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Abstract

Algorithms are increasingly making decisions regarding what news articles should be

shown to online users. In recent times, unhealthy outcomes from these systems have been

highlighted including their vulnerability to amplifying small differences and offering less

choice to readers. In this paper we present and study a new class of feedback models that

exhibit a variety of self-organizing behaviors. In addition to showing important emergent

properties, our model generalizes the popular “top-N news recommender systems” in a

manner that provides media managers a mechanism to guide the emergent outcomes to

mitigate potentially unhealthy outcomes driven by the self-organizing dynamics. We use

complex adaptive systems framework to model the popularity evolution of news articles. In

particular, we use agent-based simulation to model a reader’s behavior at the microscopic

level and study the impact of various simulation hyperparameters on overall emergent phe-

nomena. This simulation exercise enables us to show how the feedback model can be used

as an alternative recommender to conventional top-N systems. Finally, we present a design

framework for multi-objective evolutionary optimization that enables recommendation sys-

tems to co-evolve with the changing online news readership landscape.

Introduction

There is growing concern about some undesirable aspects of user interaction with news rec-

ommender systems (from here on referred to as “NRS”). The overabundance of contents vying

for limited attention of users creates a cannibalization effect in social media leading to a “win-

ner take all” effect among news articles [1] where a few articles receive most of the viewership

and reader engagement [2]. This can, however, create and lead to poorly informed societies.

We have noticed numerous incidents exploiting these vulnerabilities to spread misinformation

and fake news through social media [3, 4]. The speed with which information could be dissem-

inated on social media creates also an opportunity to target recommendation engines for gen-

erating clickbait to increase popularity of the target articles [5].

In the context of recommender systems, Morik et al. [6] note that the naïve implementation

of ranking algorithms leads to at least two undesirable outcomes that require careful
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consideration at the design stage. First, the ranking system induces a bias through the ranking

because the clicks of an article are not consistent estimators of its average relevance (i.e. frac-

tion of users that want to read the article). In fact, the articles which get a chance to be dis-

played in early iterations are ranked highly, could be easily found by users and they receive

more clicks over time. This causes a “rich get richer” phenomenon where the clicks received

by articles does not reflect their true relevance to users. Second, the ranking is an arbiter of

how much exposure each item receives which directly influences user behavior and opinion

[6]. An algorithm is fair if the exposure of an item is linked to its merit. For example, consider

the Nth and (N+1)th article in a system that uses top-N recommendation. A top-N recom-

mender sorts articles using a metric of interest (e.g. clicks) and selects N articles corresponding

to the highest metric values for display. Assume that the difference in their clicks is miniscule

(0 or 1) before the recommendation, i.e. they have similar merit. Using a naïve ranking algo-

rithm, the Nth article will be selected for recommendation and over time it will receive dispro-

portionately higher visibility. Here the relevance of both articles (N and (N+1)) is known, but

the ranking policy is the source of unfairness.

How can such undesirable outcomes could be prevented? Previously researchers have used

causal inference, algorithmic adjustments for click bias, and randomized interventions to

address some of these challenges [6]. In this paper, we take a different approach and present a

simple yet powerful mechanism using a complex systems perspective that can be used to guide

emergent outcomes in a way that mitigates the undesirable outcomes. While our results and

exposition are specific to NRS it is easy to see how our approach can generalize to other types

of recommendations as well.

Specifically, we propose a solution motivated by complex systems ideas referred to as feed-
back based NRS (or “FNRS”) and discuss important properties of it using agent based model.

An FNRS selects N articles for recommendation probabilistically using the feedback function

(Algorithm 1). Feedback based systems provide a mechanism where the NRS can be guided to

self-organize in specific desirable ways, for example, promoting the popular articles or new

articles with low click counts, bringing diversity in recommendation etc. Thereby FNRS offers

important flexibility for media managers in generating the recommendation list. While these

ideas can also be used by social media platforms, in our work we primarily focus on online

news platforms when presenting our ideas and discussing their impact. Feedback models have

been extensively studied before [7–9] where the behavior of a complex system creates either

positive or negative feedback that affects the future behavior of the system. Our adaptation of

these models (Eq 3) to guide emergent behavior in news recommenders is one of the main

contributions of this research.

In the feedback models proposed here the recommendation probability of an article with

click count c is proportional to f(c) = cγ,γ 2 R. Increasing value of the exponent (γ> 1) creates

positive feedback, and biases the system toward selection of the currently best fit (popular)

articles, while crowding out less fit articles. γ� 0, creates negative feedback in the system, that

allows an implementer to drive traffic to long-tail articles or to design novelty in the recom-

mendation. The most popular top-N recommender widely used today uses a hard cutoff after

selecting the “best N articles” (the ones with the highest readership counts), hence this corre-

spond to γ!1.

The feedback model offers a wide range of flexibility to introduce diversity in selection of

articles to generate the recommendation list. Introducing diversity in recommendation is rec-

ognized as one of the important characteristics by practitioners, and in general accuracy and

diversity both are considered important aspects of recommendation [10].

Modeling the news ecosystem as a Complex Adaptive System (CAS) [11–13] allows our feed-

back-based solution mechanism to generate a variety of article evolution scenarios by tuning
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the parameter γ. This, in and of itself, helps mitigate some of the unhealthy dynamics as we

show in this paper. However, we build on this idea further and develop a framework that can be

used to choose this parameter dynamically in a multi-objective setting that can help continu-

ously guide emergent behavior of online readership as the landscape evolves (Algorithm 2).

Our work adopts a complex systems perspective, which is an appropriate framework to

study the impact of algorithms on users due to the fact that this perspective explicitly models

how users and other agents respond in the environment in which these algorithms are

deployed [14]. Feedback mechanisms—a central theme of the model of recommendation stud-

ied in this paper—are a commonly observed phenomenon among self-organizing complex

adaptive systems. A positive feedback mechanism can cause a butterfly effect [15] in which an

entity grows super-linearly, eventually reaching a monopoly status by starting with some initial

negligible advantage over the other members [8]. Models generating positive feedback are

commonly used to model social sharing process. For example, to model diffusion amplifica-

tion Yoo et al. (2019) [1] use self-excited Hawkes process which models complex contagion

based on how many times a piece of content is shared. Each time a piece of content is shared,

its intensity of sharing increases.

Preferential attachment based models also make a similar kind of contribution in terms of

modeling feedback in networks. Barabasi et al. [16] in a classic paper first reported an unex-

pected high degree to self-organization in the large-scale properties of complex networks result-

ing in emergent behavior into scale-free states. While there is a lot of work in network models,

much of this literature discusses different growth models [17] and the impact they have on

emergent outcomes. While less common, in this literature too there are notions of unhealthy

emergent scenarios and algorithmic interventions to mitigate. One example is the interesting

work in [18] where they address how to “attack preferential attachment models” in the case of

mobile peer to peer ad-hoc networks. In this application, they show how existing network rout-

ing algorithms still cause over-reliance on a few nodes that can lead to battery death and failures

(since these are peer to peer networks) and propose alternative routing algorithms.

In addition to showing the value of feedback based models to control news recommender

systems, in this paper we address the time-evolving aspect of the problem as well. This

dynamic nature of the news ecosystem gives rise to a complex multi-objective optimization

which poses characteristics of “wicked problems” [19, 20]. Wicked problems emerge from

interaction between human and sociotechnical systems which has multiple objectives and

stakeholders [21]. Wicked problems do not have an optimal solution, but algorithms could be

developed to “tame” them [21]. In this context, we develop a framework for multi-objective

optimization to design a dynamic FNRS. Recognizing that designing news recommendation

poses a wicked problem to decision makers, we develop a framework for dynamic multi-objec-

tive news recommendation. We quantify two conflicting objectives: accuracy-loss and distor-
tion (see Eqs 6–8). We say that the system generates distortion if it promotes articles in such a

way, that the click-count share of popular articles increases, and the less popular articles

decreases due to recommendation. This phenomenon is also known as rich-get-richer dynam-

ics [6]. Whereas accuracy-loss is defined by considering the articles selected as recommenda-

tion using sorting algorithm that uses hard-cutoff as ground truth. Therefore, any other

selection mechanism that leads to selection of a less popular article will incur accuracy loss.

We use accuracy-loss and distortion for the multi-objective problem and present an evolution-

ary algorithm for the continuous update of the recommendation list where the system adapts

to its environment using a combination of exploration and exploitation [12].

There are significant gaps in the recommender systems and CAS literature that our research

addresses. First, our paper bridges the gap between NRS and CAS and opens the door for

more work that can contribute to news recommender systems by using complex systems
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frameworks. Second, there is not much work in the news recommendation literature on how

to guide emergent outcomes in terms of which articles get promoted and read. The motivating

theories driving our idea suggest that desired emergent outcomes are possible by a process of

exploration and exploitation. The new feedback-based model presented here, and the multi-

objective framework are hence important contributions to the theory in both the recom-

mender systems and the complex systems area, where this is a significant gap in the literature.

As is now customary, all the code developed in this work are released with the paper for

future enhancements or research extensions.

Modeling the news ecosystem as a complex adaptive system

We design an agent-based simulation of a typical news platform as a mechanism to study its

emergent properties. From a methodological perspective agent-based modeling is a widely

used mechanism for studying complex systems [22, 23]. Simulations are particularly suited for

studying complex systems since they exhibit non-linear behavior and emergent properties

unravel over time [24, 25]. Simulation also allows us to experiment with various parameters

and what-if cases.

In news recommendation, social media and algorithmic decision-making fuel complexity

by fostering dependence among human actors, technical artefacts, process, organizations and

institutions [21]. In particular, in Information Systems (IS) literature, CAS perspective has

been used to identify the enablers and inhibitors of agility and the emergent capability of agile

teams in the context of agile software development [26]. They consider match coevolutionary

rate, self-organization optimization and synchronization between exploration and exploitation

as the core principles of CAS-grounded study of agile software. In the similar vein, we consider

self-organization and exploration and exploitation as the integral part of complex systems

driven design of news recommendation.

The major components–the environment, the agents in it, and the interaction in the system

—are summarized in Table 1. The environment is the medium for agents to operate and inter-

act with. This is the online news ecosystem, which is implemented in our simulation through a

Web site similar to popular news sites including multiple pages corresponding to different cat-

egories of information. Agents include readers who constantly arrive and read articles as well

as the media manager who helps determine the exact mechanism for the recommendation.

The interaction between agents occurs through the most popular list which reflects the prefer-

ence of all agents.

Environment

We implemented this exactly like a typical news site similar to Fig 1 below. Usually the front

page consists of a section called Breaking News, which displays a pre-determined number of

articles chronologically. Other important sections are: the chronological display of articles cor-

responding to each of the different categories, and the “most-popular” list. Commonly used

news categories across different news websites are: Local News, World, Weather, Sports,

Health, Business, Technology and Politics. The displayed articles in different categories are

updated on arrival of a new article, whereas the most popular list of articles is updated as the

reading activity progresses with arrival of readers.

The links to navigate through different categories are available on the top of a page (except

at the front page). When the reader clicks on one of the links corresponding to a category,

then ten most recent articles corresponding to the category are displayed. When a reader clicks

any of the articles, the link takes her to the page which also displays a list of 10 most-popular

PLOS ONE A complex systems perspective of news recommender systems

PLOS ONE | https://doi.org/10.1371/journal.pone.0245096 January 7, 2021 4 / 24

https://doi.org/10.1371/journal.pone.0245096


articles. As a common practice, the most-popular or top-N list is usually displayed promi-

nently on each Web page of most of the news sites.

Before the simulation starts, we generate several hundred news articles with an even distri-

bution across categories with unique ids (UID) for the articles. Each article was assigned a ran-

dom initial count, drawn from a random variable that follows Zipf’s distribution [27]. The

Zipf distribution is a discrete distribution defined over a finite set k 2 (1. . .n) with probability

mass function,

pðkÞ ¼
1

ksPn
k¼1

1

ks

� � ; s > 0 ð1Þ

We use n = 1000 in Eq 1 to generate the initial click counts of articles. The arrival of new arti-

cles in the system was simulated using a Poisson process with arrival rate ρ. Upon arrival of an

article it is randomly assigned to a category and its timestamp is noted.

One of the weaknesses shown previously [2] in top-N systems is the disproportional drop

in recognition to the (N+1)th article in a list, unknowingly penalized for “not making the cut-

off”. To analyze this in a greater detail, we keep the initial reader count difference between 10th

and 11th articles to be just one to resemble “tiny initiating events” [28] in CAS.

Agents

Individual agents may exhibit heterogenous behavior in real life. But even a simple repre-

sentation of their behavior in model can help us generate the phenomena observed at the

aggregate level. For example, consider the Schelling’s segregation model [29]–although not

related to recommendation, it does help us illustrate the useful insights offered by a simple

Table 1. Basic components of agent based simulation.

Concept Description Execution

Environment Medium for agents to operate

on and interact with.

• This is the online news ecosystem, implemented as a Website

• Online news website’s structure (front page, related pages, how

the categories are displayed) are done to mirror popular sites such

as nytimes.com or cnn.com

• Online news website’s lists that highlight articles to read in each

category as well as the recommender systems box

• Arrival of new articles and retiring of old articles

Agent Individual actors or basic

entities of actions

Readers

• Attribute of readers–no. of articles read by them, reading

probability

• Behavioral rules of readers–read the recommended and recent

articles with a higher probability. The focal agent adapts her

behavior, based on “local information” provided to her through

the recommended and the display lists

Media-managers

• Media-managers plays the role of policy intervention in the

system. They use insights gained from the self-organizing

property of FNRS (Eq 1) to steer the selection of articles in the

recommended list. They update database with necessary

information about each article and also update all Web pages as a

new article arrives in the system

Interaction Adaptive behavior of agents • Interaction takes place among agents indirectly through most-

popular list—which reflects the preference of other agents. The

level of interaction among agents is determined by the probability

with which a reader selects articles from the recommended list.

https://doi.org/10.1371/journal.pone.0245096.t001
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model. It is well known that the preference for neighborhood of an individual may depend

on variety of factors such as, income, language, religion, race, age etc. Instead of considering

all these factors in model, Schelling [29] posits that societal segregation may result from an

individual being aware of her neighborhood and exhibiting slight preference for her group.

To demonstrate this, he developed an agent based model of societal segregation. In this sim-

plified model the behavior of an agent is governed by the proportion of agents like her in

her neighborhood, and the same threshold for tolerance is used for each agent. However, in

real life everyone might have different threshold and many other factors may govern an

individual’s neighborhood selection. Despite its simplicity, using this model Schelling [29]

was able to generate the pattern of segregation that is empirically observed in urban areas

[30]. We take similar approach to develop a typical model of reader behavior in our agent

based model. Our reader representation is simple, but we are able to capture the salient fea-

tures of article popularity evolution.

The arrival of readers is modeled sequentially, and they start their reading activity from the

front page. The number of links a reader follows before she stops reading is modeled in the

standard way as a random variable L drawn from an inverse Gaussian distribution [31].

Fig 1. Common features available on the front page of a news website.

https://doi.org/10.1371/journal.pone.0245096.g001
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Mathematically, the distribution L is given by,

PðLÞ ¼ e�
lðL� mÞ2

2Lm2

ffiffiffiffiffiffiffiffiffiffi
l

2pL3

r

ð2Þ

In Eq 2, μ and λ are the mean and shape parameter respectively. The average page views per

visitor for news websites was obtained from SimilarWeb (similarweb.com), and for the vari-

ance we use values consistent with previous empirical findings on Web and mobile surfing

[31, 32]. Readers use different selection mechanisms of articles for the front page and the cate-

gory specific pages. See S1 Algorithm in S1 Appendix for the implementation of the reader

model.

The system representing the Media Managermaintains a database of the comprehensive list

of articles. Let CLi denote the comprehensive list of articles corresponding to ith news category.

Then (CL = UiCLi), denotes the set of all articles. From CL, the algorithm selects N articles for

display as “recommendations” at each time index ’t’. Generally, recommendations are offered

in personalized or non-personalized way [33]. We focus on non-personalized top-N news rec-

ommendations. Articles are sorted and those with the highest counts are selected for the Dis-

play List (DL), which is the “top-N” recommendations.

Unlike the typical top-N recommender, in FNRS articles are selected according to probabil-

ity:

paðtÞ ¼
cgaðtÞP
jc
g
j ðtÞ

ð3Þ

where ca(t), represents the click counts of an article ‘a’ at a given time t, and
P

jc
g
j ðtÞ therefore

represents, at time t, the sum of amplified counts of articles (those are not yet selected for DL).

These probabilities are used for sampling without replacement (since articles selected into DL

are no longer considered), and repeated N times to generate N recommendations in DL.

Importantly, media managers can choose the desired exponent (γ) to guide self-organizing

outcomes. This seemingly simple choice of a single parameter can drive a whole range of self-

organizing behavior, each leading to very different emergent outcomes.

The media manager also oversees the Adaptation of the news Web site, in response to

arrival of new articles. Upon arrival of a new article, CL is updated with the necessary details.

Three hyperlinks for the newly arrived article are created, and they are inserted in three differ-

ent lists in the system. On the front page, the hyperlinks appear at the top position of Breaking

News and article-specific category sections and at the other Web pages (except front) it appears

at the top position of the chronological listing accessible through category links provided on

the top of that particular web page. The copies of the oldest article from each of these lists is

removed and the article’s status is updated in CLi.

Interaction

We use a "read-index" in the reader model (S1 Algorithm in S1 Appendix) to assign a higher

weight of reading probability for the most recent articles in all lists that follow the chronological

order of display (i.e. except the most-popular list). Although there can be various ways to assign

higher reading probability to the top position in the display list [34], we implement it using the

probability function ri ¼ Nþ1� iPN
i¼1

i
for a particular article with rank i, i 2 {1,2,. . .N} in a given list.

The interaction of a focal agent (reader) with other agents primarily takes place indirectly

through the top-N (or trending) list (because this list displays the articles which are also being

prominently read by other readers in the system). Other possible form of interaction among
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readers is also possible through parallel activities and sharing of articles through social media

platform. For the ease of exposition, these complexities are excluded from the current model.

Algorithm 1. Selection of articles for recommendation using feedback

function

1. pick  0; P  K
2. i. O ¼ c1; c2; c3; � � � cPf g ¼ cif g

P
i¼1

ii. Oγ ¼ cg1; cg2; cg3; � � � c
g
Pf g ¼ cgif g

P
i¼1

iii. O
’
γ ¼ cg1; cg1 þ c

g

2; cg1 þ c
g

2 þ c
g

3; � � �
PP

k¼1
cgk

� �
¼

Pi
k¼1
cgk

� �P
i¼1

; 1 � k � i

iv. O
0

γ ¼ 0;
Pi

k¼1
cgk

� �P
i¼1

n o
¼ S0

γ ið Þ
n oP

i¼0

v. Generate a random integer R, such that R 2 1; S0

γ Pð Þ
� �

vi. Find index i, such that R 2 S0

γ i � 1ð Þ; S0

γ ið Þ
� �

vii. Select article i, for recommendation in FNRS
3. pick  pick + 1
4. Remove article i from sorted set Ω
5. Continue from Step 2(i) until: pick < N

Illustration of update process

The key task in the design of FNRS is the selection of N articles as recommendation using the

feedback probability function (i.e., the specific implementation of Eq 3 where article selection

probabilities are based on the proportions). Suppose there are K recent articles in the system

that have a chance to appear in the recommended list, and O denotes the sorted set of these

articles. At a given time index j, ci denotes the click counts that an article i has received. Using

these notations Algorithm 1 presents the steps involved in selection of N articles in FNRS.

Results

We present results from running the agent-based model based on the comparison between

FNRS and the top-N NRS using the measures defined below. The results are mainly illustra-

tive, to show how the feedback parameter can help guide different emergent outcomes.

For the results corresponding to different feedback parameters γ, the counts of articles in

DL were updated in parallel in both mechanisms: FNRS and the top-N system. Specifically, as

the agent based simulation runs, from the same initial conditions we run two parallel universes

(two parallel simulations) under different selection mechanisms to keep track of the exact

count differences. This ensures that, other than the selection mechanisms, all else remains the

same in these parallel universes that enables comparison of the emergent outcomes.

Measures

The first measure focuses on how minor differences get amplified at the boundary due to feed-

back and is based on examining the count evolution of the Nth article versus the (N+1)st article

in a top-N list. The second measure focuses more generally on how the top-N list is reinforced

due to feedback. Finally, the third measure is Gini which captures how feedback increases

clicks for all popular articles at the potential expense of increasing click-count inequality

among articles. The definitions are below.

Measure 1 (recommendation boundary amplification). This measure is introduced in

[2] to study the impact of NRS on boundary amplification in a very simple setup. It is defined

using the ratio of clicks of Nth and (N + 1)th article, in DL and we denote it as M1. These two

articles were marked in the beginning of the simulation and were tracked over the simulation.
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M1 is defined as the logarithmic-ratio of the clicks of Nth and (N + 1)th articles at each time-

index (j) of the simulation. That is at the jth iteration of the simulation, for a given FNRS,

M1 g; jð Þ ¼ ln clickNj
� �

� ln click Nþ1ð Þj

� �
¼ ln clickNj

click Nþ1ð Þj

� �
. This measures the relative change in

clicks of Nth and (N + 1)th article. At the start of the simulation, click(N) ~ click(N + 1), hence

M1(0)~0. Particularly in the case of hard-cutoff recommendation, this measure helps us dem-

onstrate the presence of Butterfly effect [35] and the lack of individual fairness [36] among Nth

and (N+1)th articles.

Measure 2 (top-N reinforcement). We introduce this metric and it is measured in the fol-

lowing way. For any given recommender we measure the percentage of new clicks (i.e., after

j = 0), received by the articles outside the initial top-10 list—determined through sorted click-

counts. This measure is denoted by M2 and is defined as,

M2ðg; jÞ ¼ 1 �

P
top� 10 listð#new clicksjÞ
# total new clicksj

 !( )

� 100

This is a measure that is interesting particularly when viewed over time. In systems where

there is reinforcement in the top-N list, we would expect to see this measure decrease over

time towards its value in a hard-cutoff scenario (because more of the new clicks into DL go to

the top-N articles). The slope of this can also provide information on the speed at which this

effect materializes. This measure therefore helps us examine the reinforcement behavior of

FNRS for the different choice of the feedback value γ. As an extreme case when there is a high

likelihood of only reading articles in the recommended list (probability of reading an article
from DL~1), then under the top-N (hard cut-off) selection we would expect M2 to be zero

since all new clicks will go to the same articles in the top-N list.

Gini. It is one of the popular measures for quantifying inequality in a system [37]. To assess

the impact of news recommendation on overall popularity inequality we also track this metric

during the simulation. Gini index is defined as absolute mean difference divided by mean of the

click counts of articles. Mathematically, Gini coefficient is defined in the following way,

G ¼
PP

i¼1

PP
j¼1
jCi � Cjj

2P2 �C
ð4Þ

In the above expression (4), P represents the number of articles in the system at any given time,

and �C ¼ 1

P

PP
i¼1
Ci. Note that the minimum value of G is 0 and it happens in an egalitarian sys-

tem where all articles receive same number of clicks. An in the most unequal system, one article

receives all clicks and other articles receive none. In this extreme case G ¼ 1 � 1

P

� �
, that is G ~1

displays high inequality.

The update rule. At each time step, one reader arrives, and the arrival of a new article is

determined by the rate parameter of exponential distribution. Upon arrival of a reader, apriori,
the number of articles to be read by the reader is determined. The reader proceeds reading arti-

cles from front page, per her behavior described in S1 Algorithm in S1 Appendix. The probabili-

ties for the selection of different articles from a reader are controlled in the simulation. If the

reader selects an article, then the count of the selected article is increased by 1. The order of dis-

play of articles (both chronologically and based on popularity) are updated at each time index.

For two different NRS, top-N and FNRS, the selection of N articles is made for the recom-

mended display list (DL), and DL is updated at each time index. To the extent possible, we

selected realistic values of simulation parameters, and for this purpose we gathered informa-

tion from various sources. We provide a detailed discussion on the choice of different simula-

tion parameters in S1 Appendix.
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Simulation parameters

Usually the popularity of items online follows the power-law (Zipf) distribution [38], therefore

before the simulation starts we generated 400 articles (50 articles corresponding to each cate-

gory), and choose the interval of (1, 1000) to assign them initial popularity. We take average of

the number of desktop visitors on different news websites in the sample to determine μ (see S1

Table in S1 Appendix for details).

We study the behavior of FNRS for different choices of the feedback exponent γ. In the sim-

ulation, it has been varied with different integer values between 1,2,. . ..10. For each of the

cases, in the beginning of the simulation we use the same seed values for the generation of ran-

dom numbers as well for more accurate comparisons across runs.

To account for the prominence of most-popular articles, the higher values of the reading

probabilities are of interest. Also, empirically it has been observed that recommendation

engines usually exhibit strong influence on users [39, 40]. Though different combinations of p,

q,r were used in the simulation as given in Table 2, we develop our discussion on a particular

choice of (p,q,r) = (0.7,0.2,0.1). This particular combination helps us examine the case where,

FNRS has mild influence on reading behavior, for the other cases, in which, FNRS displays

even stronger influence on reading behavior will easily follow from the discussion in present

research. Additional simulation results for few selected cases are reported in S1 Appendix. To

the extent readers exhibit moderate to high preference for the recommended and recent arti-

cles, the findings discussed below do not change.

We choose number of readers to be 50,000 in the simulation to ensure that this number is a

reasonable estimate to: (a) demonstrate the emergent aspects of news recommendation, (b) on

average dynamic update of the feedback exponent is performed at an interval of 20–30 minutes

in a real system, and (c) the reported number is well within the daily visitors to a typical news

website.

Properties of FNRS

The trajectories of M1, M2 and Gini is presented in Figs 2–4, respectively. First, we summarize

our findings based on the measure M1.

It can be observed from the path followed by M1 (Fig 2) that for an influential top-N NRS

the initial difference between the counts of Nth and (N + 1)th article gets amplified heavily and

quickly. As expected, for γ = 2, 4, 6, 8 the measure M1 takes values significantly lesser than the

top-N recommendation that uses hard cutoff (see Fig 2 and additional results in S1 Appendix).

It is also noteworthy that in the case of FNRSs, the popularity amplification trend between Nth

and (N+1)th article does not follow a deterministic trend because their initial click count is

almost same. Therefore, Nth and (N+1)th articles compete for the recommendation spot over

Table 2. Simulation parameters.

Zipf exponent (s) 1.4

Initial seed interval for 400 articles (1,1000)

Number of articles in DL 10

μ 3.2

λ 3

Number of readers 50,000

Arrival rate of News articles (ρ) 0.003

(p,q,r) (0.3, 0.4, 0.3), (0.3, 0.5, 0.2), (0.4, 0.3, 0.3), (0.4, 0.4, 0.2)

(0.5, 0.3, 0.2), (0.6, 0.2, 0.2), (0.7, 0.2, 0.1), (0.8, 0.1, 0.1)

https://doi.org/10.1371/journal.pone.0245096.t002
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the initial period of simulation. In the presence of positive feedback one among them eventu-

ally attains a significant lead over the other and gets selected for recommendation determinis-

tically. The extent of popularity amplification between the Nth and (N+1)th article is

controlled by the feedback exponent. These findings suggest that the phenomenon of artificial

amplification due to top-N selection can be significantly mitigated using FNRS, and hence rec-

ommendation using feedback is more suitable to maintain individual fairness [36].

Fig 3 presents the findings based on M2. In the figure, the bottom line corresponds to the

top-N NRS (hard-cutoff). We observe that as the value of γ increases, the performance of

FNRS becomes closer to the top-N NRS. Further, the FNRS with positive feedback eventually

may behave as top-N after sufficient number of time steps (for example see the path of γ = 8).

Hence, using feedback selection mechanism we can generate behavior similar to traditional

top-N recommendation, while maintaining reasonable level of diversity in the selection of

articles.

We also observed that the share of new click counts received by the articles which were not

in the initial (t = 0) recommendation list also depends on the preference a reader exhibits for

the recommended articles. For example, after sufficient time steps in S7 Fig in S1 Appendix

approx. 70% of new Web traffic is received by the non-recommended articles, whereas in S9

Fig in S1 Appendix it is approx. 50%. In the case of FNRS for a given feedback exponent, as

recommendation evolves over time a higher level of reinforcement is observed if readers

exhibit higher preference for the recommended articles.

Finally, Gini measures the extent of inequality in popularity of articles induced by the rec-

ommendation process. We observe (Fig 4) that the recommendation that uses sorting of arti-

cles based their click counts (hard cutoff) induces highest level of inequality in the popularity

of articles as the simulation progresses. When readers exhibit moderate to high preference for

Fig 2. Boundary amplification of articles.

https://doi.org/10.1371/journal.pone.0245096.g002
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the recommended articles the Gini coefficient exhibits increasing trend with respect to: (a)

simulation time steps, (b) extent of positive feedback, and (c) the preference for the recom-

mended articles by readers (see Fig 4, and S1–S3 Figs in S1 Appendix).

For the robustness check of the findings related to Gini coefficient we replicated the whole

simulation process 50 times with different initial seed values and recorded the Gini coefficient

corresponding to each feedback exponent (γ) at the end of each simulation replication.

We performed two sample t-test for independent samples for the following cases (γa, γb) =

(2, 4), (4, 6), (6, 8) and (8,1) with γa< γb. Here γb =1 corresponds to the implementation of

top-n recommendation. As stated earlier, we expect that a higher value of feedback exponent

will cause more inequality in popularity of articles, therefore a higher Gini coefficient will be

observed. Following hypothesis was tested corresponding to each of the cases mentioned

above.

H0 : Gga
¼ Ggb

vs Ha : Gga
< Ggb

; ðga < gbÞ

In other words, we are interested in examining if a higher value of feedback exponent results

in a higher level of inequality in click counts of articles. To conduct the two sample t-test, we

first examined the equality of variances for all cases of two independent samples using F-test.

We failed to reject the null hypothesis of equal population variances (at 0.05 significance) in all

Fig 3. Reinforcement behavior of FNRS.

https://doi.org/10.1371/journal.pone.0245096.g003
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cases (see Table 3). Therefore, we conducted the two-sample t-test for independent samples

with equal variances. In all cases we reject the null hypothesis (H0). Therefore, we conclude

that a higher value of exponent leads to a higher level of inequality in the click counts of

articles.

Dynamic adaptation of FNRS

Extending M1 & M2 as design principles of FNRS

Thus far we have shown how a simple feedback parameter in FNRS can be elegantly used to

mitigate some potentially harmful impacts of NRS. While this is an important contribution of

our work, it does not provide a media manager sufficient flexibility to continuously guide the

adaptation of system in a changing news readership landscape. This is the issue we turn to

here.

As a case in point, if we retain a feedback exponent (γ; such that γ> 1) over an extended

period of time, the NRS will drift towards an “equilibrium” state, where only few articles will

receive majority of clicks (akin to top-N). From the complexity perspective, these states are

considered “dead” or uninteresting [12]. From a practical perspective, media managers would

rarely want their extensive news ecosystem to focus on a handful of news articles that most

users read to the detriment of much of the other important news curated by their team of jour-

nalists and editors. To enable FNRS to adapt to the changing environment, in this section we

develop a framework for updating the feedback exponent at selected discrete points in time,

albeit with some form of augmentation or human intervention. In the complex systems

Fig 4. Inequality in popularity measured using Gini index.

https://doi.org/10.1371/journal.pone.0245096.g004
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perspective, the exponent is used as the prescription (or strategy) for the collective behavior of

the system, while the sampling points act as lever points (or corrective policy intervention) at

the critical stages of emergence that allow the system to co-evolve with environment and to

respond based on extant capabilities [12]. The environment is not a constant, but changing

and often co-evolving with time [41] as well.

An adaptive FNRS would balance two major challenges encountered in recommendations

[12]: exploration (acquisition of new information and capabilities), and exploitation (the effi-

cient use of information and capabilities already available). To perform the task of exploitation,

we need to determine the extent to which we want to: (a) generate less distortion in recom-

mendation by giving some chance to less popular articles in the recommended list, (b) capital-

ize on popularity of articles corresponding to highest click by recommending them (top-N

reinforcement), and (c) the stopping point until we want FNRS to exhibit same behavior. We

illustrate the path followed by the first two phenomena in simulation (their trajectory) through

metrics M1 & M2. We examined the performance of FNRS for different values of γ, over a

fixed number of readers (or horizon; t = 50,000) for these metrics. Further, for M1 we only

focus on boundary articles: Nth and (N+1)st. To extend these concepts for all articles in the sys-

tem, we need to modify the functional form of M1 & M2.

Articles getting a position in the top-N list receive substantially higher visibility than the

other articles. M1 captures this notion well for the boundary articles. By the inherent design of

top-N recommendations, the extent of clicks for other recommended articles will at least be

same if not higher than the Nth article (see the empirical evidences reported in [42, 43]). Pro-

moting the most-read articles directs more attention to them, and hence create click-share dis-
tortion in the underlying distribution of article clicks over time. This can have its longer-term

consequences for the news site, where only few selected articles receive majority of the new

clicks. In an environment, where news industries are struggling to resurface or repackage their

huge archives of news to readers [44], introduce diversity in recommendation [10], and trying

to engineer serendipity in their recommendation engines [45], the display of articles based on

hard-cutoff can be potentially troublesome due to susceptibility of the top-N recommender in

creating distortion in the popularity of articles. Here distortion is defined as increase in the

click-count share of the popular articles and decrease in the click-count share of the less popu-

lar articles over time due to recommendation. Hence, one objective for the dynamic adaption

of FNRS is to have low distortion (defined formally later in this section), which generalizes the

M1 measure.

M2 measures the extent of top-N reinforcement. The higher the feedback exponent, the

higher the chance that popular articles will appear as recommendation. The more the trajec-

tory of M2 is closer to the trajectory of hard-cutoff recommendation (Fig 3), the more FNRS

exhibits recommendation akin to hard-cutoff. If clicks (or views) of articles are considered as a

quality surrogate for recommendation, then the hard-cutoff top-N recommender has high

accuracy since it only picks articles with highest counts. Managers wishing to optimize near-

term revenue goals may find this attractive since prominently highlighting popular articles in a

top-N list can drive even more traffic to these articles from newer viewers. On the other hand,

the probabilistic recommender that recommends articles proportional to their popularity (γ =

Table 3. Summary of hypotheses tests two-independent samples (sample size = 50).

(γa,γb) (2, 4) (4, 6) (6, 8) (8,1)

F-test for equality of variance (p-value) 0.134 0.051 0.409 0.446

t-static (p-value) for independent sample test with equal

variances

94.11

(0.00)

34.93

(0.00)

12.65

(0.00)

13.13

(0.00)

https://doi.org/10.1371/journal.pone.0245096.t003
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1), is true towards the "natural share" of articles but often recommends articles that are not the

ones with highest counts, and hence sacrifices “accuracy”. Hence, a second objective for the

dynamic adaption of FNRS is to have high accuracy, which generalizes the M2 measure.

Conflicting objectives in design of FNRS

We formalize these two trade-offs (accuracy and distortion) in a formal setup. Since the FNRS

can operate in a broader continuum compared to the other recommendation methods, it is

particularly effective as a method to make a choice between these two trade-offs. The choice

between the level of accuracy and distortion in a FNRS has the notion of subjectivity based on

a media manager’s preference for these two metrics.

We record the clicks received from the initial set of readers that arrive in the system over a

pre-determined time interval say (t0,t1). Observation during this initial period, helps us to sta-

bilize the initial randomness in click evolution process of articles. At t1, we select another time

interval (t1, t2) with discrete indices j’s (t0 < t1� j� t2) to discuss the following novel

constructs.

Accuracy-loss (generalization of M2). At any given time for FNRS we define accuracy-

loss based on comparison to a benchmark of distribution of counts of articles that appear as

recommendations in a top-N NRS at the exact same time index. To quantify accuracy-loss due

to recommendations, we assume that the count distribution of articles, when they are selected

corresponding to highest count in top-N recommendation at each time index represents the

"ground truth". We measure accuracy-loss for an FNRS with a given exponent γ, by imple-

menting two parallel universes (systems) from the same initial conditions—FNRS with the

specific level of a feedback exponent, and the other based on a traditional top-N list. In this

manner, we define accuracy-loss metric in the following way at time index j:

accuracy lossðEgj Þ ¼ ln
PN

i¼1
CH
ij

PN
i¼1
Cgij

ð5Þ

In Eq 5, N represents, the number of articles appearing in top-N (or probabilistic) “recom-

mended” list. CH
ij represents the clicks of ith article, appearing in the top-N (hard-cutoff) NRS,

at the jth time index. Whereas, Cgij represents the clicks of ith article appearing in the FNRS with

exponent γ, at the jth time index. Hence,
PN

i¼1
CH
ij and

PN
i¼1
Cgij represent the sum of clicks of all

articles that appear in traditional top-N NRS and FNRS with exponent γ, respectively, at the jth

time index as recommendation.

As the simulation progresses, we average the accuracy loss over the number of simulation

time steps at which the recommended lists are updated to simplify the expression without

introducing significant error. Hence, the average accuracy loss is:

�Eg‘ ¼
1

Dt

X‘

j¼t1

Egj ¼
1

Dt

X‘

j¼t1

ln
PN

i¼1
CH
ij

PN
i¼1
Cgij

; t1 � j�‘ � t2;Dt ¼ ‘ � t1 ð6Þ

Where ℓ is a time-index between (t1, t2), and we use it as a subscript for the average value of a

metric over the interval (t1, ℓ).
Distortion. M1 illustrates the extent of amplification due to recommendation, albeit only

for the boundary articles. We extend this notion for overall count amplification due to recom-

mendation, measured by the metric distortion. To measure share distortion, we assume that

the initial share of articles at t1, before recommendation starts, is the "ground truth".

To quantify distortion, we measure the distance between the probability distribution of ini-

tial share of articles in the system at t1, and the modified share of articles after the
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recommendation, using Jensen-Shannon Divergence (JSD) [46]. Distortion created in the nat-

ural share of articles due to FNRS with exponent γ, is averaged over the number of simulation

time steps at which accuracy-loss metric are updated (Eq 6). Note that the definition of JSD

metric to measure the distance between two distributions remains valid even in the presence

of retiring of old articles and arrival of new articles.

Let us denote the probability distribution of articles in the system in the presence of FNRS

with exponent γ, at the time index j as qgj and the initial share (j = t1) of articles as probability

distribution p. Then mean JSD is,

distortion ð �JSg‘Þ ¼
1

Dt

X‘

j¼t1

JSDðp; qgj Þ; t1 � j � ‘ � t2;Dt ¼ ‘ � t1 ð7Þ

Both objectives (Eqs 6 and 7) depend on highly complex and random mechanism of reader-

ship, arrival of new articles, recommendation, and update of the system. Also, the trade-off

between minimizing accuracy-loss and distortion would require a manager’s subjective deci-

sion. Hence, the classical optimization techniques of “tame” problems will fail to offer policy

choices [19].

These kind of planning problems which are result of the complex interaction of various

components, constantly changing environment, and has presence of multiple stakeholders and

perspective, can be categorized as a “wicked” problem [20, 21]. The objectives of wicked prob-

lems are incomplete, contradictory, changing over time, and they are evaluated based on sub-

jective preferences. Due to the conflicting nature of multiple objectives, wicked problems can

be assisted through a set of Pareto-optimal solutions [47].

To generate Pareto-optimal solutions we present a framework for the evolutionary multi-

objective optimization that offers sufficient flexibility and reasonably encompasses the com-

plex search spaces and ill-behaved objective functions [48]. Evolutionary algorithms inspired

by natural selection have been used to generate high-quality solutions to difficult problems

with highly complex search spaces and multiple conflicting objectives [48]. In our context, we

use the evolutionary algorithm NSGAII [49], to explore the search space of accuracy-distortion

trade-off.

Multiobjective Pareto-optimal solutions

Consider a multi-objective optimization problem with two conflicting objectives (f1(z),f2(z)), z
being a vector of decision variables. For each of the two conflicting objectives (f1(z),f2(z)),
there exists one optimal objective value and the corresponding different optimal solution(s).

Because, the minimum solution of objective functions f1(z) and f2(z), need not be the same

solution, in general, we encounter non-existent solutions in multi-objective optimization [49].

To overcome this issue, in the presence of multiple conflicting objectives we use Pareto-opti-

mal (non-dominated) solutions. In our context, the solution z is a vector of two decision vari-

ables, namely, γ and ℓ and the objective vector F(z) is defined as,

F zð Þ ¼ f1 zð Þ ¼ �Eg‘; f2 zð Þ ¼ �JSg‘½ � ð8Þ

We minimize the objective vector (8), subject to:

4 � g � 10; t1 � ‘ � t2 ð9Þ

Our goal is to find a set of solution vectors, z� = [γ�, j�] that are Pareto-optimal with regard to

objective vector (8) and satisfy constraint vector (9). It is also noteworthy that the objective

vector F(z), also depends on probability distribution of reading activities. But this is an
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exogenous factor and depends on reading behavior of visitors, hence it does not appear in the

decision variable of optimization function F(z).
For illustration, consider the non-dominated solutions depicted in Fig 5(i). For a given

solution say ‘a’ in the objective space, its corresponding solution is shown in decision space

with same character (i.e. ‘a’) at a given time t1. In this example, if manager chooses the non-

dominated solution ‘a’ at t1, then the corresponding feedback parameter is γ = 1, and the stop-

ping point is 3 units of time (say, 3x) beyond t1. Hence, she uses γ = 1 in the interval [t1,t1
+ 3x].

Dynamic adaptation of FNRS

As mentioned earlier the use of a feedback exponent (γ> 1), over the same set of articles with

high clicks over an extended period will render FNRS to emulate top-N recommendation and

hence does not offer much flexibility to adapt the system with changing environment. On a

typical news website, there will be arrival and retiring of articles, random and often turbulent

reading patterns–partly driven by social media traffic. An FNRS should be flexible enough to

adapt and co-evolve with the changing environment [12].

To model FNRS as an intelligently adapting system, we consider two decision variables—

(a) the feedback exponent γt, and (b) the time-interval (or stopping point; Δt) corresponding

to the current exponent value. The adaptation of FNRS can be represented as a search for rela-

tive optima over a “rugged landscape” of these two decision variables. For any combination of

(γt, Δt), γt will be used for the time interval (t,t + Δt). At t’ = t + Δt, a new combination of (γt’,
Δt’) are chosen from the Pareto-optimal solutions (exploration) to update the feedback expo-

nent and the stopping point. For illustration see Fig 5(ii), in which a manager may prefer to

choose non-dominated solution ‘e’. Corresponding to solution ‘e’, the feedback parameter is γ
= 2, and the stopping point is 2.5 units of time beyond t1 +3x. Hence, she uses γ = 2 in the

interval [t1 + 3x, t1 + 5.5x].

Algorithm 2: Pseudo code to dynamically update the exponent γ
a. At t0 = 0, choose time interval [t0, t1] over which the clicks
received by the articles will be observed without recommendation
b. Let t = t2(t2>t1)
c. Perform following steps at each t, to update the exponent values γ
i. Update the simulation parameters using most recent observations
corresponding to the moving time window [t– δt,t]
ii. Determine the Pareto optimal front for accuracy-loss and distor-
tion values using NSGAII
iii. Choose the desired value of the control exponent (γt) and the

corresponding time interval say, D̂t from the Pareto front

iv. t ¼ t þ D̂t
v. Use γt in FNRS until t

The update process for (γt, Δt), gives system the characteristic of “evolving structure” with

changing environment, and serves as a credit assignment procedure [12] at intermittent time

points over a desired interval. Selection of articles using updated system parameters and the

feedback exponent reward those articles that seem to be causing better performance, and can

be seen as corrective action [12]–subject to manager’s preference. The update process enables

FNRS to make a balance between exploration (update of (γt, Δt) based on newly acquired

information, and exploitation (the efficient use of Pareto-optimal solutions for recommenda-

tion). For the generation of Pareto-optimal solutions we do not have a definitive stopping rule,
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and due to constant update process the objective functions have the property of “moving tar-

get” [12].

To determine the Pareto optimal front for accuracy-loss and distortion we use NSGAII.

NSGAII is an Elitist Non-Dominated Sorting Genetic Algorithm that generates various

Pareto-optimal solutions in a single run of the algorithm. The selection operator of NSGAII

selects a population of solutions in such a way that it preserves both diversity and elitism of

non-dominated parent and offspring solutions. The general update process of exponents is

detailed in Algorithm 2. In the pseudo-code, steps c(i-iv) can be considered as exploration and

the step c(v) as the exploitation step of the adaptation process.

Simulation results using NSGAII

In the simulation, we choose t0 = 0, t1 = 20,000 and t2 = 50,000, with unit increase in indices to

obtain the values of j’s. For simplicity, a unit increase in time coincides with the arrival of a

reader. The media manager chooses the interval [t0, t1] over which the clicks received by the

articles will be observed, and the observation corresponding to interval [t1, t2] is used to gener-

ate Pareto-optimal fronts. At t2, the simulation parameters, such as arrival rate of readers and

average number articles read by them are updated using most recent previous observations

corresponding to moving time-window of length δt. For the time interval [t1, t2] we present a

selected set of 32 exemplar true optimal solutions, and solutions obtained through NSGAII

Fig 5. Illustration of non-dominated solutions. (i) Set of non-dominated solutions (upper panel) and the value of their

corresponding decision variables (lower panel) at t1. (ii) Set of non-dominated solutions (upper panel) and the value of

their corresponding decision variables (lower panel) at t2.

https://doi.org/10.1371/journal.pone.0245096.g005
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[49] in Fig 6. The true Pareto-optimal solutions were generated using non-dominated sorting
over the complete decision space.

In live implementation of Algorithm 2, for the selection of non-dominated solutions, an

implementer may prefer to set a threshold for accuracy-loss and distortion metric to eliminate

trivial solutions. For example, if threshold for accuracy-loss is 0.04 then all Pareto-front solu-

tions having accuracy-loss less than 0.04 would be in the consideration set. Similarly, a thresh-

old can also be set for the distortion metric. The pareto front allows media manager to

examine all alternatives, and removal of bad alternatives before implementing any selected

tuple (γt, Δt).
Importantly, the framework and mechanism presented in this section provides managers

with the pareto front periodically as the news ecosystem dynamically evolves. In practice the

manager will then have to periodically review the pareto front and choose the option (γt, Δt)
that best represents the firm’s current interest in balancing conflicting objectives. It may be

possible to treat this as an autonomous agent as well, constantly learning and adapting and

automatically choosing a point on the pareto front, if the firm’s specific goals can be captured

in greater detail. We note that the update process can also be implemented using multi-objec-

tive multi-armed bandits (MOMAB) [50]. However, we do not pursue MOMAB motivated

dynamic adaption of FNRS in this research.

Discussion

Viewing online news recommendation as a complex adaptive system, we proposed and studied

a new model of feedback-based news recommenders that helped address the questions: (a)

what kinds of unhealthy dynamics exist in commonly used top-N news recommendation? and

(b) how can we design better algorithms to mitigate some of the undesirable outcomes?

To address the limitations of top-N recommendations, we present a novel recommendation

technique based on a probabilistic feedback model. The feedback model can be considered a

unifying framework for variety of known selection mechanism for recommendation. Through

simulation we show that FNRS exhibits variety of self-organizing behavior and have been

shown to be very effective in mitigating the undesirable emergent properties of top-N

recommendation.

Further, we build upon the insights gained from the study of feedback models to

develop a framework for dynamic adaptation of FNRS. We see dynamic adaptation of an

FNRS as a combination of exploration and exploitation. Performing exploration and

exploitation steps at regular interval requires selecting the appropriate level of feedback

parameter based on two conflicting objectives: accuracy-loss and distortion. We develop

these two metrics and their mathematical formulation in this paper extending the insights

from metric M1 & M2, and discuss their role in feedback exponent selection. The optimi-

zation problem corresponding to accuracy-loss and distortion is categorized as "wicked

problem" [19] due to, underlying randomness in objective functions and their conflicting

nature, and subjectivity involved in selection of Pareto-optimal solutions. We use evolu-

tionary algorithm NSGAII to generate non-dominated solutions of the multi-objective

problem and present a method that aides FNRS to dynamically adapt with changing envi-

ronment. The multi-objective evolutionary algorithm approach discussed in this research

can be adapted to solve variety of wicked problems encountered in algorithm-dependent

interconnected and interdependent systems.
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Conclusion

Due in part to the focus on “fake news” and the role those play in influencing opinion, there is

substantial interest in the mechanisms through which people are influenced online. Our

research in this paper on limitations of popular news recommender systems addresses a small

but important piece of this bigger problem. By modeling news ecosystems as complex adaptive

systems we have shown that specific unhealthy emergent behaviors can arise, but that these

can be mitigated by a novel feedback-based model. We have further shown that media manag-

ers can use this framework to not just guide the emergent behavior of these complex systems,

but to potentially optimize their objectives using a novel multi-objective framework. These are

all new and important contributions in this paper.

From a practical perspective, this paper presents an effective mechanism for media manag-

ers to guide the self-organizing properties of the news ecosystem. Today current systems essen-

tially use media editors to curate some of the available space and use automated systems such

as top-N lists and personalized recommendations to populate other segments of the space

available on their Web pages or apps. This does not offer much meaningful control over these

algorithmic recommendations. Feedback models however, offer the potential for meaningful

control, yet in a simple enough framework. Properties of FNRS as an autonomous agent can

be embedded in design of dashboard for editors. Editors may track these dashboards to

observe and set an appropriate decision parameters (for each recommendation list on their

pages) as needed and observe the influence this brings into the highlighted articles.

Our recommendation framework studied here is easily generalizable to other contexts. The

use of top-N lists extends beyond news articles alone. These are known to significantly

Fig 6. Pareto optimal front for optimization.

https://doi.org/10.1371/journal.pone.0245096.g006
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influence mobile app downloads, product purchases and even access to scholarly articles

(SSRN publishes top-N lists in several academic areas, for instance). In addition to “counts” of

articles driving the feedback models it is possible to consider other metrics, such as similarity

scores of collaborative filtering recommendations [51], as inputs to these functions in an obvi-

ous extension. In such cases, it is possible to generate product recommendation lists as well

using feedback models within recommender systems. For example, Adamopoulos et al. [51]

use probabilistic weighted sampling of k neighbors to develop a collaborative filtering algo-

rithm and show that it outperforms popular recommendation approaches in terms of cover-

age, dispersion, prediction accuracy, and utility based ranking.

Though we discuss the use of FNRS from the implementers’ perspective. We believe, it

also elegantly addresses some of the major concerns of the policy makers and the advertis-

ers on the widespread use of top-N recommendation. Given that mere presence of an arti-

cle or product in trending or top 10 list can influence the collective opinion of people and

their consumption behavior [52]. There is growing recognition of need of better algo-

rithms for fairness in data driven decision making [36, 53], manipulation of recommended

lists [10, 54] and the less choice offered by top-N display lists [55]. In the context of top-10

app lists [55], notes that “those who cannot get that visibility founder in obscurity”. A further

reason for count amplification in these top lists is the propagation of recommendations

over social networks [56, 57], which has emerged as a major driver for internet traffic in

recent years. Once an article (or app) makes such a list they are more likely to be picked up

and propagated through social networks. Even if recommendation algorithms are designed

with intent to project people’s preferences, they adjust what they do based on people’s

behavior. And since they can reinforce human prejudices [58], by default, they are not fair
and just in any meaningful way [59], and hence they may often generate socially undesir-

able results. The system influences readership or what succeeds by virtue of an artificial

cutoff. It is such weaknesses that attract even manipulators to potentially game the system.

The probabilistic FNRS presented here provides a framework that can also be used to ele-

gantly address these challenges.
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