
Citation: Chen, Z.; Li, D.; Zhu, J.;

Zhang, S. DACFL: Dynamic Average

Consensus-Based Federated Learning

in Decentralized Sensors Network.

Sensors 2022, 22, 3317. https://

doi.org/10.3390/s22093317

Academic Editor: DaeEun Kim

Received: 2 April 2022

Accepted: 25 April 2022

Published: 26 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

DACFL: Dynamic Average Consensus-Based Federated
Learning in Decentralized Sensors Network
Zhikun Chen 1,† , Daofeng Li 1,† , Jinkang Zhu 1,2 and Sihai Zhang 1,3,4,*

1 Department of Electronic Engineering and Information Science, School of Information Science and
Technology, University of Science and Technology of China, No. 96 Jinzhai Road, Hefei 230026, China;
zhikunch@mail.ustc.edu.cn (Z.C.); df007@mail.ustc.edu.cn (D.L.); jkzhu@ustc.edu.cn (J.Z.)

2 PCNSS Laboratory, School of Information Science and Technology, University of Science and Technology
of China, Hefei 230026, China

3 CAS Key Laboratory of Wireless-Optical Communications, School of Information Science and Technology,
University of Science and Technology of China, Hefei 230026, China

4 School of Microelectronics, University of Science and Technology of China, Hefei 230026, China
* Correspondence: shzhang@ustc.edu.cn
† These authors contributed equally to this work.

Abstract: Federated Learning (FL) is a privacy-preserving way to utilize the sensitive data generated
by smart sensors of user devices, where a central parameter server (PS) coordinates multiple user
devices to train a global model. However, relying on centralized topology poses challenges when
applying FL in a sensors network, including imbalanced communication congestion and possible
single point of failure, especially on the PS. To alleviate these problems, we devise a Dynamic Average
Consensus-based Federated Learning (DACFL) for implementing FL in a decentralized sensors
network. Different from existing studies that replace the model aggregation roughly with neighbors’
average, we first transform the FL model aggregation, which is the most intractable in a decentralized
topology, into the dynamic average consensus problem by treating a local training procedure as a
discrete-time series.We then employ the first-order dynamic average consensus (FODAC) to estimate
the average model, which not only solves the model aggregation for DACFL but also ensures model
consistency as much as possible. To improve the performance with non-i.i.d data, each user also
takes the neighbors’ average model as its next-round initialization, which prevents the possible local
over-fitting. Besides, we also provide a basic theoretical analysis of DACFL on the premise of i.i.d
data. The result validates the feasibility of DACFL in both time-invariant and time-varying topologies
and declares that DACFL outperforms existing studies, including CDSGD and D-PSGD, in most
cases. Take the result on Fashion-MNIST as a numerical example, with i.i.d data, our DACFL achieves
19∼34% and 3∼10% increases in average accuracy; with non-i.i.d data, our DACFL achieves 30∼50%
and 0∼10% increases in average accuracy, compared to CDSGD and D-PSGD.

Keywords: decentralized sensors network; dynamic average consensus; federated learning

1. Introduction

The unprecedentedly growing intelligent devices with smart sensors are providing
a vast amount of privacy-sensitive data, which are usually related to the device owners.
According to the General Data Protection Regulation (GDPR) [1], how to utilize these data
in a privacy-preserving way has become a critical issue in the smart sensors network. To
this end, federated learning (FL) [2,3] advocates training the machine learning model and
storing the data locally, uploading only the parameters to a central parameter server (PS) for
model fusion. However, there are defects in FL because of relying on a centralized topology
(Figure 1a). For example, the PS iteratively synchronizes multiple local models from
user devices and sends back the result to them, which leads to an extremely imbalanced
communication burden of the sensors network. In detail, multiple devices communicate

Sensors 2022, 22, 3317. https://doi.org/10.3390/s22093317 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22093317
https://doi.org/10.3390/s22093317
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-8944-7604
https://orcid.org/0000-0002-3390-0473
https://orcid.org/0000-0001-9177-0315
https://orcid.org/0000-0001-5758-2169
https://doi.org/10.3390/s22093317
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22093317?type=check_update&version=2

Sensors 2022, 22, 3317 2 of 23

with the PS concurrently, so the communication traffic jam is likely to happen to the PS,
especially in a sensors network where the bandwidth may be usually low. What is worse, if
the PS suffered a single point of failure, the FL would be paralyzed.

To alleviate the bottlenecks aroused by centralized topology, an intuitive idea is to
facilitate FL in a decentralized topology without a PS (Figure 1b). Hopefully, existing studies
on device-to-device (D2D) communication have conferred the communication ability in
a decentralized sensors network [4–6]. Therefore, we argue that it is not only important
but also applicable for a sensors network to apply FL in a decentralized way. Actually,
there have already been some studies investigating FL in a decentralized topology (refer
to Section 2.2). Apart from them, references [7,8] are the two most similar studies to our
work. In [7], a consensus-based distributed SGD (CDSGD) for collaborative deep learning
over a fixed (time-invariant) topology is proposed, which enables data parallelization and
decentralized computation. However, there are two main limitations with CDSGD. (i) It
requires a uniform interaction matrix of which the elements are identical; (ii) It assumes
independent and identically distributed (i.i.d) data over all devices. Therefore, the CDSGD
becomes infeasible for decentralized sensors network where a time-varying topology and
non-i.i.d data are usually common occurrences. In [8], a decentralized parallel SGD (D-
PSGD) is studied on a fixed decentralized ring topology. The D-PSGD is also inapplicable
for a decentralized sensors network because there is no physical PS to perform an additional
network-wide model average which is explicitly required in D-PSGD. Imagine, if all devices
are required to perform a network-wide average, it would inevitably result in unacceptable
communication congestion. Besides, a fixed ring topology in D-PSGD also encounters the
same limitation (i) as CDSGD.

Central PS

(a) (b)

Without PS

Figure 1. An overview of (a) centralized topology and (b) decentralized topology.

In this paper, we aim to facilitate FL in a more generic decentralized sensors network,
involving densely and sparsely connected, as well as time-invariant and time-varying
topology, with i.i.d and non-i.i.d data over user devices, while ensuring the consistency
across users’ models as much as possible (Although there are studies about personalized FL
which obtains personalized final models [9–11], they are beyond the scope of this paper). To
this end, we propose a Dynamic Average Consensus-based Federated Learning (DACFL).
Our insights are with three folds. First, we transform the model aggregation of FL into
a dynamic average consensus problem. Specifically, user devices are connected through
an undirected graph denoted by a doubly stochastic and symmetric matrix (also called
a mixing matrix). The model parameters of each device in the training procedure are
regarded as a discrete-time series. In this way, the FL model aggregation, whose objective
is to generate a global average model, fits well the dynamic average consensus, whose
goal is to estimate the global average of all reference inputs. Second, we apply the first-
order dynamic average consensus (FODAC) [12] to approximate the average model, which
solves the model aggregation in a decentralized way while ensuring consistency across

Sensors 2022, 22, 3317 3 of 23

different models. Third, to improve the performance on non-i.i.d data, each device uses
its neighborhood weighted average model as its next-round model initialization, which
prevents the possible local over-fitting problem during the training procedure. For a better
understanding, we summarize the difference between DACFL, CDSGD, and D-PSGD in
Table 1. In detail, instead of replacing roughly the model aggregation with neighbors’
model average, our DACFL applies FODAC to estimate the average model of all users,
which ensures the model consistency; when compared to CDSGD, our DACFL is superior
in time-varying topology, sparse topology, and non-i.i.d data; when comparing to D-
PSGD, our DACFL requires no additional network-wide model average which avoids
communication congestion.

Table 1. Comparison with CDSGD, D-PSGD.! means enabled and%means disabled in our result.

Solution Model
Aggregation

Network-Wide
Average

Time-
Invariant

Time-
Varying Dense Sparse i.i.d Non-i.i.d

CDSGD [7] replace by
neighbors’ average not required ! % ! % ! %

D-PSGD [8] replace by
neighbors’ average required ! ! ! ! ! !

DACFL (ours) by FODAC not required ! ! ! ! ! !

The contributions of this paper are summarized as follows:

• This paper devises a new decentralized FL implementation coined as DACFL, which
applies to a more generic decentralized sensors network topology while ensuring
consistency across different users. Unlike CDSGD and D-PSGD roughly replacing
the model aggregation with neighbors’ average, the DACFL treats each device’s local
training as a discrete-time process and applies FODAC to estimate the average model,
through which the devices can obtain a near-average model in the absence of PS
during the training procedure.

• We provide a basic theoretical convergence analysis of DACFL with some assumptions.
The numeric result offers a convergence guarantee of DACFL and reveals a positive
correlation of the convergence speed to the learning rate and a negative correlation to
the topology size. Specific experimental results also support our analysis.

• A line of experiments on public datasets show that our DACFL outperforms CDSGD
and D-PSGD w.r.t Average of Acc and Var of Acc in most cases.

2. Related Works

In this section, we first provide a brief introduction to FL and then summarize existing
studies about decentralized FL implementations and about dynamic average consensus.

2.1. Federated Learning

As per [3], FL can be categorized into Horizontal Federated Learning (HFL) [2,13],
Vertical Federated Learning [14–16] and Federated Transfer Learning [17–19] based on the
distribution characteristics of the data. Throughout this paper, we focus only on the HFL.
In what follows, we present the basic concept of HFL.

In HFL, a distributed training model is executed by a number of devices that share
local model updates with a central PS who aggregates these updates to build a global
model. Generally, an FL scenario consists of two main phases, local update, and global
aggregation. In the local update phase, devices compute the gradients to minimize the
underlying loss function using their local data. While in the global aggregation phase, the
PS collects model updates from devices, aggregates them to form a global model, and sends
back the global model to devices for their next training.

Formally, suppose there is a subset of devices C ⊆ N selected by the PS at training
epoch t ≤ T. Each device c ∈ C keeps a local dataset Dc = {Xc, Yc}, where Xc ∈ R|Dc |×d

Sensors 2022, 22, 3317 4 of 23

represents the feature space of device c’s training data and Yc ∈ R|Dc |×m is the associated
label space. Let `(ω; xi, yi) denote the loss function of data sample xi, where ω is the model
parameters, then the local loss of device c over training dataset Dc can be expressed as

fc(ω) =
1
|Dc| ∑

i∈Dc

`(ω; xi, yi). (1)

Then the global loss across all devices can be given as

f (ω) =
|C|

∑
c=1

|Dc|
|D| fc(ω), (2)

where D =
⋃

c Dc represents for the whole training dataset over devices subset C and
|D| = ∑

|C|
c=1|Dc| denotes the total number of the data samples.

To solve the above-distributed optimization problem, an incomplete list of studies
have offered their solutions [2,20–26]. In [2], the FederatedAveraging (FedAvg) is first
advocated to combine local stochastic gradient descent (SGD) on each device with a server
that performs model averaging. To address the communication bottleneck and the scal-
ability of FL, a Federated Learning method with Periodic Averaging and Quantization
(FedPAQ) is proposed [20], which consists of server periodic model averaging, partial de-
vice participation, and quantized message passing. In [21], a secure aggregation framework
Turbo-Aggregate reduces the model aggregation overhead from O(N2) to O(NlogN) by
employing a multi-group circular strategy with additive secret sharing and novel coding
techniques. To reduce the up-link communication overhead and improve the performance
on non-i.i.d data, a Semi-Federated Learning (Semi-FL) framework divides users into
multiple clusters and uploads only the cluster heads’ models to the server [22]. By carefully
designing an in-cluster sequential training manner, Semi-FL improves the performance on
non-i.i.d data. Similar to Semi-FL, ref. [23] also divides users into clusters and devises a
client-edge-cloud Hierarchical Federated Learning (Hier-FL), which reduces the costly com-
munication with the cloud. In [24], a layers-wise Federated Matched Averaging (FedMA) is
proposed for convolutional neural networks (CNNs) and long-short-term memory (LSTM)
to address the data heterogeneity. In [25], the authors propose Federated Learning Based
on a SPADE MAS (FLaMAS), which designs a multi-agent system to enable flexibility
and dynamism in FL. In [26], a Federated Learning-Based Graph Convolutional Network
(FedGCN) is proposed to process non-Euclidean data. All the above studies address the
FL from a theoretical or practical point of view. However, they all rely on a centralized
topology where a central PS is required to execute the global aggregation, which poses
challenges including imbalanced communication burden and the single point of failure
when applied to a sensors network. For a more comprehensive study of FL, please refer
to [3,27–31].

2.2. Decentralized Implementation of Federated Learning

There have already been some studies enabling FL into a decentralized topology.
A fully decentralized FL framework is proposed in [32], where users take a Bayesian-like
approach to iterate and aggregate the beliefs of their one-hop neighbors and collaboratively
estimate the global optimal parameter. In [33], a peer-to-peer approach, BrainTorrent
is proposed targeting towards medical applications in which all clients are pair-wisely
connected and update models by checking the local model version with the latest model
version over the network. However, references [32,33] do not afford sufficient flexibility
for users to manipulate compute-graph or node-level data sharing preferences. To this
end, a universal framework, Scatterbrained, is therefore proposed [34]. In [35], a gossip
communication protocol based on SGD, GossipGraD, is designed for scaling deep learning
on large-scale systems without a PS, which reduces overall communication complexity
and also enables asynchronous communication. Similarly, references [36–38] also design

Sensors 2022, 22, 3317 5 of 23

decentralized FL based on gossip protocol. In [36], the Combo is designed based on
the gossip protocol and a model segmentation level synchronization mechanism, which
is then extended to a bandwidth aware solution by greedily choosing the bandwidth-
sufficient worker to reduce the transmission delay, called BACombo [37]. Furthermore,
an experimental study compares gossip learning with FL and finds gossip learning is
comparable to FL [38]. In addition to the gossip protocol, blockchain also assists the
decentralized implementation of FL [39–45]. In [39], a blockchain-enabled FL (FL-Block)
scheme enables the autonomous machine learning without any centralized authority to
maintain the global model and coordinates by using a Proof-of-Work consensus mechanism
of the blockchain, which improves the privacy issue and insufficient performance of
fog computing. A crowdsourcing framework, CrowdSFL, where users can implement
crowdsourcing with less overhead and higher security is proposed by combining FL with
blockchain [40]. In [41], the BFLC framework uses blockchain to store the global model
and exchange the local model update. In [45], a blockchain-assisted decentralized FL
(BLADE-FL) is developed with an upper bound on the global loss function, based on
which the authors optimize the computing resource allocation and explore the impact of
lazy clients. In [42], a decentralized paradigm for big data-driven cognitive computing is
developed by using a blockchain-enabled FL to introduce an incentive mechanism to solve
the data island problem with privacy protection. An overview of the fundamentals of FL
and blockchain is presented in [43]. The authors also propose the FLchain in mobile-edge
computing networks by integrating FL with blockchain. In [44], the authors propose an
innovative FL with asynchronous convergence (FedAC) considering a staleness coefficient
by using a blockchain network to aggregate the global model, which avoids real-world
issues such as interruption by abnormal local device training failure, dedicated attacks, etc.

Based on the above illustration, existing decentralized FL (DFL) implementations
can be summarized into two main categories, DFL based on gossip protocol and DFL
based on blockchain. Our solution differentiates these two categories from the following
perspectives. (i) The methods are different. Unlike existing studies using gossip protocol
or blockchain to accomplish the model aggregation in a decentralized topology, we first
transform the model aggregation problem into a dynamic average consensus problem
and then employ the FODAC to approximate the average model, thus tackling the model
aggregation in a decentralized topology. (ii) The results achieved are different. Compared
to DFL based on gossip protocol which usually requires a pair-wisely connected topology,
our DACFL is robust to a more generic topology, not necessarily pair-wisely connected
or even sparsely connected. The only prerequisite is a symmetric and doubly stochastic
mixing matrix. As a result, our solution reduces the overall communication burden. While
when compared to DFL based on blockchain, which is usually with high computational
complexity, our solution is more less computationally complex. Therefore, the DACFL
is more practically feasible when applied to a decentralized sensors network where the
devices are usually with sparing capabilities of communication and computation.

2.3. Dynamic Average Consensus

The dynamic average consensus problem is referred to as the problem in which a set of
autonomous agents aims to track the average of individually measured time-varying signals
by local communication with neighbors. Existing papers have studied the dynamic average
consensus problem regarding the continuous-time reference inputs. In [46], the authors use
standard frequency-domain techniques and show that their algorithm can track the average
of ramp reference inputs with zero steady-state error. In the context of input-to-state
stability, the authors [47] show that a proportional dynamic average consensus algorithm
can track with bounded steady-state error the average of bounded reference inputs with
bounded derivatives. In [48], the authors propose a dynamic consensus algorithm and
apply it to design consensus filters. Their algorithm can track with some bounded steady-
state error the average of a common reference input with a bounded derivative. In [49],
the authors further assume that agents know the nonlinear model, which generates the

Sensors 2022, 22, 3317 6 of 23

time-varying reference function. In [50], the l1-regularized H∞ filtering is introduced
to solve the estimation problem. In [51], a tracking algorithm for sparse and dynamic
underwater sensor networks based on particle filter (TASD) is proposed to improve the
slow convergence rate and low filtering accuracy of the traditional particle filter. While
for the dynamic average consensus problem regarding the discrete-time reference inputs,
reference [12] proposes a class of discrete-time dynamic average consensus algorithms and
analyzes their convergence properties. The algorithms can track a class of time-varying
reference inputs, including polynomials, logarithmic-type functions, periodic functions,
and other functions whose n-th-order differences are bounded, for n ≥ 1, with zero or
sufficiently small steady-state error.

For our decentralized FL implementation in this paper, we employ the first-order
dynamic average consensus (FODAC) algorithm [12] (see Algorithm 1) for each device to
track the average model during the training procedure in the absence of central PS.

Algorithm 1: First-order dynamic average consensus [12].
Input: Reference inputs of N nodes: ri(t), (i = 1, 2, · · · , N);
Output: Consensus states of N nodes: xi(T), (i = 1, 2, · · · , N);

1 Initialize: mixing matrix W =
[
wij
]
∈ RN×N ; initialized consensus state:

xi(0) = ri(0); number of iterations: T;
2 for t = 0, 1, 2, · · · , T do
3 xi(t + 1) = xi(t) + ∑j 6=i wij

(
xj(t)− xi(t)

)
+ ∆ri(t);

4 ∆ri(t) = ri(t)− ri(t− 1);
5 end

3. System Model and Problem Formulation

This section first provides the node model and communication model, then formally
constitutes the decentralized FL implementation as a minimization optimization problem.

3.1. Node Model

A node model refers to a device (In the rest of the paper, we no longer distinguish
user, device, and node), which contains a local dataset and a local model. Suppose there are
N nodes in a decentralized topology, labeled by i ∈ V = {1, 2, · · · , N}. The local dataset
on the i-th node is Di, and the whole dataset is D = D1 ∪ · · · ∪ DN , where Di ∩ Dj = ∅ if
i 6= j. The local model of node i at round t is represented by ωt

i . Generally, the models on
all nodes are required to be structural identical and initialized by the same parameters, i.e.,
ω0

1 = ω0
2 = · · · = ω0

N = ω0. In the local update phase, each node trains its ωt
i based on Di

and generates a discrete-time series ωi = {ω0
i , ω1

i , · · · , ωT
i }. We denote ω̄t = 1

N ∑N
i=1 ωt

i
the average model over N nodes at round t. Therefore, the global aggregation phase aims
to complete the ω̄t. In the following part, we provide an estimation method to approximate
the ω̄t in the absence of a PS.

3.2. Communication Model

A communication model refers to two rules that govern the information exchange
between all nodes. (i) A connectivity rule ensuring that the information of each node
influences the information of any other nodes; (ii) A rule on connection weights that a
node uses when combing its own information with the information received from its
neighbors. In practice, the connection weights may be affected by the distance or the
channel interference, e.g., a longer distance or a more severe interference corresponds to
smaller connection weights and vice versa.

The decentralized topology at round t is represented as an undirected graph
G(t) = (V, E(t)), where V is a node set and E(t) ⊂ V×V is an edge set. We call node i and
j neighbors to each other if (i, j) ∈ E(t), which indicates node i and j are enabled one-hop
communication. A connected graph is required such that the information of node i can

Sensors 2022, 22, 3317 7 of 23

influence the information of any other nodes directly or indirectly. For simplicity, we use a
mixing matrix W(t) =

[
wij(t)

]
∈ RN×N to denote the graph with wij(t) representing for

the connection weights demonstrated in the above rule (ii) between node i and j, where{
0 < wij(t) < 1, if (i, j) ∈ E(t)

wij(t) = 0, if (i, j) /∈ E(t)
. (3)

Here W(t) is required to be symmetric and doubly stochastic, i.e., W(t)1 = 1,
1TW(t) = 1T.

3.3. Problem Formulation

Based on the above models, an important remaining problem is to execute the global
aggregation phase without PS. In the following, we transform the global aggregation in
a decentralized topology into a dynamic average consensus problem. Specifically, we
treat the local update phase as a discrete-time process and take the intermediate model
parameters ωi = {ω0

i , ω1
i , · · · , ωT

i } as the reference inputs on node i. Then, the global
aggregation whose goal is to obtain the average model can be transformed into a dynamic
average consensus problem, of which the objective is to track the average of the reference
inputs over all nodes,

min
xt

∥∥∥xt − ω̄t−11
∥∥∥2

2
. (4)

Here xt =
[
xt

1; xt
2; · · · ; xt

N
]

is a vector denoting all the estimations on N nodes at round
t. In this paper, we employ the FODAC (Algorithm 1) to solve the problem in Equation (4).
Besides, as is shown in (2), the objective of FL is to minimize the global loss. So, we formally
combine Equations (2) and (4) and summarize the objective of the decentralized FL as min

ω
f (ω) := ∑N

i=1
|Di |
|D| fi(ω)

min
xt

∥∥xt − ω̄t−11
∥∥2

2
. (5)

Especially, if each node holds the same number of training data, Equation (5) can be
further expressed as min

ω
f (ω) := 1

N ∑N
i=1 fi(ω)

min
xt

∥∥xt − ω̄t−11
∥∥2

2
. (6)

In Section 4, we design a DACFL algorithm to solve this problem.

4. Methods

In this section, we first construct the symmetric doubly stochastic matrix, which is
further used to connect multiple user devices. Then, we briefly introduce the first-order
dynamic average consensus and apply it to design the DACFL for implementing FL in
a decentralized sensors network. Figure 2 shows an overview of our solution, which is
explained in Section 4.3.

4.1. Construct a Symmetric Doubly Stochastic Matrix

As illustrated in Section 3, the mixing matrix is essential for our decentralized com-
munication model. Therefore, it is important to construct the mixing matrix beforehand.
Actually, a very simple doubly stochastic and symmetric matrix could be designed as

W :=
[

1
n

]n×n
. However, to get a more generic mixing matrix, we use the Sinkhorn–Knopp

algorithm [52] to design the doubly stochastic and symmetric matrix in this paper.

Sensors 2022, 22, 3317 8 of 23

Figure 2. An overview of DACFL. Here a simple decentralized topology with 3 devices being pair-
wisely connected is used as an example. Actually, the “neighborhood average” and “FODAC” in
Stage II are carried out based on the models from a device’s neighbors, which contains not necessarily
all models, but rely on a topology (not necessarily pair-wisely connected) instead.

4.2. First-Order Dynamic Average Consensus

As in Section 3.3, by treating the intermediate models during the local update phase
as the discrete-time reference inputs, the average model can be approximated by a dynamic
average consensus algorithm. In this paper, we use the FODAC to approximate the average
model in our DACFL, which has been proved to track the average state with either a
zero steady-state error or an upper-bounded steady-state error [12]. Algorithm 1 briefly
shows thepseudo-codee of FODAC.

4.3. Dynamic Average Consensus-Based Federated Learning

In Equation (5), the objective of decentralized FL implementation is to simultaneously
minimize a global loss and solve a dynamic average consensus problem. For the former
sub-problem, a distributed stochastic gradient descent can be used here-in, while for the
latter sub-problem, we employ the FODAC to solve it. By combining the distributed
gradient descent and the FODAC, we devise an algorithm, Dynamic Average Consensus-
based Federated Learning (DACFL). Figure 2 shows an overview of the DACFL, which is
constituted of three main stages. In stage I, multiple user devices are connected through
the mixing matrix, which can be constructed by the methods introduced in Section 4.1.
In stage II, each device parallel performs the training procedure. In stage III, the estimated
average models are output as the final result. Four main steps constitute the stage II of
DACFL: (i) each device trains its own model using its local data; (ii) each device computes
a neighborhood weighted average model ωt′

i by exchanging its intermediate model with
its neighbors; (iii) each device performs the FODAC to track the average model. (iv) each
device takes the neighborhood weighted average model as its next-round initialization.
More specifically, step (i) can also be referred to as the local update phase in FL. In step (ii),
the neighborhood weighted average model is further used as the device’s next-round
initialization in step (iv) (line 6, Algorithm 2), which is empirically demonstrated more
robust to sparse topology and non-i.i.d data as it to some extent prevents the local over-
fitting. In step (iii), we employ the FODAC to estimate the average model of all users in a
decentralized way, which helps to handle the global aggregation phase without a central
PS. The pseudo-code of the DACFL training procedure is summarized in the Algorithm 2.

Sensors 2022, 22, 3317 9 of 23

Algorithm 2: Dynamic Average Consensus-based Federated Learning.

Input: mixing matrix: W(t) =
[
wij(t)

]
∈ RN×N ;

initialized models of N nodes: ω0
1 = ω0

2 = · · · = ω0
N ;

initialized consensus states of N nodes: x0
1 = x0

2 = · · · = x0
N ;

number of communication rounds T;
number of nodes N; learning rate λ;
Output: consensus states of N nodes: xT

1 , xT
2 , · · · , xT

N ;
1 Initialize: x0 :=

[
x0

1, x0
2, · · · , x0

N
]
; ω0 :=

[
ω0

1, ω0
2, · · · , ω0

N
]
; x0 = ω0;

2 for each node i ∈ 1, 2, · · · , N parallel do
3 for t = 0, 1, 2, · · · , T − 1 do
4 Compute the neighborhood weighted average model: ωt′

i = ∑N
j=1 wij(t)ωt

j ;

5 Randomly sample a batch training examples ζt
i from Di;

6 Use neighborhood weighted average model to reinitialize and update the

local model: ωt+1
i ← ωt′

i − λ∇ fi

(
ωt′

i ; ζt
i

)
;

/* fi(·) indicates the loss function on node i; ∇ indicates the
gradient operator; */

7 Perform the average consensus by FODAC: ∆ωt
i = ωt

i −ωt−1
i ;

/* ω−1
i = ω0

i */
8 xt+1

i = ∑N
j=1 wij(t)xt

j + ∆ωt
i ;

9 end
10 end

5. Convergence Analysis

In this section, we provide a basic theoretical proof of our solution with i.i.d data.
Without loss of generality, each user is assumed to hold the same number of training data
such that the loss function f (x) can be denoted as

f (ω) :=
1
N

N

∑
i=1

fi(ω). (7)

To complete the analysis, we make the following assumptions.

Assumption 1 (L-Smooth). Each loss function fi(ω) is L-smooth such that

fi(v) ≤ fi(w) + (v− w)T∇ fi(w) +
L
2
‖v− w‖2

2. (8)

In decentralized FL, each user holds its local dataset Di and gradient ∇ fi(ω). To de-
clare the user-wise gradients ∇ fi(ω), we have Assumptions 2 and 3 on the premise of
i.i.d data.

Assumption 2 (Bounded Gradients). For each user i and a randomly sampled batch data ζi,
there exists an upper bound G > 0 such that

Eζi∼Di‖∇ fi(ω; ζi)‖2 ≤ G2. (9)

Assumption 3 (Uniform Gradient First-order Difference). At any round t, define

∆gt
i = ∇ fi(ω

t′ ; ζi)−∇ fi(ω
t−1′ ; ζi) = gt

i − gt−1
i

as the first-order difference of gradient, this paper assumes an i.i.d data distribution across all users
for the convergence analysis, such that

Sensors 2022, 22, 3317 10 of 23

E
[
∆gt

i
]
= E

[
∆gt

j

]
= ∆gt, ∀i, j, 1 ≤ i, j ≤ N. (10)

Assumption 4 (Bounded First-order Differences of Model Parameter). At any round t, there
is a constant θ > 0 ensuring an upper bound of each user’s model parameters such that∥∥∥ωt

i −ωt−1
i

∥∥∥2
≤ θ2. (11)

In practice, a sufficiently small learning rate λ guarantees this assumption. Following
the Assumption 4, we have

∆ωt
max − ∆ωt

min ≤ κ, (12)

where κ is an upper bound related to θ. We also define

∆ωt
i := ωt

i −ωt−1
i ,

∆ωt
max := maxi=1,2,...,N ∆ωt

i ,
∆ωt

min := mini=1,2,...,N ∆ωt
i .

The above (12) ensures the FODAC tracks the average of the time-varying model
parameters ωt

i with a sufficiently small steady-state error. Detailed proof can be found
in [12]. Following the above assumptions, we present the convergence rate of DACFL in
Theorem 1.

Theorem 1. Following the aforementioned assumptions, we have the average expected squared
gradient norm following

1
T

T−1

∑
t=0

∥∥∇ f (ω̄t)
∥∥2 ≤ 2

λT
E
(

f (ω̄0)− f (ω̄T)
)
+ G2 +

θ2

λ2 +
Lθ2

λ

≤ 2
λT

(
f (ω̄0)− f ∗

)
︸ ︷︷ ︸

:C0

+ G2 +
θ2

λ2 +
Lθ2

λ︸ ︷︷ ︸
:C1

,
(13)

where f ∗ denotes the minimum loss value of f (x).

In (13), the average squared gradient norm is bounded by C0 + C1, where the C0
gradually tends to 0 when training iteration T increases. In other words, the average
squared gradient norm is bounded by a learning rate related term C1 when T → +∞. So,
if ω̄t is regarded as the solution of f , the convergence is guaranteed. Besides, the final
output of DACFL xT = [xT

1 , xT
2 , . . . , xT

N] tracks the ω̄T with a sufficiently small error, hence
providing a convergence guarantee for DACFL. For detailed proof of Theorem 1, please
refer to the Appendix A.

6. Experiments and Performance Evaluation

In this section, we first declare the experimental setup and then evaluate the perfor-
mance of DACFL with different topology and data allocations.

6.1. Experimental Setup
6.1.1. Datasets, Allocation, Topology, and Neural Network Structure

(1) Datasets: Three public datasets including MNIST, Fashion-MNIST (FMNIST) and
CIFAR-10 are used for our performance validation in this paper [53–55]. (i) MNIST: a
dataset includes 70,000 images of hand-written digits, total of 10 classes, with a training
set consisting of 60,000 examples and a test set consisting of 10,000 examples, respectively.
(ii) Fashion-MNIST: a similar dataset comprises 28 × 28 grayscale images of 70,000 fashion
products from 10 categories. (iii) CIFAR-10: a dataset consists totally of 60,000 color images

Sensors 2022, 22, 3317 11 of 23

with three RGB channels, which can be classified into 10 classes. The training set has
50,000 examples and the test set has 10,000 examples.

(2) Allocation: We design two ways for data allocations. (i) i.i.d: each user is assigned
the same number of training samples with a uniformly random distribution over 10 classes.
(ii) non-i.i.d: the training set is sorted by labels first and then divided into multiple shards
with the same training data; each user samples 2 shards without replacement.

(3) Topology: Several topology from different perspectives are designed. (i) Time-
varying and time-invariant: for the time-invariant topology, we initialize the mixing matrix
and keep it unchanged during the training process; for the time-varying topology, we
reconstruct the mixing matrix every 10 training rounds. (ii) sparse and dense connectivity:
for the sparse topology, half elements of the mixing matrix are 0 (ψ = 0.5); while for the
dense topology, all elements in the mixing matrix are non-zeros (ψ = 1.0).

(4) Neural Network Structure: We use the same CNN structure for MNIST and
FMNIST which contains two 5 × 5 convolutional layers (each layer is followed with a batch
normalization and 2 × 2 max pooling), a fully connected layer with ReLu activation and a
final softmax output layer. For CIFAR-10, we use a CNN consisting of two convolutional
layers (each layer is followed with batch normalization, ReLu activation, and 2 × 2 max-
pooling), two fully connected layers with ReLu activation, and a final softmax output layer.

6.1.2. Baselines and Performance Metrics

We compare DACFL with a centralized FL method, FedAvg [2], and another two
decentralized methods, CDSGD [7] and D-PSGD [8]. For FedAvg, all users participate
in each training round. For CDSGD and D-PSGD, the mixing matrix and other hyper-
parameters are consistent with DACFL. Two metrics, including Average of Acc and Var
of Acc are defined to indicate the performances. In detail, each user’s trained model (or
estimated model in DACFL) is separately test, then an averaged result of all users’ test
accuracy is used as Average of Acc and the variance over all users’ test accuracy is used as
Var of Acc. For FedAvg and D-PSGD, the final output is a only global model; therefore, the
Average of Acc is actually the same as the test accuracy and the Var of Acc is always 0.

We carried out the experiments on a Ubuntu 18.04 computer with 4 RTX 2080Ti
GPU cards. All the baselines and our proposed solution are implemented by Python 3.8
and Pytorch 1.8.2 with CUDA 10.2, and we use MATLAB to visualize the result. Unless
otherwise specified, some important parameters are set as Table 2.

Table 2. Experimental parameters setting.

Parameter Numeric Value

Number of nodes: 10
Training rounds: 100
Local batch size: 20
Local epoch: 1
Decaying for learning rate: 0.995
Loss function: Cross Entropy
Learning rate: MNIST/FMNIST: 0.001, CIFAR: 0.005

6.2. Why Choose FODAC? A Numerical Perspective

A specific numerical experiment is designed in this section to clarify the benefit
of FODAC. Specifically, we separately apply FODAC, CDSGD and D-PSGD to track
the average of two types of discrete-time inputs under three different mixing matrices.
(i) Ri(t) = sin(t) + (1

t)
i + t + i, inputs with relatively large variance between each user;

(ii) Ri(t) = sin(t) + (1
t)

i + t, inputs with relatively small variance. Here Ri(t) denotes the
input of i-th user at time t, where i ∈ {1, 2, · · · , 10}, t ∈ {1, 2, · · · , 20}.

Three 10 × 10 mixing matrices are defined in this experiment. (i) sparse: ψ = 0.5,
i.e., half elements are 0; (ii) dense: ψ = 1.0, i.e., all elements are non-zeros; (iii) uniform:

Sensors 2022, 22, 3317 12 of 23

all elements are 0.1. For CDSGD, we take roughly the neighborhood weighted average
as the estimated value; for D-PSGD, the estimated value is the network-wide average on
the estimation by CDSGD. While for FODAC, we take the consensus state (see line 3 in
Algorithm 1) as the estimated result. Then, the absolute error can be computed by

err =
∣∣R̄i(t)− R̂i(t)

∣∣, (14)

here R̂i(t) is the estimation and R̄i(t) is the average of inputs. Figure 3 shows a comparison
of these three methods.

(a)

(b)

Figure 3. The result of approximating the average by different methods. (a) inputs with large variance;
(b) inputs with small variance.

With large-variance inputs, because CDSGD roughly takes the neighbors’ average as
the mean value, which becomes distorted with either large variance inputs or an ununiform
mixing matrix. Therefore, a distinct error and variance in both sparse and dense mixing
matrices in Figure 3 is observed. Comparatively, the only feasible result of CDSGD with
small variance inputs or uniform mixing matrix also supports our suspect. While with
small-variance inputs in Figure 3b, the FODAC still outperforms CDSGD from convergence
speed in both sparse and dense mixing matrix. The D-PSGD is observed smaller error
and variance than FODAC and CDSGD because it additionally carries out a network-wide
average and takes this network-wide average as the mean value, which is exactly equal to
the actual average value. However, such a network-wide average is practically infeasible
when it comes to a decentralized sensors network where no physical PS is responsible for
it. To sum up, the FODAC is more feasible than CDSGD and D-PSGD in approximating
the average in a more generic decentralized topology; this actually motivates us to apply it
into DACFL.

6.3. Performance on i.i.d Data

Figures 4 and 5, respectively, show the performances with i.i.d data allocation in
time-invariant and time-varying topology. The parameters are set following Table 2.

Sensors 2022, 22, 3317 13 of 23

6.3.1. Time-Invariant Topology

Figure 4 shows the result with i.i.d data in time-invariant topology. The following
conclusions can be drawn from this result.

First, the DACFL outperforms D-PSGD and CDSGD in terms of Average Acc, albeit
slightly inferior to FedAvg. From Figure 4a–c, the DACFL achieves 97%, 86%, 70% ac-
curacy and 96%, 85%, 67% accuracy in a densely and sparsely connected topology, on
three datasets, which is superior to the result of CDSGD with 93%, 64%, 18% accuracy and
68%, 51%, 20% accuracy, and the result of D-PSGD with 97%, 83%, 55% accuracy and 95%,
75%, 45% accuracy. The D-PSGD has higher accuracy than CDSGD because it additionally
performs a model averaged over all users, which, however, leads to unacceptable commu-
nication congestion or even becomes practically infeasible when there is no physical PS in a
decentralized sensors network. Nonetheless, due to the ununiform mixing matrix, its final
accuracy is still slightly worse than FedAvg. As a deviation across different local models
always exists in an ununiform mixing matrix, where the FODAC approximates the average
model more effectively, which further leads to a superior accuracy for DACFL.

(a) (b) (c)

(d) (e) (f)

Figure 4. Performance comparison with i.i.d data and time-invariant topology. (a,d) on MNIST;
(b,e) on FMNIST; (c,f) on CIFAR-10.

Second, the DACFL is more robust to the sparse topology. Specifically, the DACFL has
1%, 1%, 3% accuracy degradation on three datasets. While the D-PSGD degrades 2%, 8%,
10% accuracy, and the CDSGD degrades more than 10% accuracy. Because the FODAC is
always effective as long as the mixing matrix satisfies the symmetric and doubly stochastic
property, the DACFL is also feasible in sparse topology. In contrast, replacing roughly the
average model with the neighbors’ average is very sensitive to the sparsity of the mixing
matrix. Therefore, the CDSGD and D-PSGD show more serious accuracy degradation in
sparse topology.

Sensors 2022, 22, 3317 14 of 23

(a) (b) (c)

(d) (e) (f)

Figure 5. Performance comparison with i.i.d data and time-varying topology. (a,d) on MNIST;
(b,e) on FMNIST; (c,f) on CIFAR-10.

Second, the DACFL is more robust to the sparse topology. Specifically, the DACFL has
1%, 1%, 3% accuracy degradation on three datasets. While the D-PSGD degrades 2%, 8%,
10% accuracy, and the CDSGD degrades more than 10% accuracy. Because the FODAC is
always effective as long as the mixing matrix satisfies the symmetric and doubly stochastic
property, the DACFL is also feasible in sparse topology. In contrast, replacing roughly the
average model with the neighbors’ average is very sensitive to the sparsity of the mixing
matrix. Therefore, the CDSGD and D-PSGD show more serious accuracy degradation in
sparse topology.

Third, the result of each user in DACFL is more consistent than that in CDSGD.
Figure 4d–f show the variance of accuracy across different users. The variance in DACFL
is observed to be smaller and more stable compared to CDSGD, which gradually tends
to around 0 as the training progresses. This is because the FODAC is more effective in
estimating the average model while the CDSGD replacing roughly the average model with
the neighbors’ average may generate more diversified local models.

6.3.2. Time-Varying Topology

Figure 5 presents the result on i.i.d data in time-varying topology. Because the time-
varying mixing matrix is also ensured symmetric and doubly stochastic, the DACFL still
outperforms D-PSGD and CDSGD. For example, in Figure 5b, the DACFL achieves an
87% accuracy better than the 84% accuracy of D-PSGD and 68% of CDSGD. Changing
the topology does not affect the FedAvg, which performs better than other decentralized
methods. Besides, the accuracy degradation caused by the topology sparsity becomes
smaller for all decentralized methods. Especially, for D-PSGD on FMNIST (Figure 5b)
and CIFAR-10 (Figure 5c), the average accuracy under a sparse topology is even greater
than that under a dense topology. We suspect the randomness introduced by time-varying
topology reduces the possibility of early over-fitting in a sparse topology. Finally, for
the variance shown in Figure 5d–f, a similar result to that of a time-invariant topology is

Sensors 2022, 22, 3317 15 of 23

observed. The DACFL has smaller and more stable variance of accuracy than CDSGD in
both densely and sparsely connected topology.

In summary, with i.i.d data, the DACFL is superior to CDSGD and D-PSGD in both
time-varying and time-invariant topology.

6.4. Performance on Non-i.i.d Data

In this section, we test the performance of DACFL on non-i.i.d data and show the
result in Figures 6 and 7. The parameters are set following Table 2.

(a) (b) (c)

(d) (e) (f)

Figure 6. Performance comparison with non-i.i.d data and time-invariant topology. (a,d) on MNIST;
(b,e) on FMNIST; (c,f) on CIFAR-10.

6.4.1. Time-Invariant Topology

Figure 6 presents the result on non-i.i.d data in time-invariant topology. Comparing
with results on i.i.d data, all methods have accuracy degradation on three datasets. This is
because the non-i.i.d property leads to users’ local model divergence and early over-fitting.
Since D-PSGD additionally performs a network-wide model average, it has higher accuracy
than DACFL and CDSGD in MNIST and FMNIST (The result on CIFAR-10 is not counted
here because all decentralized methods do not converge after 100 rounds). However, a
network-wide model average usually results in an excessive communication overhead,
especially when users are very dispersedly distributed in a large topology. In case of
no network-wide model average, our DACFL outperforms CDSGD. Take the result in
dense topology as an example; DACFL gets average accuracy of 86%, 70%, while CDSGD
only achieves 58%, 40% on MNIST and FMNIST, respectively. It is the re-initialization
by neighbors’ weighted average model which prevents the possible local over-fitting
during the training procedure, thus improving the performance of DACFL in non-i.i.d
data. Besides, the variance results in Figure 6d–f also shows the superiority of DACFL
compared to CDSGD. Actually, the variance is larger than that of i.i.d data due to the
non-i.i.d property. This is because that non-i.i.d would inherently lead to heterogeneous
local models; therefore, CDSGD replacing the average model with the neighbors’ average
would result in more diversified models across different users. However, the variance of

Sensors 2022, 22, 3317 16 of 23

DACFL still decreases and stabilizes as the training progresses due to the effectiveness of
FODAC estimating the average model.

(a) (b) (c)

(d) (e) (f)

Figure 7. Performance comparison with non-i.i.d data and time-varying topology. (a,d) on MNIST;
(b,e) on FMNIST; (c,f) on CIFAR-10.

6.4.2. Time-Varying Topology

Figure 7 presents the result on non-i.i.d data in time-varying topology. For the average
accuracy in Figure 7a–c, similar accuracy degradation due to non-i.i.d data still exists
when compared with the result on i.i.d data. Because the randomness introduced by
time-varying topology possibly alleviates the local model over-fitting, our DACFL has a
better performance than that of a time-invariant topology shown in Figure 6, especially
on FMNIST and CIFAR-10. For the variance, similar result to Figure 6 happens, i.e., the
variance of DACFL gradually decreases and tends to 0, which confirms the viability of
DACFL in tracking the average model.

To sum up, the DACFL is also viable on non-i.i.d data (MNIST and FMNIST) under
time-varying topology.

6.5. Convergence vs. Learning Rate and Topology Size

To find out how the learning rate and topology size affect our solution, the average
test accuracy and average training loss on i.i.d MNIST with different learning rates and
topology sizes are shown in Figure 8. Note only densely connected topology is considered
in this part. Except for learning rate and topology size, other parameters in this experiment
also follow Table 2.

6.5.1. Performance vs. Learning Rate

Figure 8a,b show the test accuracy and training loss vs. different learning rates. From
Figure 8a,b, a larger λ within the range 0.001 ≤ λ ≤ 0.01 leads to faster convergence.
This is because a larger learning rate makes the loss function decreases with a larger
step size, which leads to a faster convergence. However, this situation is the opposite
when 0.05 ≤ λ ≤ 0.1, i.e., when λ increases from 0.05 to 0.1, the convergence speed and

Sensors 2022, 22, 3317 17 of 23

convergence result become worse, with a smaller average test accuracy and larger average
training loss. It is because an excessive learning rate λ would lead to a larger upper bound
of first-order difference of model parameter θ and thus cause a relatively larger upper
bound of first-order difference κ in (12). Consequently, a larger steady-state error while
using FODAC arises. So, λ = 0.01 should be the best choice in this experiment, which gets
a higher average test accuracy and lower variance while ensuring fast convergence.

(a) (b)

(c) (d)

Figure 8. Performance vs learning rate and topology size. (a) Acc vs. λ; (b) Loss vs. λ; (c) Acc vs. N;
(d) Loss vs. N.

6.5.2. Performance vs. Topology Size

Figure 8c,d present the result with different topology size. In Figure 8c,d, as the size
N grows, the convergence speed slows down and the final average accuracy declines. We
suspect a larger topology size would lead to a larger deviation across users, which further
poses a challenge when using FODAC to track the average model.

In summary, a proper learning rate can accelerate the convergence of DACFL. Al-
though DACFL is robust to different topologies, a smaller size helps attain a better perfor-
mance within limited training rounds.

7. Conclusions and Future Work

Over-reliance on centralized topology poses challenges, including imbalanced com-
munication burden and possible single point of failure, for the application of FL in smart
sensors network. For this reason, existing studies have proposed different methods like

Sensors 2022, 22, 3317 18 of 23

CDSGD and D-PSGD for implementing FL in a decentralized topology, which, however,
have some deficiencies. Specifically, there exists distinct variance across users’ models in
CDSGD, while the D-PSGD additionally requires a network-wide model average which
is infeasible in practical decentralized sensors network due to no physical PS or unac-
ceptable communication congestion. Therefore, this paper devises a new decentralized
FL scheme, DACFL, aiming to implement FL in a decentralized sensors network while
ensuring consistency across user devices. To this end, we first transform the most critical FL
model aggregation in decentralized topology into a dynamic average consensus problem
by treating the local training procedure as a discrete-time series. We then employ FODAC
to track the average model across all users. We also provide a basic theoretical analysis of
i.i.d data, which offers a convergence guarantee of our solution. Specific experiments on
different public datasets verify the feasibility of DACFL in a more generic topology and
declare the superiority of DACFL over CDSGD and D-PSGD.

Some issues need further investigation. First, a more communication-efficient method
for DACFL is deserved because of each device in DACFL exchanges both estimation states
and local models during the training process. This is especially important in a practical sen-
sors network, usually with the insufficient capability of communication and computation.
Two high-level ways are suggested to improve communication efficiency. One is to reduce
the amount of data transmitted per communication round using a line of compression
techniques; the other is to reduce the number of total communication rounds by speeding
up the convergence. To reduce the computational burden, methods like network pruning
and binary connection would help design a lightweight NN structure to reduce the com-
putational burden. Second, an asynchronous DACFL deserves investigation for practical
application. In this paper, we simply assume a synchronization across devices which would
be, however, time-consuming with heterogeneous communication and computation capa-
bilities of devices, because a faster device should wait for a slower device until it finishes
its task before exchanging model information. Therefore, a staleness-aware asynchronous
training mechanism needs to be carefully designed for DACFL in the future. Third, de-
signing a halfway-drop and halfway-join-aware DACFL is worthy of future investigation.
In a practical smart sensors network, some devices may be disconnected and reconnected
during the training procedure, which would destroy the mixing matrix. Therefore, how to
seamlessly reconstruct a symmetric and doubly stochastic matrix is very important.

Author Contributions: Conceptualization, S.Z.; methodology, D.L.; software, Z.C.; validation, Z.C.
and D.L.; formal analysis, Z.C.; investigation, Z.C. and D.L.; resources, Z.C.; data curation, Z.C.;
writing—original draft preparation, Z.C.; writing—review and editing, S.Z.; visualization, Z.C.;
supervision, S.Z.; project administration, J.Z.; funding acquisition, J.Z. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by Huawei Technology Innovative Research.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This research is supported by Huawei Technology Innovative Research.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Appendix A.1. Preliminary

Before the detailed proof, here are some notations avoiding ambiguity. We de-
note the mixing matrix W =

[
wij(t)

]
∈ RN×N a decentralized topology with N users,

where xt
i , ωt

i represents for the estimation and local model of i-th user at round t, re-
spectively. ω̄t = 1

N ∑N
i=1 ωt

i is defined as the average model of all users at round t and

Sensors 2022, 22, 3317 19 of 23

ωt′
i = ∑t

j=1 wij(t)ωt
j is the neighborhood weighted average. We use gt

i = ∇ fi

(
ωt′

i , ζt
i

)
to

denote the stochastic gradient of user i at round t, where the ζt
i ⊆ Di is uniformly sampled

from Di. The following notations are defined as

xt =
[
xt

1, xt
2, · · · , xt

N
]T,

ωt =
[
ωt

1, ωt
2, · · · , ωt

N
]T.

In the following proof, a time-invariant topology W(t) = W with wij(t) = wij
is considered.

Appendix A.2. Proof of the Theorem 1

Proof. According to Algorithm 2 (line 4 to line 6), ωt′
i = ∑N

j=1 wij(t)ωt
j , ωt+1

i = ωt′
i − λgt

i .
Therefore,

E
[∥∥ω̄t+1 − ω̄t

∥∥2
]

= E
[

1
N2

∥∥∥∑N
i=1

(
ωt+1

i −ωt
i

)∥∥∥2
]

≤ E
[

1
N ∑N

i=1

∥∥∥ωt+1
i −ωt

i

∥∥∥2
]

≤ θ2,

(A1)

where (A1) follows Assumption 4.
Take the following recursive equations as examples,

ωt+1
i −ωt

i = ∑N
j=1 wijω

t
j − λgt

i −
(

∑N
j=1 wijω

t−1
j − λgt−1

i

)
= ∑N

j=1 wij

(
ωt

j −ωt−1
j

)
− λ

(
gt

i − gt−1
i

)
,

ωt
j −ωt−1

j = ∑N
i=1 wij

(
ωt−1

i −ωt−2
i

)
− λ

(
gt−1

j − gt−2
j

)
,

ωt−1
i −ωt−2

i = ∑N
j=1 wij

(
ωt−2

j −ωt−3
j

)
− λ

(
gt−2

i − gt−3
i

)
,

ωt−2
j −ωt−3

j = ∑N
i=1 wij

(
ωt−3

i −ωt−4
i

)
− λ

(
gt−3

j − gt−4
j

)
,

...
ω1

i −ω0
i = ∑N

j=1 wij

(
ω0

j −ω−1
j

)
− λ

(
g0

i − g−1
i

)
.

Then we have

ωt+1
i −ωt

i =
N

∑
j=1

wij

N

∑
i=1

wij · · ·
N

∑
j=1

wij︸ ︷︷ ︸
Σi or Σj total t times

(
ω0

j −ω−1
j

)
−

N

∑
i=1

wij

N

∑
j=1

wij · · ·
N

∑
j=1

wij︸ ︷︷ ︸
Σi or Σj total t-1 times

λ
(

g0
i − g−1

i

)
− · · ·

−∑N
j=1 wijλ

(
gt−1

j − gt−2
j

)
− λ

(
gt

i − gt−1
i

)
(a)
= −

N

∑
i=1

wij

N

∑
j=1

wij · · ·
N

∑
j=1

wij︸ ︷︷ ︸
Σi or Σj total t-1 times

λ
(

g0
i − g−1

i

)
−

N

∑
j=1

wij

N

∑
i=1

wij · · ·
N

∑
j=1

wij︸ ︷︷ ︸
Σi or Σj total t-2 times

λ
(

g1
i − g0

i
)
− · · ·

−∑N
j=1 wijλ

(
gt−1

j − gt−2
j

)
− λ

(
gt

i − gt−1
i

)
(b)
= −λ

(
∆gt

i + ∆gt−1
j + · · ·+ ∆g0

i

)
(c)
= −λ ∑t

t=0 ∆gt,

where (a) follows from the initialization ω0 = ω−1, (b) follows from the Assumption 4,
and (c) follows from Assumption 3.

Substituting the above equation into (A1), we have

Sensors 2022, 22, 3317 20 of 23

E
[∥∥∥ω̄t+1 − ω̄t

∥∥∥2
]
=

λ2

N2

∥∥∥∥∥ N

∑
i=1

t

∑
t=0

∆gt

∥∥∥∥∥
2

≤ λ2

N

N

∑
i=1

∥∥∥∥∥ t

∑
t=0

∆gt

∥∥∥∥∥
2

︸ ︷︷ ︸
:T0

≤ E
[

1
N

N

∑
i=1

∥∥∥ωt+1
i −ωt

i

∥∥∥2
]
≤ θ2.

(A2)

So T0 can be bounded following (A2),

T0 ≤
θ2

λ2 . (A3)

Given the L-smooth assumption, the following inequality holds

E
[

f (ω̄t+1)
]
≤E
[

f (ω̄t)
]
+E

[〈
∇ f (ω̄t), ω̄t+1 − ω̄t

〉]
︸ ︷︷ ︸

:T1

+
L
2
E
[∥∥∥ω̄t+1 − ω̄t

∥∥∥2
]

.
(A4)

where

T1 = 〈∇ f (ω̄t),
1
N

N

∑
i=1

(
ωt+1

i −ωt
i

)
〉 = 〈∇ f (ω̄t),

1
N

N

∑
i=1

(
−λ

t

∑
t=0

∆gt

)
〉 = −λ〈∇ f (ω̄t),

1
N

N

∑
i=1

(
t

∑
t=0

∆gt

)
〉

(d)
= −λ

2

∥∥∇ f (ω̄t)
∥∥2

+

∥∥∥∥∥ 1
N

N

∑
i=1

(
t

∑
t=0

∆gt

)∥∥∥∥∥
2
+

λ

2

∥∥∥∥∥∇ f (ω̄t)− 1
N

N

∑
i=1

(
t

∑
t=0

∆gt

)∥∥∥∥∥
2
,

(A5)

where (d) follows from the fundamental equation 〈A, B〉 = 1
2

[
‖A‖2 + ‖B‖2 − ‖A− B‖2

]
for any vector A, B.

Substituting (A2) and (A5) into (A4), we have

E
[

f (ω̄t+1)
]
≤ E

[
f (ω̄t)

]
− λ

2

∥∥∇ f (ω̄t)
∥∥2 − λ

2

∥∥∥∥∥ 1
N

N

∑
i=1

(
t

∑
t=0

∆gt

)∥∥∥∥∥
2

+
λ

2

∥∥∥∥∥∇ f (ω̄t)− 1
N

N

∑
i=1

(
t

∑
t=0

∆gt

)∥∥∥∥∥
2

︸ ︷︷ ︸
:T2

+
Lλ2

2N2

∥∥∥∥∥ N

∑
i=1

t

∑
t=0

∆gt

∥∥∥∥∥
2

.
(A6)

Now let’s bound the T2,

T2 =

∥∥∥∥∥ 1
N

N

∑
i=1
∇ fi(ω̄

t)− 1
N

N

∑
i=1

t

∑
t=0

∆gt

∥∥∥∥∥
2

=
1

N2

∥∥∥∥∥ N

∑
i=1

(
∇ fi(ω̄

t)−
t

∑
t=0

∆gt

)∥∥∥∥∥
2

(e)
≤ 1

N

N

∑
i=1

∥∥∥∥∥∇ fi(ω̄
t)−

t

∑
t=0

∆gt

∥∥∥∥∥
2

(f)
≤ 1

N

N

∑
i=1

∥∥∇ fi(ω̄
t)
∥∥2

+

∥∥∥∥∥ t

∑
t=0

∆gt

∥∥∥∥∥
2

(g)
≤ 1

N

N

∑
i=1

(
G2 +

θ2

λ2

)
= G2 +

θ2

λ2 ,

(A7)

where (e) follows by the inequality
∥∥∥∑N

i=1 zi

∥∥∥2
≤ N ∑N

i=1‖zi‖2, (f) follows from the in-

equality ‖A + B‖2 ≤ ‖A‖2 + ‖B‖2 for any vector A, B, and (g) follows from Assumption 2
and (A3).

Substituting (A7) into (A6), we have

Sensors 2022, 22, 3317 21 of 23

E
[

f (ω̄t+1)
]
≤ E

[
f (ω̄t)

]
− λ

2

∥∥∇ f (ω̄t)
∥∥2 − λ

2

∥∥∥∥∥ 1
N

N

∑
i=1

(
t

∑
t=0

∆gt

)∥∥∥∥∥
2

︸ ︷︷ ︸
:T3

+
λ

2

(
G2 +

θ2

λ2

)
+

Lλ2

2N2

∥∥∥∥∥ N

∑
i=1

t

∑
t=0

∆gt

∥∥∥∥∥
2

(h)
≤ E

[
f (ω̄t)

]
− λ

2

∥∥∇ f (ω̄t)
∥∥2

+
λ

2

(
G2 +

θ2

λ2

)
+

Lλ2

2N2

∥∥∥∥∥ N

∑
i=1

t

∑
t=0

∆gt

∥∥∥∥∥
2

(i)
≤ E

[
f (ω̄t)

]
− λ

2

∥∥∇ f (ω̄t)
∥∥2

+
λ

2

(
G2 +

θ2

λ2

)
+

Lλ2

2N

N

∑
i=1

∥∥∥∥∥ t

∑
t=0

∆gt

∥∥∥∥∥
2

(j)
≤ E

[
f (ω̄t)

]
− λ

2

∥∥∇ f (ω̄t)
∥∥2

+
λ

2

(
G2 +

θ2

λ2

)
+

Lθ2

2

= E
[

f (ω̄t)
]
− λ

2

∥∥∇ f (ω̄t)
∥∥2

+
λ

2

(
G2 +

θ2

λ2 +
Lθ2

λ

)
.

(A8)

where (h) follows because T3 ≥ 0, (i) and (j) follow from the inequality
∥∥∥∑N

i=1 zi

∥∥∥2
≤

N ∑N
i=1‖zi‖2 aforementioned and (A2), respectively.
Rearrange the (A8), we have

∥∥∇ f (ω̄t)
∥∥2 ≤ 2

λ
E
[

f (ω̄t)− f (ω̄t+1)
]
+ G2 +

θ2

λ2 +
Lθ2

λ
. (A9)

For (A9), we sum it over t ∈ {0, 1, 2, · · · , T − 1} first and then divide both sides by T,

1
T

T−1

∑
t=0

∥∥∇ f (ω̄t)
∥∥2 ≤ 2

λT
E
(

f (ω̄0)− f (ω̄T)
)
+ G2 +

θ2

λ2 +
Lθ2

λ

≤ 2
λT

(
f (ω̄0)− f ∗

)
+ G2 +

θ2

λ2 +
Lθ2

λ
,

(A10)

where the f ∗ is the optimum of loss function f , and this completes the proof.

References
1. Goddard, M. The EU General Data Protection Regulation (GDPR): European Regulation that has a Global Impact. Int. J. Mark.

Res. 2017, 59, 703–705. [CrossRef]
2. McMahan, B.; Moore, E.; Ramage, D.; Hampson, S.; Arcas, B.A.Y. Communication-Efficient Learning of Deep Networks from

Decentralized Data. Proc. Mach. Learn. Res. 2017, 54, 1273–1282.
3. Yang, Q.; Liu, Y.; Chen, T.; Tong, Y. Federated Machine Learning: Concept and Applications. ACM Trans. Intell. Syst. Technol.

2019, 10, 1–19. [CrossRef]
4. Gandotra, P.; Kumar Jha, R.; Jain, S. A survey on device-to-device (D2D) communication: Architecture and security issues.

J. Netw. Comput. Appl. 2017, 78, 9–29. [CrossRef]
5. González, E.; Casanova-Chafer, J.; Romero, A.; Vilanova, X.; Mitrovics, J.; Llobet, E. LoRa Sensor Network Development for Air

Quality Monitoring or Detecting Gas Leakage Events. Sensors 2020, 20, 6225. [CrossRef]
6. Nikodem, M.; Slabicki, M.; Bawiec, M. Efficient Communication Scheme for Bluetooth Low Energy in Large Scale Applications.

Sensors 2020, 20, 6371. [CrossRef]
7. Jiang, Z.; Balu, A.; Hegde, C.; Sarkar, S. Collaborative Deep Learning in Fixed Topology Networks. In Advances in Neural

Information Processing Systems; Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R., Eds.;
Curran Associates, Inc.: Nice, France, 2017; Volume 30.

8. Lian, X.; Zhang, C.; Zhang, H.; Hsieh, C.J.; Zhang, W.; Liu, J. Can Decentralized Algorithms Outperform Centralized Algorithms?
A Case Study for Decentralized Parallel Stochastic Gradient Descent. In Advances in Neural Information Processing Systems;
Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R., Eds.; Curran Associates, Inc.: Nice,
France, 2017; Volume 30.

9. Tan, A.Z.; Yu, H.; Cui, L.; Yang, Q. Towards Personalized Federated Learning. IEEE Trans. Neural Netw. Learn. Syst. 2022, 1–17.
[CrossRef]

10. Fallah, A.; Mokhtari, A.; Ozdaglar, A. Personalized Federated Learning with Theoretical Guarantees: A Model-Agnostic Meta-
Learning Approach. In Advances in Neural Information Processing Systems; Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.,
Lin, H., Eds.; Curran Associates, Inc.: Nice, France, 2020; Volume 33, pp. 3557–3568.

http://doi.org/10.2501/IJMR-2017-050
http://dx.doi.org/10.1145/3298981
http://dx.doi.org/10.1016/j.jnca.2016.11.002
http://dx.doi.org/10.3390/s20216225
http://dx.doi.org/10.3390/s20216371
http://dx.doi.org/10.1109/TNNLS.2022.3160699

Sensors 2022, 22, 3317 22 of 23

11. Kelli, V.; Argyriou, V.; Lagkas, T.; Fragulis, G.; Grigoriou, E.; Sarigiannidis, P. IDS for Industrial Applications: A Federated
Learning Approach with Active Personalization. Sensors 2021, 21, 6743. [CrossRef]

12. Zhu, M.; Martínez, S. Discrete-time dynamic average consensus. Automatica 2010, 46, 322–329. [CrossRef]
13. Bonawitz, K.; Ivanov, V.; Kreuter, B.; Marcedone, A.; McMahan, H.B.; Patel, S.; Ramage, D.; Segal, A.; Seth, K. Practical Secure

Aggregation for Privacy-Preserving Machine Learning. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, Dallas, TX, USA, 30 October–3 November 2017; Association for Computing Machinery: New York, NY,
USA, 2017; pp. 1175–1191. [CrossRef]

14. Hardy, S.; Henecka, W.; Ivey-Law, H.; Nock, R.; Patrini, G.; Smith, G.; Thorne, B. Private federated learning on vertically
partitioned data via entity resolution and additively homomorphic encryption. arXiv 2017, arXiv:1711.10677.

15. Zhang, Q.; Gu, B.; Deng, C.; Gu, S.; Bo, L.; Pei, J.; Huang, H. AsySQN: Faster Vertical Federated Learning Algorithms with Better
Computation Resource Utilization. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data
Mining, Virtual, 14–18 August 2021; Association for Computing Machinery: New York, NY, USA, 2021; pp. 3917–3927. [CrossRef]

16. Cha, D.; Sung, M.; Park, Y.R. Implementing Vertical Federated Learning Using Autoencoders: Practical Application, Generaliz-
ability, and Utility Study. JMIR Med. Inform. 2021, 9, e26598. [CrossRef] [PubMed]

17. Saha, S.; Ahmad, T. Federated transfer learning: Concept and applications. Intell. Artif. 2021, 15, 35–44. [CrossRef]
18. Maurya, S.; Joseph, S.; Asokan, A.; Algethami, A.A.; Hamdi, M.; Rauf, H.T. Federated Transfer Learning for Authentication and

Privacy Preservation Using Novel Supportive Twin Delayed DDPG (S-TD3) Algorithm for IIoT. Sensors 2021, 21, 7793. [CrossRef]
19. Bowler, A.L.; Pound, M.P.; Watson, N.J. Domain Adaptation and Federated Learning for Ultrasonic Monitoring of Beer

Fermentation. Fermentation 2021, 7, 253. [CrossRef]
20. Reisizadeh, A.; Mokhtari, A.; Hassani, H.; Jadbabaie, A.; Pedarsani, R. Fedpaq: A communication-efficient federated learning

method with periodic averaging and quantization. In Proceedings of the International Conference on Artificial Intelligence and
Statistics, Virtual, 26–28 August 2020; pp. 2021–2031.

21. So, J.; Güler, B.; Avestimehr, A.S. Turbo-Aggregate: Breaking the Quadratic Aggregation Barrier in Secure Federated Learning.
IEEE J. Sel. Areas Inf. Theory 2021, 2, 479–489. [CrossRef]

22. Chen, Z.; Li, D.; Zhao, M.; Zhang, S.; Zhu, J. Semi-Federated Learning. In Proceedings of the 2020 IEEE Wireless Communications
and Networking Conference (WCNC), Seoul, Korea, 25–28 May 2020; pp. 1–6. [CrossRef]

23. Liu, L.; Zhang, J.; Song, S.; Letaief, K.B. Client-Edge-Cloud Hierarchical Federated Learning. In Proceedings of the ICC
2020—2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, 7–11 June 2020; pp. 1–6. [CrossRef]

24. Wang, H.; Yurochkin, M.; Sun, Y.; Papailiopoulos, D.; Khazaeni, Y. Federated Learning with Matched Averaging. arXiv 2020,
arXiv:2002.06440.

25. Rincon, J.; Julian, V.; Carrascosa, C. FLaMAS: Federated Learning Based on a SPADE MAS. Appl. Sci. 2022, 12, 3701. [CrossRef]
26. Hu, K.; Wu, J.; Li, Y.; Lu, M.; Weng, L.; Xia, M. FedGCN: Federated Learning-Based Graph Convolutional Networks for

Non-Euclidean Spatial Data. Mathematics 2022, 10, 1000. [CrossRef]
27. Wahab, O.A.; Mourad, A.; Otrok, H.; Taleb, T. Federated Machine Learning: Survey, Multi-Level Classification, Desirable Criteria

and Future Directions in Communication and Networking Systems. IEEE Commun. Surv. Tutor. 2021, 23, 1342–1397. [CrossRef]
28. Nguyen, D.C.; Pathirana, P.N.; Ding, M.; Seneviratne, A. Blockchain for 5G and beyond networks: A state of the art survey.

J. Netw. Comput. Appl. 2020, 166, 102693. [CrossRef]
29. AbdulRahman, S.; Tout, H.; Ould-Slimane, H.; Mourad, A.; Talhi, C.; Guizani, M. A Survey on Federated Learning: The Journey

From Centralized to Distributed On-Site Learning and Beyond. IEEE Internet Things J. 2021, 8, 5476–5497. [CrossRef]
30. Ma, X.; Liao, L.; Li, Z.; Lai, R.X.; Zhang, M. Applying Federated Learning in Software-Defined Networks: A Survey. Symmetry

2022, 14, 195. [CrossRef]
31. Abreha, H.G.; Hayajneh, M.; Serhani, M.A. Federated Learning in Edge Computing: A Systematic Survey. Sensors 2022, 22, 450.

[CrossRef] [PubMed]
32. Lalitha, A.; Shekhar, S.; Javidi, T.; Koushanfar, F. Fully decentralized federated learning. In Proceedings of the Third Workshop

on Bayesian Deep Learning (NeurIPS), Montreal, QC, Canada, 7 December 2018.
33. Roy, A.G.; Siddiqui, S.; Pölsterl, S.; Navab, N.; Wachinger, C. BrainTorrent: A Peer-to-Peer Environment for Decentralized

Federated Learning. arXiv 2019, arXiv:1905.06731.
34. Wilt, M.; Matelsky, J.K.; Gearhart, A.S. Scatterbrained: A flexible and expandable pattern for decentralized machine learning.

arXiv 2021, arXiv:2112.07718.
35. Daily, J.; Vishnu, A.; Siegel, C.; Warfel, T.; Amatya, V. GossipGraD: Scalable Deep Learning using Gossip Communication based

Asynchronous Gradient Descent. arXiv 2018, arXiv:1803.05880.
36. Hu, C.; Jiang, J.; Wang, Z. Decentralized Federated Learning: A Segmented Gossip Approach. arXiv 2019, arXiv:1908.07782.
37. Jiang, J.; Hu, L.; Hu, C.; Liu, J.; Wang, Z. BACombo—Bandwidth-Aware Decentralized Federated Learning. Electronics 2020, 9,

440. [CrossRef]
38. Hegedűs, I.; Danner, G.; Jelasity, M. Gossip Learning as a Decentralized Alternative to Federated Learning. In Distributed

Applications and Interoperable Systems; Pereira, J., Ricci, L., Eds.; Springer International Publishing: Cham, Switzerland, 2019;
pp. 74–90.

39. Qu, Y.; Gao, L.; Luan, T.H.; Xiang, Y.; Yu, S.; Li, B.; Zheng, G. Decentralized Privacy Using Blockchain-Enabled Federated Learning
in Fog Computing. IEEE Internet Things J. 2020, 7, 5171–5183. [CrossRef]

http://dx.doi.org/10.3390/s21206743
http://dx.doi.org/10.1016/j.automatica.2009.10.021
http://dx.doi.org/10.1145/3133956.3133982
http://dx.doi.org/10.1145/3447548.3467169
http://dx.doi.org/10.2196/26598
http://www.ncbi.nlm.nih.gov/pubmed/34106083
http://dx.doi.org/10.3233/IA-200075
http://dx.doi.org/10.3390/s21237793
http://dx.doi.org/10.3390/fermentation7040253
http://dx.doi.org/10.1109/JSAIT.2021.3054610
http://dx.doi.org/10.1109/WCNC45663.2020.9120453
http://dx.doi.org/10.1109/ICC40277.2020.9148862
http://dx.doi.org/10.3390/app12073701
http://dx.doi.org/10.3390/math10061000
http://dx.doi.org/10.1109/COMST.2021.3058573
http://dx.doi.org/10.1016/j.jnca.2020.102693
http://dx.doi.org/10.1109/JIOT.2020.3030072
http://dx.doi.org/10.3390/sym14020195
http://dx.doi.org/10.3390/s22020450
http://www.ncbi.nlm.nih.gov/pubmed/35062410
http://dx.doi.org/10.3390/electronics9030440
http://dx.doi.org/10.1109/JIOT.2020.2977383

Sensors 2022, 22, 3317 23 of 23

40. Li, Z.; Liu, J.; Hao, J.; Wang, H.; Xian, M. CrowdSFL: A Secure Crowd Computing Framework Based on Blockchain and Federated
Learning. Electronics 2020, 9, 773. [CrossRef]

41. Li, Y.; Chen, C.; Liu, N.; Huang, H.; Zheng, Z.; Yan, Q. A Blockchain-Based Decentralized Federated Learning Framework with
Committee Consensus. IEEE Netw. 2021, 35, 234–241. [CrossRef]

42. Qu, Y.; Pokhrel, S.R.; Garg, S.; Gao, L.; Xiang, Y. A Blockchained Federated Learning Framework for Cognitive Computing in
Industry 4.0 Networks. IEEE Trans. Ind. Inform. 2021, 17, 2964–2973. [CrossRef]

43. Nguyen, D.C.; Ding, M.; Pham, Q.V.; Pathirana, P.N.; Le, L.B.; Seneviratne, A.; Li, J.; Niyato, D.; Poor, H.V. Federated Learning
Meets Blockchain in Edge Computing: Opportunities and Challenges. IEEE Internet Things J. 2021, 8, 12806–12825. [CrossRef]

44. Liu, Y.; Qu, Y.; Xu, C.; Hao, Z.; Gu, B. Blockchain-Enabled Asynchronous Federated Learning in Edge Computing. Sensors 2021,
21, 3335. [CrossRef]

45. Li, J.; Shao, Y.; Wei, K.; Ding, M.; Ma, C.; Shi, L.; Han, Z.; Poor, H.V. Blockchain Assisted Decentralized Federated Learning
(BLADE-FL): Performance Analysis and Resource Allocation. IEEE Trans. Parallel Distrib. Syst. 2022, 33, 2401–2415. [CrossRef]

46. Spanos, D.P.; Olfati-Saber, R.; Murray, R.M. Dynamic consensus on mobile networks. In Proceedings of the IFAC World Congress,
Prague, Czech Republic, 3–8 July 2005; pp. 1–6.

47. Freeman, R.A.; Yang, P.; Lynch, K.M. Stability and Convergence Properties of Dynamic Average Consensus Estimators. In Proceed-
ings of the 45th IEEE Conference on Decision and Control, San Diego, CA, USA, 13–15 December 2006; pp. 338–343. [CrossRef]

48. Olfati-Saber, R.; Shamma, J. Consensus Filters for Sensor Networks and Distributed Sensor Fusion. In Proceedings of the 44th
IEEE Conference on Decision and Control, Seville, Spain, 15 December 2005; pp. 6698–6703. [CrossRef]

49. Ren, W. Consensus Seeking in Multi-vehicle Systems with a Time-varying Reference State. In Proceedings of the 2007 American
Control Conference, New York, NY, USA, 9–13 July 2007; pp. 717–722. [CrossRef]

50. Yu, H.; Zhang, R.; Wu, J.; Li, X. Distributed Field Estimation Using Sensor Networks Based on H∞ Consensus Filtering. Sensors
2018, 18, 3557. [CrossRef]

51. Liu, H.; Xu, B.; Liu, B. A Tracking Algorithm for Sparse and Dynamic Underwater Sensor Networks. J. Mar. Sci. Eng. 2022, 10,
337. [CrossRef]

52. Knight, P.A. The Sinkhorn–Knopp Algorithm: Convergence and Applications. SIAM J. Matrix Anal. Appl. 2008, 30, 261–275.
[CrossRef]

53. Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86,
2278–2324. [CrossRef]

54. Xiao, H.; Rasul, K.; Vollgraf, R. Fashion-MNIST: A Novel Image Dataset for Benchmarking Machine Learning Algorithms. arXiv
2017, arXiv:1708.07747.

55. Krizhevsky, A.; Hinton, G. Learning Multiple Layers of Features from Tiny Images; Technical Report; Citeseer: University Park, PA,
USA, 2009.

http://dx.doi.org/10.3390/electronics9050773
http://dx.doi.org/10.1109/MNET.011.2000263
http://dx.doi.org/10.1109/TII.2020.3007817
http://dx.doi.org/10.1109/JIOT.2021.3072611
http://dx.doi.org/10.3390/s21103335
http://dx.doi.org/10.1109/TPDS.2021.3138848
http://dx.doi.org/10.1109/CDC.2006.377078
http://dx.doi.org/10.1109/CDC.2005.1583238
http://dx.doi.org/10.1109/ACC.2007.4282230
http://dx.doi.org/10.3390/s18103557
http://dx.doi.org/10.3390/jmse10030337
http://dx.doi.org/10.1137/060659624
http://dx.doi.org/10.1109/5.726791

	Introduction
	Related Works
	Federated Learning
	blackDecentralized Implementation of Federated Learning
	Dynamic Average Consensus

	System Model and Problem Formulation
	Node Model
	Communication Model
	Problem Formulation

	Methods
	Construct a Symmetric Doubly Stochastic Matrix
	First-Order Dynamic Average Consensus
	Dynamic Average Consensus-Based Federated Learning

	Convergence Analysis
	Experiments and Performance Evaluation
	Experimental Setup
	blackDatasets, Allocation, Topology, and Neural Network Structure
	Baselines and Performance Metrics

	Why Choose FODAC? A Numerical Perspective
	Performance on i.i.d Data
	Time-Invariant Topology
	Time-Varying Topology

	Performance on Non-i.i.d Data
	Time-Invariant Topology
	Time-Varying Topology

	Convergence vs. Learning Rate and Topology Size
	Performance vs. Learning Rate
	Performance vs. Topology Size

	Conclusions and Future Work
	
	Preliminary
	Proof of the Theorem 1

	References

