalities of stimulation

[67]. There are also differences in the temporal characteristics of

the onset of the perception of pain with electric being immediate

and thermal slower. Because we used only one type of stimulation

modality it is possible that the differences in brain activity used by

the classifier to distinguish between chronic pain and normal

individuals may be a result of brain activity to properties of

stimulation that are separate from those of processing induced

acute pain. However we do not believe this to be the case here for

the following reasons: 1. There was no statistically significant

difference in the pain threshold levels used for stimulation for the

chronic pain and normal control group. 2. The between-subject

analysis in which brain activity was weighted by pain threshold

level was not significant in the voxels selected by the SLR decoder

(small volume correction analyses using a radius of 8 mm were

also not found to be significant) between the chronic pain group

and the normal control group. Both of these findings make it

unlikely that general properties of stimulation are responsible for

the classification performance reported in our study. Rather the

results are more consistent with differences between chronic pain

and normal individuals in the processes related to the perception

of induced acute pain. Even if is found that the ability to

discriminate individuals with chronic pain from normal individuals

does not generalize to other modalities of stimulation it would not

change the relevance of the results of our classification

performance using SLR to distinguish between chronic pain and

normal individuals using electrical stimulation.

Conclusions

The combination of the experimental design and the multivar-

iate pattern analysis of fMRI data presented in this study allowed

us to recognize brain markers for chronic pain. The experimental

method of using contrast images of painful stimulation versus rest

enabled us to successfully identify the presence of chronic pain.

This provides further evidence that individuals with chronic pain

process induced pain differently from normal individuals and that

this difference may arise from reorganization in brain processes

resulting from the pathology. This study employs the use of

multivariate pattern analysis techniques, specifically sparse logistic

regression SLR [36], to overcome problems of over-fitting and to

successfully classify individuals with chronic pain from normal

control individuals with 92.3% classification accuracy with high

sensitivity and specificity (Table 1). While a small sample size was

used, only 13 individuals in each group, the unbiased analysis

methods performed in this study suggest that these results should

be reliable and valid for classifying new individuals using this

procedure. Future studies need to be conducted using larger group

sizes with greater variability in population demographic variables

such as race, gender, and age. With the use of a larger sample size

the posterior probability interval will decrease around the mean

posterior accuracy providing a more precise predictive measure.

Future studies should explore the effects that different forms of

noxious stimulation (thermal, pressure, electric) and different levels
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of stimulation (equal physical level, equal just noticeable pain

threshold, equal high pain threshold) have on classification

performance. The general applicability of the classifier would be

greatly enhanced if it were found that different types of stimulation

could be used for testing even though the classifier is only trained

on a specific type of stimulation being used. In the work conducted

by [9] the classifier trained to detect the presence of acute pain

using thermal stimulation was able to generalize to detect acute

pain using an opiate analgesic. Future studies should determine

whether the classifier generalizes across data collected on different

MRI scanners.

In the present study only muscle-skeletal chronic low back pain

was investigated. It would be interesting in future studies to

determine if classifiers can generalize across different types of

chronic pain, whether certain types of chronic pain are more easily

classified, and whether performance of the classifiers can be

enhanced by specifically training on each type of chronic pain.

This study presents a method by which chronic pain can be

diagnosed from fMRI contrast images acquired in response to

induced acute pain. The brain-based markers determined by

multivariate pattern analysis can be used to objectively determine

whether an individual has chronic pain. This could have great

clinical significance in the diagnosis and treatment of individuals

suffering from chronic pain.
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