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Abstract
Limited availability of medical imaging datasets is a vital limitation when using “data hungry” deep learning to gain 
performance improvements. Dealing with the issue, transfer learning has become a de facto standard, where a pre-trained 
convolution neural network (CNN), typically on natural images (e.g., ImageNet), is finetuned on medical images. Mean-
while, pre-trained transformers, which are self-attention-based models, have become de facto standard in natural language 
processing (NLP) and state of the art in image classification due to their powerful transfer learning abilities. Inspired by the 
success of transformers in NLP and image classification, large-scale transformers (such as vision transformer) are trained on 
natural images. Based on these recent developments, this research aims to explore the efficacy of pre-trained natural image 
transformers for medical images. Specifically, we analyze pre-trained vision transformer on CheXpert and pediatric pneu-
monia dataset. We use CNN standard models including VGGNet and ResNet as baseline models. By examining the acquired 
representations and results, we discover that transfer learning from the pre-trained vision transformer shows improved results 
as compared to pre-trained CNN which demonstrates a greater transfer ability of the transformers in medical imaging.
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Introduction

Chest radiography or chest X-ray (CXR) is one of the most 
frequently used medical imaging method for timely and 
accurate diagnosis of various chest and pulmonary diseases. 
CXRs are easily acquired, are cost-effective, and contain 
large amount of information about the region under study 
that make them useful for early screening and diagnosis [1, 
2]. CXRs can be used to identify diseases such as Tuber-
culosis [3], pneumonia [4], cancer [5], cardiomegaly [6], 
etc. However, one of the major issues with CXRs is that 
for accurate diagnosis, they require careful interpretation 
by experienced radiologists which can take a lot of time 
and resources [7]. Furthermore, the interpretation of CXRs 

varies from radiologist to radiologist with large discrepancy 
rates reported [8]. The factors that affect the diagnosis accu-
racy of radiologists include large workload, negligence, lack 
of knowledge, and faulty reasoning, among other reasons 
[8].

In recent years, due to the increase in computational 
power and availability of large amounts of data, deep learn-
ing techniques have emerged as the state of the art in various 
image processing and computer vision applications [9–11]. 
Consequently, many studies have been carried out to aid 
radiologists using deep learning approaches, especially the 
convolutional neural networks (CNNs), for classification, 
localization, and segmentation of medical images [12–14]. 
Recently, however, the CNNs have been outperformed by the 
attention-based architecture known as Transformer [15, 16].

Transformer architecture has since become the state-of-
the-art for natural language processing (NLP). Transformers 
are built on a self-attention-based mechanism that learns 
dependencies between input and output sequences without 
relying on recurrence. This allows transformer implementa-
tions to be easily parallelized and computationally efficient. 
Inspired by the success of transformers in NLP, [15] modi-
fied transformer architecture for computer vision, which they 
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called Vision Transformer (ViT). [15] modified the original 
transformer such that it takes as input a sequence of fixed-
size image patches that are treated similarly as words are 
treated in NLP application, and performed image classifica-
tion. ViT, when trained from scratch, achieved lower perfor-
mance as compared to convolution neural networks (CNNs). 
However, when ViT is pre-trained on a large dataset and 
transfer learning is performed to a smaller dataset, it out-
performed the CNN architectures in many computer vision 
tasks such as object detection [17, 18], semantic segmen-
tation [19], and image classification [15]. Although vision 
transformers have seen success on natural images, little work 
has been done in the medical imaging domain. CNN-based 
architectures are still commonly used for medical imaging 
and diagnostics [20] Compared to transformers, CNNs have 
some disadvantages such as convolution operations are dif-
ficult to capture global information [21], and CNNs are not 
able to capture long-range dependencies between different 
images that may be present in medical datasets [20].

To address the CNN issues, some authors have proposed 
transformer-based architectures for medical imaging and 
diagnostics [22–25]. [20] proposed a multi-modal medi-
cal imaging classification method. The authors combined 
CNN with transformer to learn both the low-level features 
and global features for effective image fusion and classifica-
tion strategy. In [26], authors employed ViT architecture for 
COVID-19 classification using computed tomography (CT) 
scans and outperformed CNN-based DenseNet [27] archi-
tecture. In another study, [28] evaluated several deep learn-
ing architectures including DenseNet, EfficientNet, ResNet, 
and ViT for COVID-19 diagnosis using CT images and 
found ViT to outperform all other architectures. Although 
the methods discussed here have shown ViT to outperform 
CNN-based architectures, they fail to analyze the pretraining 
and finetuning aspects of transformers. Transformers require 
a large amount of training data to effectively exploit their 
capability [15]. However, in the medical domain, there is 
limited availability of large datasets [29, 30]. When trained 
on small datasets, ViT suffers from a lack of inductive bias 
that results in poor generalizability [15].

It has previously been shown that CNN-based architec-
tures show improvement when they are pre-trained on large 
natural image datasets such as ImageNet [31] and finetuned 
on medical datasets [32]. Therefore, in this study, we explore 
the transfer learning capability of pre-trained transformers 
when finetuned on a medical dataset. In our work, we apply 
a pre-trained ViT on the CheXpert dataset [1] and show per-
formance improvements over pre-trained CNN-based VGG-
16 [33] and ResNet [9] architectures. We also analyze the 
impact of pretraining by comparing the pre-trained model 
with training from scratch and show that the pre-trained 
model has the advantage. The rest of the paper is structured 
as follows. The “Literature Review” section discusses the 

related work. The “Transformer Background” section dis-
cusses the background of transformer model. The “Meth-
odology” section presents the proposed methodology. The 
“Experiment and Results” section discusses the results, and 
finally, the “Datasets” section concludes the paper.

Literature Review

Transfer Learning in Medical Imaging

With the advancement in the computer sciences and tech-
nology, transfer learning, which is primarily a substantial 
feature of deep learning, is now become indispensable to 
many applications as an integral part. It has been used by 
different fields of research in order to apply it in the field 
of radiology, training Inception, ResNet on retinal fundus 
images [34–37]. DenseNet, ResNet on chest x-rays [38, 39], 
and same are applied to ophthalmology. Besides this, the 
FDA have approved the related research on ophthalmology 
[40], with proper clinical arrangement [41]. [42] extracts 
characteristics from chest x-ray pictures using different neu-
ral network models pre-trained on ImageNet, then prepares 
five distinct models, analyzes their performance, and pro-
poses an ensemble model that integrates outputs from all 
pre-trained models. Detection of Alzheimers disease in early 
stages is also its prominent application [43]. In 3D medi-
cal data, there are various transfer learning applications, 
such as [44] which create a Med3D network for 3D medi-
cal data classification and segmentation using a pre-trained 
ResNet-152. Other applications include the identification of 
skin cancer via photographs of dermatologist’s level [45] 
and the determination of the quality of human embryo for 
the IVF procedures [46]. [47] demonstrates that deep CNNs 
like inception-V3 trained on real-world radiographs can be 
utilized to transfer learning for fracture detection. The results 
were comparable to state-of-the-art for automated fracture 
diagnosis after training the model with a small sample set. 
[48] proposed Multi-view Convolutional Recurrent Neural 
Network (MVCRecNet), a deep learning approach that uses 
shape, size, and cross-slice changes in CT scan pictures to 
train model to identify lung cancer nodules from CT scan 
images. The model is given several viewpoints, allowing it 
to generalize better by learning robust characteristics. The 
datasets LIDC-IDRI and ELCAP were used in this study. 
[49] proposed Bayesian-based Convolutional Neural Net-
work (B-CNN) takes advantage of model uncertainty and 
Bayesian confidence to increase TB detection and validation 
accuracy. The Montgomery and Shenzhen TB benchmark 
datasets were used to test the suggested methodology and it 
shows significant results in terms of TB identification accu-
racy, according to the findings.
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Using the transfer learning methodology, [50] developed 
an extra layer of convolutional neural network blocks to inte-
grate pre-trained ResNet and DenseNet models to establish 
higher performance above either model, and the suggested 
network was able to accurately classify lung diseases. [51] 
present their findings on the classification of histopathol-
ogy images of oral cancer using various image classification 
models like Inception, ResNet, and MobileNet, concluding 
that transfer learning models perform well on histopathol-
ogy. Despite the popularity and significance of transfer 
learning in the field of medical imaging, there has been lit-
tle work done or research conducted in the relevant field. 
Even many common beliefs have been challenged by the 

latest research in this field of transfer learning in the area 
of natural image setting [52–56]. For instance, it has been 
shown in [53] that a transfer that has taken place between 
tasks that are similar in nature are not always resulted in the 
improvement of performance, and it has also been illustrated 
[55] that generalization of pre-trained features might be less 
than they are to be thought. In the medical imaging setting, 
many such open questions remain. As described above, in 
medical imaging, where present standard is taking an exist-
ing architecture that has been designed for natural image 
datasets like ImageNet, along with equivalent pre-trained 
weights, for example, ResNet and Inception, afterwards, the 
model is being finetuned on medical imaging data.

Fig. 1  Image transformer

Fig. 2  Vision transformer
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Anyhow, there is a considerable difference between medi-
cal image diagnosis and ImageNet classification. The first 
prominent feature of medical imaging is that its tasks begin 
with a considerable large image of the region of interest 
in the body and afterwards to identify the pathologies, it 
uses local textures for variations. For instance, the small 
red spots or dots are the signs of diabetic retinopathy and 
microaneurysms in retinal fundus images [57], and the indi-
cation of pneumonia can be confirmed via chest x-rays by 
observing local white small opaque patches [1]. This is just 
the opposite of natural image as ImageNet, in which there 
has been a clear and transparent worldwide subject of image. 
Now there is an open and unanswered question like to what 
extent the ImageNet feature reuse is quite helpful for natural 
medical images.

Transformer for Medical Images

In the field of NLP self-attention models like transformers 
[16] are becoming very popular with time. The concept of 
self-attention is also tried in CNNs like for each query pixel, 
self-attention was only used in local neighborhoods instead 
of being global [58]. In [59] output of CNN is further pro-
cessed by self-attention. The use of pre-trained transformers 
on a large corpus is widely used [60] and in medical field 
use of transformers on text is also well known like BioBERT 
[61], SciBERT [62], and ClinicalBERT [63]. It has become 

possible to train models of massive scales like 100B of 
parameters all this is due to computational efficiency and 
scalability of transformers such as massive models like gen-
erative pre-trained transformer (GPT-3) are state of the art 
in different NLP tasks [64].

Due to massive success of transformers in field of NLP, 
transformers are applied to computer vision tasks. Most 
recent transformers which are used for image classification 

Fig. 3  Transformer encoder block with multi-head attention and scaled dot product attention

Table 1  Distribution of CheXpert images across different classes

Pathology Positive Uncertain Negative

No Finding 16627 0 171014
Enlarged Cardiom 9020 10148 168473
Cardiomengaly 23002 6597 158042
Lung Lesion 6856 1071 179717
Lung Opacity 92669 4341 90631
Edema 48905 11571 127165
Consolidation 12730 23976 150935
Pneumonia 4576 15658 167407
Atelectasis 29333 29377 128931
Pneumothorax 17313 2663 167665
Pleural Effusioin 75696 9419 102526
Pleural Other 2441 1771 183429
Fracture 7270 484 179887
Support Devices 105831 898 80912
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include OpenAi Image GPT (iGPT) [65] which uses GPT for 
image generation and trained model on ImageNet but there 
are limitations in their model as it requires high computation 
power and low image quality, Google Vision transformer 
(Vit) [15] which uses original transformer architecture for 
image classification and converts images into patches and 
gives it to transformer, and Facebook Data efficient trans-
former (DeiT) [66] which also uses same architecture as 
of ViT and used knowledge distillation for better training 
of model in which CNN act as teacher model. Medical 

Transformer [23] proposed a novel transfer learning frame-
work using transformer model. It models 3D volumetric 
images in the form of a sequence of 2D image slices. Tran-
sUNet [22] proposed a transformer-based U-Net architecture 
for medical image segmentation because CNN has limited 
capability while modeling long-range dependencies and 
transformers self-attention mechanism help in modeling 
better representation. Both CNN and transformer are used 
while modeling TransUNet. TransFuse [25] use transformer 
and CNN in parallel styles for medical image segmentation. 

No Finding

Enlarged 
Cardiomedias�num

Cardiomegaly Lung Opacity

Lung Lesion Edema Consolida�on

Pneumonia

Pleural Effusion

Pleural Other Fracture Support Devices

Pneumothorax

Atelectasis

Fig. 4  CheXpert samples

Fig. 5  Pediatric chest X-ray 
sample
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Besides that, a BiFusion module is created to fuse features 
from both branches. Segtran [67] is a medical image seg-
mentation system based on transformers. It contextualizes 
features by utilizing the limitless receptive fields of trans-
formers. Segtran is able to see both the big picture and the 
minute details, resulting in excellent segmentation results. 
In image denoising [68] use a transformer-based neural net-
work used to investigate long-range dependencies between 
low dose computed tomography (LDCT) pixels.

Transformer Background

Transformers are based on self-attention mechanism and 
already became a de facto standard in natural language pro-
cessing (NLP) and state of the art in image classification and 
object detection. A key characteristic of transformers, that 
is well-adopted in NLP, is their effective transfer learning 
on downstream tasks.

Transformer model used in image classification is based 
on original transformer [16] model which consists of two 
blocks encoder block and a decoder block. For image clas-
sification purpose only encoder part of transformer is used 
(Fig. 1). To feed input to the transformer model encoder 
part embedding is generated from patches of an image and 
positional encoding is attached to this patch embedding to 
keep the order of patches then these positional encoded 
patch embeddings are passed to encoder block. Encoder 
block consists of multi-head self-attention, layer normali-
zation, feed-forward layers and then another layer normali-
zation followed by feed-forward layer. To find the relation 
between each patch attention scores are computed using 
query, key and value matrices in self-attention layer. Multi-
ple self-attentions scores are computed which acts as multi-
head to get better representation and outputs of these heads 
are concatenated into one vector and input vector is added 

to it using skip connection and normalization is applied. 
After that output of this normalization is fed to feed-forward 
layer which is again added with previous layer output with 
the help of skip connections and normalization is applied. 
These skip connections allow the representation of different 
levels to interact with each other. Multiple encoder blocks 
can be stacked to gather in image transformer. At the end 
output of transformer encoder block is fed to classifier for 
classification purpose. Transformer output acts as image 
representation.

Methodology

To evaluate the transfer learning performance of ViT from natural 
images to medical images, we train a standard ViT model both 
from random initialization and doing transfer learning from Ima-
geNet [31] dataset. The ViT model we are using is closely related to 
original Transformer [16] and inspired from [15]. The overview of 
the model is shown in Fig. 2 which is used for medical image clas-
sification. The input images are reshaped into fixed-size 2D patches 
which are flattened and combined with position embeddings before 
feeding them to the ViT in a sequence. The transformer encoder 
consists of repeated blocks that each contains normalization, multi-
head attention, and multi-layer perceptron (MLP) layers. The out-
put of the encoder blocks is connected to a classification head that 
consists of MLP that maps the encoded feature vector to one of the 
output classes. We compare the transfer learning performance of 
ViT with CNN-based architectures including VGG-16 [33] and 
ResNet-50 [9]. These CNNs are also trained by doing transfer 
learning from ImageNet [31]. The performance evaluation of ViT 
and CNNs is performed based on evaluation metrics including 
accuracy, precision, recall, and F1-score.

Transformer Encoder

The encoder block in vision transformer takes radiograph 
scans, sliced into patches of size 16 × 16. The patches are 
represented using a patch feature matrix X after adding posi-
tional encoding. The purpose of positional encoding is to 
preserve spatial structure of radiograph scans. The depend-
encies between patches are modeled by using a self-attention 
mechanism which work based on three embeddings: Query 
(Q), Key (K), and Value (V), defined as follows:

Wq , Wk and Wv are used to project patch features onto  
embeddings Q, K, and V respectively. The ViT encoder 

(1)Query(Q) = X ×Wq

(2)Key(K) = X ×Wk

(3)Vlaue(V) = X ×Wv

Table 2  CheXpert and pediatric pneumonia dataset split for training, 
validation and testing

Dataset Training Validation Test Sum

CheXpert 152984 19124 19123 191231
Pediatric Pneumonia 5216 16 624 5856

Table 3  Performance comparison on pediatric pneumonia dataset

Model Precision Recall F1-score AUC Accuracy

ResNet-50 0.8 0.72 0.73 0.72 0.78
Inception-V3 0.86 0.79 0.81 0.79 0.83
VGG-16 0.88 0.83 0.85 0.89 0.82
Vision Transformer 0.89 0.84 0.86 0.87 0.87



Journal of Digital Imaging 

1 3

pipeline mainly works in two steps: self-attention and attention-
based feature weighting. The self-attention mechanism is used 
to model the dependencies between patches. The self-attention  
pipeline works as follows: In the first step, a similarity 
between patches embeddings is computed by taking a dot 
product between Q and K as follows:

The scores are then scaled down by dividing by the square 
root of the Q and K dimension. This allows for more stable 
gradients as multiplying values can have explosive effects:

The softmax layer is used to convert similarity score 
between Q and K into a probability distribution. As a result, 
the model may be more certain about which patch to pay 
attention to.

The objective of attention-based feature weighting step 
aims to weight chest embeddings V based on self-attention 
scores computed in the previous step.

Attention scores as shown in above Eq. (7) is calculated 
as illustrated in Fig. 3. Where MatMul stands for matrix 
multiplication. concat is an abbreviation for concatenation.

Multi‑headed Attention

In multi-headed attention, each attention mechanism acts as 
a head, and each head learns something distinct, resulting in 
a better representation power for the encoder model. Before 

(4)Q × KT

(5)
QKT

√

dk

(6)Softmax(
QKT

√

dk

)

(7)Attention(Q,K,V) = Softmaxk(
QKT

√

dk

)V

applying self-attention, query, key, and value are divided 
into N vectors to make this a multi-headed attention cal-
culation as shown in Fig. 3. After that, the divided vectors 
go through the self-attention process one by one. Each step 
of self-awareness is referred to as a head. Before passing 
through the final linear layer, each head produces an output 
vector that is concatenated into a single vector.

Evaluation Metrics

To evaluate the performance of system model different 
evaluation metrics like Accuracy, Precision, Recall, and F1 
score are used.

Accuracy It is simply a ratio between correct predictions and 
total number of predication. It measures how many times a 
model correctly predicts label.

Precision It measures how many times a model correctly 
predicts positive out of all positive prediction made by 
model.

Recall / Sensitivity It measures how many times a model 
correctly predicts a label positive from an overall positive 
class.

F1 Score It’s a combination of precision and recall and bal-
ance both. A perfect model have F1 score 1 and worst have 
0. Better F1 score tells that model give low false positives 
and false negatives

(8)Accuracy =
TP + PN

TP + TN + FP + FN

(9)Precision =
TP

TP + FP

(10)Recall∕Sensitivity =
TP

TP + FN

Fig. 6  Transfer learning strate-
gies
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Experiments and Results

The following section discusses the datasets used for experi-
mentations and presents the results and discussion.

(11)F1Score = 2 ×
Precision × Recall

Precision + Recall

Fig. 7  Pre-trained vision transformer vs training from scratch

Table 4  Performance comparison on CheXpert dataset

Model Precision Recall F1 Score

VGG-16 0.64 0.51 0.57
ResNet-50 0.63 0.49 0.55
Vision Transformer 0.67 0.53 0.59
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Datasets

For evaluation of proposed methodology 2 datasets have 
been used CheXpert [1] and Pediatric pneumonia dataset 
[69].

CheXpert

CheXpert [1] is a massive public dataset of 224,316 chest 
radiographs from 65,240 patients for chest radiograph 

analysis. CheXpert data is compiled from examinations per-
formed at Stanford Hospital in both inpatient and outpatient 
settings between October 2002 and July 2017, as well as the 
radiology reports that accompanied them. CheXpert consists 
of chest X-rays of different sizes which are then resized to 
224 × 224. Each of these X-rays is labelled into 14 observa-
tions No finding, Enlarged Cardiom, Cardiomegaly, Lung 
Lesion, Lung Opacity, Edema, Consolidation, Pneumonia, 
Atelectasis, Pneumothorax, Pleural Other, Fracture and Sup-
port Devices as positive, negative or uncertain. Distribution 
of CheXpert instances across 14 observations is shown in 

Fig. 9  ResNet-50 ROC

Fig. 8  ResNet-50 training and validation accuracy and loss
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Table 1. We have decided to replace all uncertain labels with 
positive labels as it is also feasible in a real-world scenario, 
as if a patient gets a false negative result, the patient will 
accept it as compared to a false positive, then he or she is 
more likely to get a second opinion which will then clear the 
classification. Samples from CheXpert dataset are shown 
in Fig. 4

Pediatric Pneumonia Dataset

Pneumonia, which outnumbers all other infectious dis-
eases, is the greatest cause of death among babies [70]. 

Anterior-posterior chest X-ray pictures were chosen from ret-
rospective cohorts of pediatric patients aged one to five years 
old at Guangzhou Women and Children’s Medical Center in 
Guangzhou for the labelled Chest X-Ray Images for classifi-
cation dataset [69]. There are 5863 chest x-ray images in this 
collection, divided into two classes: normal and pneumonia. 
Sample images from both classes are shown in Fig. 5

Network Training

For all networks, we use the transfer learning technique. As 
demonstrated in Fig. 6, many tactics are employed for this 
purpose. In some scenarios, the entire model is trained after 
being initialized with pre-trained weights. Freezing a few 
to several layers of the model is another strategy. The pre-
trained model is loaded in our scenario, then the pre-trained 
model’s classification head is removed and replaced with a 
new head based on dataset classes, the network parameters 
are frozen, and the model is trained. Finally, the model is 
finetuned. Table 2 shows the training, validation, and test 
sets for both the CheXpert and Pediatric pneumonia datasets.

The ADAM optimizer is used to optimize all of the net-
works. 0.0001 and 32 are the learning rate and batch size, 
respectively. A patience of 10 epochs is chosen as the stop-
ping condition. On a GPU-based desktop machine with 128 
GB RAM, Nvidia TitanX Pascal (12 GB VRAM), and a 
ten-core Intel Xeon processor, we train networks.

Experiments on Pediatric Pneumonia Dataset

Pediatric pneumonia is a binary classification task in which 
X-rays images are classified as normal or pneumonia. 
Through experimentation on a dataset of pediatric pneumo-
nia patients [70] it is revealed that pre-trained transformer 

Fig. 10  ResNet-50 confusion matrix

Fig. 11  Inception-V3 training and validation accuracy and loss
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transfer learning performs better as compared to other state-
of-the-art CNN-based vision models. Performance compari-
son of vision transformer and other CNN-based deep learn-
ing models is shown in Table 3

ResNet‑50

Experimental results of ResNet-50 on Pediatric pneumonia 
are done using pre-trained ResNet-50 base model. ResNet 
model uses residual connections or skip connection for 
learning representation. On top of that base model an addi-
tional classifier is added to classify images of chest X-rays 
into normal and pneumonia classes. Training and valida-
tion accuracy curves of ResNet model can be seen in Fig. 8; 
accuracy and loss are computed on 30 epochs of training.

After training and validation of ResNet-50 model we have 
computed receiver operating characteristic curve or ROC for 
ResNet-50 model and it shows performance above 0.5 and 
area under ROC curve which is known as AUC is 0.72 as 
shown in Fig. 9.

Confusion matrix for ResNet-50 is also computed for bet-
ter understanding of results and shows the number of TP, FP, 
TN and FN for classifying X-ray images into normal and 
pneumonia classes as shown in Fig. 10

Inception‑V3

Inception-V3 experimental results on pediatric pneumonia 
are also based on a pre-trained model on ImageNet dataset. 

We have used Inception-V3 as base model with an extra 
classifier implemented on top of that base model to classify 
images of chest X-rays into normal and pneumonia classes. 
Figure 11 shows the training and validation accuracy curves 
for the Inception-V3 model. Accuracy and loss are computed 
during 30 training epochs.

Fig. 12  Inception-V3 ROC

Fig. 13  Inception-V3 confusion matrix
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We also computed a receiver operating characteristic 
curve (ROC) for Inception-V3 model after training and 
validation, and it demonstrates performance above 0.5 and 
an area under the ROC curve (AUC) of 0.78, as shown in 
Fig. 12.

For a better understanding of the results, Inception-V3’s 
confusion matrix is produced, and it indicates the number 
of TP, FP, TN, and FN for classifying X-ray pictures into 
normal and pneumonia classes, as shown in Fig. 13.

VGG‑16

The results of the VGG-16 on pediatric pneumonia experi-
ment are also based on a pre-trained model on the ImageNet 
dataset. To classify images of chest X-rays into normal and 
pneumonia classes, we utilized VGG-16 as the base model 
and added an additional classifier on top of it as a transfer 
learning technique. The training and validation accuracy 
curves for the VGG-16 model are shown in Fig. 14. During 

Fig. 14  VGG-16 training and validation accuracy and loss

Fig. 15  VGG-16 ROC
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30 training epochs, accuracy and loss are calculated. After 
training and validation, we also computed a receiver oper-
ating characteristic curve (ROC) for the VGG-16 model, 
which shows performance above 0.5 and an area under the 
ROC curve (AUC) of 0.8, as shown in Fig. 15. The confu-
sion matrix of VGG-16 is produced and shows the number 
of TP, FP, TN or FN classified into normal and pneumonia 
classes for the classification of X-ray images as shown in 
Fig. 16.

Vision Transformer

The results of the Vision transformer experiment with pedi-
atric pneumonia dataset are also based on the pre-trained 
ImageNet model. We used Vision transformer as the basic 
model to classify images of chest X-rays into normal and 
pneumonia classes for that we added a further classifier head 
on top of vision transformer as a transfer learning strategy. 
The training and validation curves are shown in Fig. 17 for 
the vision transformer model. Accuracy and loss are cal-
culated during 30 training periods. After training and vali-
dation, we also computed a receiver operating characteris-
tic curve (ROC) for the Vision Transformer model, which 
shows performance above 0.5 and an area under the ROC 
curve (AUC) of 0.87, as shown in Fig. 18. The confusion 
matrix of Vision Transformer is produced and shows the 
number of TP, FP, TN or FN classified into normal and 
pneumonia classes for the classification of X-ray images as 
shown in Fig. 19.

Pre‑trained Vision Transformer vs Training from Scratch

The results of the pre-trained vs training from scratch 
of Vision transformer on pediatric pneumonia dataset 
are shown in Fig. 7. We used Vision transformer as the 
basic model to classify images of chest X-rays into nor-
mal and pneumonia classes for that we added a further 
classifier head on top of vision transformer as a trans-
fer learning strategy. The training and validation accu-
racy curves are shown in Fig. 7 for the vision transformer 
pre-trained model (ViT-PTM and vision transformer not 

Fig. 16  VGG-16 confusion martix

Fig. 17  Vision transformer training and validation accuracy and loss
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pre-trained model (ViT-NPTM). Accuracy is calculated 
during 30 training periods model stops after convergence 
of 10 epochs. Results shows that pre-trained vision trans-
former performs better as compared to training a model 
from scratch.

Experiments on CheXpert Dataset

CheXpert is a multi-label classification task in which X-rays 
images are classified in 14 observations. Through experimen-
tation on a CheXpert dataset it is revealed that pre-trained 
transformer transfer learning performs better as compared 
to other state-of-the-art CNN-based vision models. Perfor-
mance comparison of vision transformer and other CNN-
based deep learning models are shown in Table 4

Fig. 18  Vision transformer ROC

Fig. 19  Vision transformer confusion matrix

Table 5  ResNet-50 classification report

Pathology Precision Recall F1 Score Support

No Finding 0.49 0.30 0.37 808
Enlarged Cardiom 0.00 0.00 0.00 821
Cardiomengaly 0.62 0.33 0.43 1322
Lung Opacity 0.61 0.68 0.64 3895
Lung Lesion 0.00 0.00 0.00 357
Edema 0.61 0.47 0.53 2298
Consolidation 0.29 0.04 0.07 1498
Pneumonia 0.29 0.07 0.11 848
Atelectasis 0.44 0.24 0.31 2377
Pneumothorax 0.36 0.51 0.42 859
Pleural Effusioin 0.74 0.70 0.72 3515
Pleural Other 0.00 0.00 0.00 230
Fracture 0.00 0.00 0.00 341
Support Devices 0.75 0.83 0.79 4222
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ResNet‑50

Experimental results of ResNet-50 on CheXpert are done 
using pre-trained ResNet-50 base model. ResNet model uses 
residual connections or skip connection for learning repre-
sentation. On top of that base model an additional classifier 
is added to classify images of chest X-rays into 14 classes. 
Classification report of ResNet model can be seen in Table 5; 
accuracy and loss are computed on 30 epochs of training.

VGG‑16

The results of the VGG-16 on CheXpert are also based on 
a pre-trained model on the ImageNet dataset. To classify 
images of chest X-rays into 14 classes, we utilized Vgg-16 as 
the base model and added an additional classifier on top of it 

as a transfer learning technique. The classification report for 
the VGG-16 model is shown in Table 6. During 30 training 
epochs, accuracy and loss are calculated.

Vision Transformer

The results of the Vision transformer experiment with 
CheXpert dataset are also based on the pre-trained ImageNet 
model. We used Vision transformer as the basic model to 
classify images of chest X-rays into 14 classes for that we 
added a further classifier head on top of vision transformer 
as a transfer learning strategy. The classification report can 
be seen in Table 7 for the vision transformer model. Accu-
racy and loss are calculated during 30 training periods.

Conclusions

The transfer learning of transformers for medical imaging is 
evaluated in this paper. For this purpose, a transformer-based 
strategy is used to classify chest X-ray images. To assess per-
formance, CheXpert and the Pediatric Pneumonia dataset are 
used. Transfer learning in the proposed vision transformer out-
performs existing CNN-based models in identifying medical 
images. Our method is based on the original architecture of 
the transformer as well as transfer learning techniques. For the 
image classification model, the transformer’s Encoder block is 
used. In the future different new models, as well as a combi-
nation of CNN and transformer architectures, may be used to 
evaluate model efficacy in medical imaging.

Appendix Extended results on CheXpert 
and pediatric pneumonia datasets

Further results on pediatric pneumonia dataset

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s10278- 022- 00666-z.
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