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ABSTRACT The objective of this study is to use a
portable visible spectral imaging system (443−726 nm)
to detect poultry thawed from frozen at the pixel level
using multivariate analysis methods commonly used in
machine learning (decision tree, logistic regression, lin-
ear discriminant analysis [LDA], k-nearest neighbors
[KNN], support vector machines [SVM]). The selection
of the most suitable method is based on the amount of
data required to build an accurate model, computational
speed, and the robustness of the model. The training set
consists of pixel spectra from packages of chicken thighs
without plastic lidding to evaluate the robustness of the
models when implemented on the test set with and with-
out plastic lidding. Data subsets were created by
� 2021 The Authors. Published by Elsevier Inc. on behalf of Poultry
Science Association Inc. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).

Received September 17, 2020.
Accepted November 2, 2021.
1Corresponding author: anastasia.falkovskaya@ucdconnect.ie

1

randomly selecting 1, 5, 10, 20, and 50% of the pixel
spectra of each sample for both the training and test
data sets. The subsets of pixel spectra and the full train-
ing set were used to train the machine learning algo-
rithms to evaluate how the amount of data influences
computational time. Logistic regression was found to be
the best algorithm for detecting poultry thawed from
frozen with and without plastic lidding film. Although
logistic regression and SVM both performed with the
same high accuracy and sensitivity for all training subset
sizes, the computational time needed to implement SVM
makes it the less suitable algorithm for detecting poultry
thawed from frozen with and without plastic lidding
film.
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INTRODUCTION

To meet consumer demands for fresh meat while
benefiting from increased shelf life of frozen meat,
retailers may be influenced to label products thawed
from frozen as fresh meat. Although freezing can prolong
shelf-life of poultry products, lipid and protein oxidation
increase while water holding capacity and color stability
decrease with each freeze-thaw cycle (Ali et al., 2015).
Current authentication techniques (i.e., enzymatic,
DNA based, spectroscopic, bio-imaging, sensory etc.)
are time consuming, destructive, and rely on trained
professionals (Ballin and Lametsch, 2008). Spectral
imaging is proposed as an alternative method, which
combines conventional imaging with spectroscopy to
obtain spatial and chemical information about samples.
Although there are many examples of using spectral
imaging to detect thawed pork (Barbin et al., 2013;
Ma et al., 2015; Cheng et al., 2018), applying spectral
imaging to detecting frozen-thawed poultry is a gap in
the current literature (Antequera et al., 2021). However,
recent point-spectroscopic attempts have been made to
detect frozen-thawed poultry in the using Fourier trans-
form infrared (FTIR) spectroscopy (Grunert et al.,
2016) and nuclear magnetic resonance (NMR) spectros-
copy (Soglia et al., 2019). Using an artificial neural net-
work, FTIR spectroscopy was successful in detecting
frozen-thawed chicken. The results indicated that
changes to the protein structure had occurred during
freezing. Soglia et al. (2019) also found significant
changes in amino acid composition and increased protein
oxidation following freezing using NMR spectroscopy.
However, the methods used by both
Grunert et al. (2016) and Soglia et al. (2019) require
extensive and destructive sample preparation. In a pre-
vious study comparing Vis-NIR and NIR spectral imag-
ing, it was possible to discriminate between unpackaged
fresh and thawed chicken thighs with data obtained
from a laboratory based Vis-NIR spectral imaging sys-
tem (400−1,000 nm) with halogen illumination using a
partial least squares discriminant analysis (PLS-DA)
model of individual chicken thighs (Falkovskaya et al.,
2019). Successful detection of thawed poultry could be
accomplished using pixel level models, resulting in a cor-
rect classification rate of 88.2% in the test set (LV = 10,
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sensitivity = 92.1%, specificity = 84.2%). Wavelengths
determined to be important for discrimination by the
regression coefficients of the PLS-DA model include:
500, 575, 595, and 620 nm. These wavelengths are within
the range of wavelengths associated with myoglobin and
its redox forms which are responsible for the red color in
tissue (Tang et al., 2004). Because these wavelengths
are in the visible light range, this opens the possibility of
using visible spectral imaging with LED illumination.
Using LED illumination may be more attractive to food
processors and retailers, as it is more efficient, widely
available, and produces less heat than traditional halo-
gen lighting required for NIR spectral imaging.

For spectral imaging to work as an on-site solution to
detect poultry products thawed from frozen, product
classification should occur without the need remove
products from the packaging. However, poultry prod-
ucts are generally sold in plastic tray packaging covered
by a transparent plastic lidding film made of polyethyl-
ene terephthalate (PET) or in combination with either
polyethylene (PET/PE) or polypropylene (PET/
PP). Previously, spectral imaging in the Vis-NIR range
has been successfully used to evaluate quality of mush-
rooms through PET packaging film (Taghizadeh et al.,
2010), detecting thawed from frozen cod through poly-
amide/PE vacuum packaging (Washburn et al., 2017),
monitoring spinach shelf-life through 3 different kinds of
PP (Lara et al., 2013), and detecting Escherichia coli
contamination in packaged fresh spinach through low-
density PE packaging (Siripatrawan et al., 2011). Pack-
aging films influence light scattering of Vis-NIR spectral
images based on the relative positions between the light
source, sample, and detector. Using various spectral pre-
treatment techniques, it is possible to reduce the effect
of light scattering caused by multiple reflections on the
air-film-air interface and artifacts from light reflected
from the film to the detector (Gowen et al., 2010). Pre-
treatment of spectra by standard normal variate (SNV)
followed by first order Savitzky−Golay was shown to
Figure 1. Schematic showing experimental setup and number of images
in the figure is a control package, depicting that all samples were kept in plas
imaged with the plastic lidding removed. Test set samples were imaged with
reduce variability introduced by scattering effects of
polymer films (Gowen et al., 2010).
Recent advances in technology have allowed for the

development of portable/handheld spectral imaging
systems (Behmann et al., 2018; Kruglikov et al., 2019;
Barreto et al., 2020), which would allow for product classi-
fication without the need to bring samples to a laboratory
setting. In this context, the aim of this study is to evaluate
the application of portable spectral imaging to detecting
thawed poultry with and without plastic lidding films.
METHODS

Poultry Samples

Ten packages of Class A chicken thighs with skin on
(1,203 g each) from cereal fed chickens were acquired
from a local supermarket. All packages were selected to
have the same ‘use-by’ date, to control for the effects of
color changes due to storage time. Treatment samples
were frozen at �18°C for 48 h, after which they were
moved to 4°C for a further 24 h. Meanwhile, control
samples were kept at 4°C for the same total duration of
time (72 h). Each package contains between 7 and 9
individual chicken thighs, resulting in a total of 84 sam-
ples. Packs were removed from 4°C directly before imag-
ing. The training set consists of 3 control (nsamples = 25)
and 3 thawed (nsamples = 25) packages imaged with the
plastic lidding removed. The test set consists of 2 control
(nsamples = 17) and 2 thawed (nsamples = 17) packages
first imaged with the plastic lidding, and then with the
plastic lidding removed (Figure 1). Poultry is highly per-
ishable, with significant color changes occurring due to
the oxidation of myoglobin (Suman and Joseph, 2013).
If the fresh poultry was imaged at 0 h and the thawed
poultry was imaged at 72 h, the model may reflect more
the effects of aging than the effects of freezing. There-
fore, both treatments were imaged at the same time-
point.
(n). Each package contains 7−9 individual samples. The samples shown
tic lidding covered packages prior to imaging. Training set samples were
the plastic lidding present and absent.
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Spectral Imaging System and Software

Spectral images were acquired using a portable Specim
IQ camera system (Specim, Spectral Imaging Ltd., Oulu,
Finland) using white LED ring light illumination (Venus
V29C, Guangdong Nanguang Photo&Video Systems
Co., Ltd, Shantou, Guangdong, China) around the lens
of the camera. The Specim IQ is a pushbroom system
operating from 400 to 1,000 nm with a spectral resolution
of 7 nm. Resulting spectral images were 512 rows £ 512
columns £ 204 spectral bands. The spectral camera was
positioned directly above the sample at a height of
46 cm, resulting in a pixel size of approximately 0.49
mm £ 0.49 mm. Alongside the spectral camera, an RGB
camera within the Specim IQ captures RGB images of
512 £ 512 pixels. All samples were placed on a black
paper surface for imaging.

The software used to acquire spectral images was
Specim IQ Studio (Specim Ltd., Oulu, Finland). All
data analysis was completed using MATLAB R2018b
(MathWorks, MA) using functions from the Statistics
and Machine Learning Toolbox and the Image Process-
ing Toolbox.
Data Pretreatment

All images were first pre-treated by cutting the spec-
tral range to 443 to 726 nm, to match the spectral range
of the white LED illumination. Next, spectra were cor-
rected usingSNV and a Savitzky−Golay smoothing filter
(13-point window size, second order, first derivative).
This order of pretreatments was selected as it has been
shown to reduce variability introduced by scattering
effects of polymer films (Gowen et al., 2010).
Image Segmentation

Spectral images were manually cropped to exclude the
background. In images with the plastic lidding film pres-
ent, images were manually cropped to exclude 2 sticker
labels on top of the lidding film. Pixels oversaturated
due glare from the plastic tray were masked out using a
manual threshold. Next, images were masked by using
Otsu’s method of automatic threshold selection on the
score image of the first principal component (PC1) to
segment the meat from the plastic tray (Otsu, 1979).
Multivariate Analysis Methods

To investigate the performance and robustness of por-
table spectral imaging for the detection of poultry
thawed from frozen, 5 of the most popular machine
learning algorithms (decision tree, logistic regression,
linear discriminant analysis [LDA], k-nearest neighbors
[KNN], support vector machines [SVM]) are tested in
this work. The selection of the algorithm best suited to
this problem is based on the amount of data required to
build an accurate model, computational speed, and the
robustness of the model. Each of the machine learning
algorithms evaluated has their own advantages and dis-
advantages (i.e., simplicity, ability to handle nonlinear
classification, ability to handle outliers, etc.), as follows:
Decision Tree Decision trees have a “tree” structure,
where nodes represent simple tests on the individual fea-
tures, branches are the outcomes of the tests at that
node, and the terminal nodes are the class labels
(James et al., 2013). Decision trees separate the input
space so that each input feature (e.g., a vector of reflec-
tance or absorbance at different wavelength bands) is
evaluated individually (e.g., using a threshold to parti-
tion the feature space) in a recursive way to ultimately
predict which class the observation belongs to (Kotsian-
tis, 2013). Nodes are then ordered in a hierarchical way,
based on criterion such as Gini’s diversity index to mea-
sure which node best divides the input into classes
(Pal and Mather, 2003; Kotsiantis, 2013). An advantage
of decision trees is that they are capable of dealing with
nonlinear data, do not rely on any data distribution
assumptions, and are computationally fast (Pal and
Mather, 2003; Zulhaidi et al., 2007). Although decision
trees have the advantage of being simple to use and intu-
itive to understand, they are generally not as robust or
accurate as other models (James et al., 2013). For data
sets with high dimensional feature spaces with high cor-
relation between features (e.g., spectral data), classifica-
tion accuracy could benefit from models that
simultaneously consider multiple features rather than
sequential testing (Pal and Mather, 2003). Further,
errors can accumulate through the tree and affect pre-
diction accuracy due to the hierarchical structure of
decision trees (Safavian and Landgrebe, 1991).
Logistic Regression Logistic regression is a com-
monly used machine learning technique for binary classi-
fication problems. Logistic regression fits a sigmoid
function to the input features using maximum likelihood
estimation and then creates a linear decision boundary
between classes to predict the probability of which class
an observation belongs to (Hastie et al., 2009). An
advantage is that it is simple to use and fast to imple-
ment. However, a limitation is that logistic regression
works best when there is a linear relationship between
the input features and target variables (James et al.,
2013).
LDA LDA reduces data dimensionality in a way that
maximizes separability between classes while minimizing
within class scatter, so that a linear decision boundary
can be used to predict which class observations belong
to (Balakrishnama, 1998). Unlike logistic regression,
LDA assumes that the input data has a Gaussian distri-
bution and is homoscedastic, which allows the model to
estimate with lower variance (Hastie et al., 2009). How-
ever, the assumptions make LDA less robust to outliers
than logistic regression and when the Gaussian assump-
tions are not met, logistic regression performs better
than LDA (James et al., 2013).
KNN For classification problems, the KNN algorithm
assumes that data clustered close together belongs to
one target class. For each input data point, the distance
between the point and all other points is calculated and



Table 1. Chosen parameter details of models used from the Sta-
tistics and Machine Learning Toolbox (MathWorks, MA).

Model Parameters

Decision tree Preset name: Fine Tree
Maximum number of splits: 100
Split criterion: Gini’s diversity index

Logistic regression Preset name: Logistic Regression
LDA Preset name: Linear Discriminant

Covariance structure: Full
KNN Preset name: Fine KNN

Number of neighbors: 3
Distance metric: Euclidian
Distance weight: Equal

SVM Preset name: Linear SVM
Kernel function: Linear
Kernel scale: Automatic
Box constraint level: 1

Abbreviations: KNN, k-nearest neighbors; LDA, linear discriminant
analysis; SVM, support vector machines.
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sorted by the smallest distance, then the target class is
predicted by the mode target class of the chosen number
of neighbors (k). This method directly predicts the tar-
get class of the data without the need to first build a
model (Dreiseitl and Ohno-Machado, 2002). The main
disadvantage of KNN is that it becomes slow as the
amount of data increases because all distances between
points must be calculated.
SVM SVM build optimal separating hyperplanes
between classes (James et al., 2013). The optimal hyper-
plane is found by calculating the distance between the
points closest to the hyperplane (support vectors) of
both classes, and maximizing that distance (margin)
from the hyperplane (Cortes and Vapnik, 1995). SVM
can be used for both linear and non-linear relationships
between the input features and target variables, by map-
ping nonlinear features to a higher dimension feature
space (Dreiseitl and Ohno-Machado, 2002). Unlike logis-
tic regression, no probability is given of which target
class an observation belongs to (Dreiseitl and Ohno-
Machado, 2002).
Data Analysis

Mean reflectance spectra were calculated from the test
set by selecting pixels in a region of interest (ROI) con-
taining 3 chicken thighs unobstructed by labels per pack-
age with plastic lidding present. The corresponding ROI
was selected from samples without plastic lidding to cal-
culate their mean. To compare mean spectra of tissue
types, ROI’s were manually selected from the test set of
control samples without plastic lidding representative of
skin, meat, joints, and fat. To compare the effects of
thawing on different tissue types, ROI’s were manually
selected from the test set of thawed samples without
plastic lidding representative of skin, meat, and joints.
Fat could not be compared between control and
thawed samples as not enough fat tissue was present in
thawed samples. Next, data subsets were created by
randomly selecting 1, 5, 10, 20, and 50% of the
pixel spectra of each sample for both the training
(n1% = 7,017, n5% = 35,096, n10% = 70194, n20% =
140,392, n50% = 350,984, n100% = 701,973) and test data
sets (n1% = 3,408, n5% = 17,047, n10% = 34,096,
n20% = 68,194, n50% = 170489, n100% = 340,981). The
subsets of pixel spectra and the full training set were
used to train five different machine learning algorithms:
decision tree, logistic regression, LDA, KNN, and SVM
(Table 1). Working at the pixel-level allows for more vari-
ation within samples to be represented, capturing all clas-
ses within a sample (e.g., skin, meat, fat, bone). The
computational time taken to train each model was
recorded, and each model was validated by using hold-
out validation on 25% of the training set data to obtain
training set accuracy. The models were then applied to
the test subsets and full test sets with and without plastic
lidding present, recording the accuracy, sensitivity, speci-
ficity, and computation time. Sensitivity refers to the abil-
ity of the model to correctly detect a thawed sample
(Equation 1), whereas specificity refers to correctly
detecting control samples (Equation 2; Altman and
Bland, 1994):

Sensitivity ¼ true positives
true positivesþ false negatives

ð1Þ

Sensitivity ¼ true negatives
true negativesþ false positives

ð2Þ

True positive refers to the number of correctly pre-
dicted thawed samples and true negatives refer to the
number of correctly predicted control samples. False
negatives are samples incorrectly predicted as control
and false positives are samples incorrectly predicted as
thawed. Finally, the models were used to create classifi-
cation maps to visually assess the differences between
the model predictions.
RESULTS AND DISCUSSION

Mean reflectance spectra of control and thawed poul-
try samples in the test set are visually most noticeably
different between the wavelength range of 450 to 625 nm
for packages with and without plastic lidding present
(Figure 2). Samples are made up of several tissue compo-
nents (e.g., skin, meat, joints, and fat), each with their
own spectral signature (Figure 3). The samples are not
only heterogeneous, but each package contains differing
proportions of each tissue type. Qualitative differences
in spectra appear between 450 and 625 nm when the
same tissue types are compared, suggesting color, chemi-
cal, and physical changes in all tissues (Figure 4). Wave-
length bands in this range are associated with
myoglobin and its redox forms, which are responsible for
the red color in tissue (Liu et al., 2004; Tang et al.,
2004). As meat ages, lipid oxidation produces aldehydes
that move into the endoplasm of muscle cells, and
adduct myoglobin in a way that increases myoglobin
oxidation and changes meat color (Faustman et al.,
2010; Jeong et al., 2011; Suman and Joseph, 2013).



Figure 2. Mean reflectance (§ 1 SD) spectra of control (nimage = 2) and thawed from frozen (nimage = 2) packaged chicken thighs in the test set
with plastic lidding absent and present.
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Although freezing meat is considered to be an effective
method for preserving meat, initiation of primary lipid
oxidation continues during freezing and leads to
Figure 3. Mean spectral signatures (§ 1 SD) of tissue types of a
control sample (nsample = 1) in the test set without plastic lidding. Spec-
tra were pretreated by standard normal variate (SNV) preprocessing
followed by Savitzky Golay (SG) smoothing (13-point window size, sec-
ond order, first derivative).
accelerated lipid oxidation during thawing (Jeong et al.,
2011; Leygonie et al., 2012). In experiments thatmeasured
lipid oxidation by measuring thiobarbituric acid reactive
substances (TBARS), thawed beef and pork meat sam-
ples had higher levels of lipid oxidation than control sam-
ples of the same age (Hansen et al., 2004; Vieira et al.,
2009). Increased lipid oxidation of thawed samples that
induces increased myoglobin oxidation to oxymyoglobin
could be responsible for the change in color of the thawed
chicken samples in this work. As seen in RGB images,
some thawed samples appear to have more red spotting on
the skin surface, indicative of increased oxymyoglobin
presence (Figure 5). However, these color changes are not
obvious or intuitive to interpret by human inspection as
symptomatic of thawedmeat.
Decision Tree

The decision tree model performed with the lowest
accuracy in the training set, reaching a maximum of
82% accuracy using the full training set. When applied
to the test set without plastic lidding, the model accu-
racy decreased to 80% (sensitivity = 77%,



Figure 4. Mean reflectance (§ 1 SD) spectra of control (nimage = 2) and thawed from frozen (n = 2) packaged chicken thighs in the test set with-
out plastic lidding, grouped by tissue type.

Figure 5. RGB images of packaged chicken thighs in the test set (nimage = 4) with plastic lidding absent and present.
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specificity = 82%). Further, when the model was applied
to the same test set with plastic lidding, accuracy again
decreased to 77% (sensitivity = 81%, specificity = 74%).
The amount of data used for training did not strongly
influence accuracy in the training or test set (Figure 6).
Although the full decision tree model was very fast to
train (ttraining = 56.75 s) and the fastest of all tested
models to implement (ttest (avg) = 0.67 s), it was not as
robust or accurate as other models. The full decision tree
model ranks the third best model for accuracy (Table 2)
and the first best for computational time (Table 2).
Logistic Regression

The logistic regression model performed with a maxi-
mum accuracy of 89% in the full training set. The
amount of data used for training did not considerably
affect the accuracy rates, with training set accuracy
remaining between 87 and 89% for all training data sub-
sets. The full model reached accuracy of 87%
(sensitivity = 83%, specificity = 91%) when applied to
the test set without plastic lidding, and remained
unchanged at 87% (sensitivity = 83%,



Figure 6. Comparison of machine learning algorithms on accuracy (%) and computational time (log10(s)) of models trained using 1, 5, 10, 20,
50, and 100% of training pixel spectra.
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specificity = 91%) when applied to the plastic covered
test set. Accuracy remained between 86 and 87% for
both test sets at all subset sizes, indicating the model is
robust enough to maintain accuracy with plastic lidding
light scattering. For the smallest training and test
subsets (1% of spectra), logistic regression ranks as the
first most accurate model (Table 2). For the full model,
logistic regression and SVM are equally ranked as the
first most accurate model (Table 2). The full logistic
regression model was fast to train (ttraining = 68.43 s)



Table 2. Machine learning algorithms ranked by best mean computational time, accuracy, sensitivity, and specificity on both test sets.

Ranking Time Accuracy Sensitivity Specificity

1 Decision tree Logistic regression; SVM Logistic regression; SVM LDA
2 Logistic regression LDA LDA Logistic regression; SVM
3 LDA Decision tree KNN KNN
4 SVM KNN Decision tree
5 KNN

Abbreviations: KNN, k-nearest neighbors; LDA, linear discriminant analysis; SVM, support vector machines.
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and implement (ttest (avg) = 1.45 s). Overall, the full
logistic regression model ranks as the second best model
for computational time (Table 2).
LDA

In the full training set, the LDAmodel performed with
a maximum accuracy of 88%. Like logistic regression,
the amount of data used did not have a considerable
affect the accuracy rates, with the smallest subset (1%
of spectra) performing with 87% accuracy in the training
set. The full model reached accuracy of 86%
(sensitivity = 79%, specificity = 92%) when applied to
the test set without plastic lidding, and remained
unchanged at 86% (sensitivity = 80%,
specificity = 91%) when applied to the plastic covered
test set. When applied to the test subsets, accuracy
remained between 85-86% for all testing subsets for sam-
ples with and without plastic lidding, indicating high
model robustness. For the full model testing set accu-
racy, LDA ranks second behind logistic regression and
SVM (Table 2). The model was also fast to (ttrain-
ing = 25.10 s) and implement (ttest (avg) = 1.64 s), ranking
third for computational time (Table 2). However,
computational time to implement the full LDA model
was only a fraction of a second slower than logistic
regression.
Figure 7. Regression coefficients of the full logistic regression
model.
KNN

The KNN algorithm accuracy improved in the train-
ing set as the data subset included more of the data,
from 86% when 1% of the data was included to 96%
when the full training set was used. However, accuracy
was the lowest of all algorithms tested in both test sets,
ranking KNN last for model accuracy (Table 2). The
maximum accuracy achieved when applied to the test
set without plastic lidding was 76% (sensitivity = 68%,
specificity = 84%). When the model was applied to the
same test set with plastic lidding, accuracy again
decreased to 73% (sensitivity = 70%, specificity = 79%).
This is likely due to overfitting, as the accuracy of the
training set was higher than the test set accuracy. The
KNN algorithm was also computationally expensive,
taking a long time to train (ttraining = 4,567.90 s) and
implement (ttest (avg) = 6,705.12 s) for the full model,
ranking KNN as the fourth for computational time
(Table 2). This algorithm was the least suited to dis-
criminating between fresh and thawed poultry, due to
its low accuracy and long computational time.
SVM

The SVM model performed with accuracy as high as
logistic regression for training and test sets, at 87 to
88%. The full model reached accuracy of 87%
(sensitivity = 83%, specificity = 91%) when applied to
the test set without plastic lidding, and remained
unchanged at 86% (sensitivity = 83%,
specificity = 91%) when applied to the plastic covered
test set. Accuracy was not affected by the amount of
data used and the model was robust enough to not be
affected by plastic lidding. For the full model testing set
accuracy, SVM ranks first alongside logistic regression
(Table 2). Although SVM was the most computationally
expensive model to train (ttraining = 38,480.00 s), it was
less computationally expensive to implement (ttest
(avg) = 2,084.60 s) than KNN, ranking SVM as fourth for
computational time (Table 2).
Optimal Method

Despite considerable heterogeneity in tissue spectral
response, the developed model can detect previously fro-
zen. Logistic regression is proposed as the optimal
method for detecting poultry thawed from frozen.
Despite considerable heterogeneity in tissue spectral
response, the developed model can detect thawed poul-
try with high accuracy and sensitivity with short compu-
tational time. Wavelengths corresponding to the highest



Figure 8. Maps showing misclassified pixels (yellow) of samples in the test set, accuracy (%) of each algorithm on individual packages and the
average accuracy (%).
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absolute values of the logistic regression model vector of
coefficients (b) were identified as the most important for
classification: 463.9, 466.8, 501.7, 504.6, 539.8, 542.7,
575.0, 578.0, 616.3 nm (Figure 7). In previous experi-
ments using nonportable spectral imaging, regression
coefficients from a PLS-DA model indicated 500, 575,
595, and 620 nm as the most important for detecting
thawed poultry (Falkovskaya et al., 2019). Differences
between the sets of regression vectors could be a result
of smoothing during spectral pre-treatments, resulting
in slight variations in coefficient values at wavelengths.
In current literature, there is no consensus on particu-
larly which wavelengths correspond to peaks of
myoglobin redox forms. For example, Tang et al. (2004)
attribute the peaks at 503 nm to metmyoglobin, 557 nm
to deoxymyoglobin, and 582 nm to oxymyoglobin using
prepared stock solutions representative of meat produc-
ing species. Meanwhile, Liu et al. (2004) attribute peaks
at 445 nm to deoxymyoglobin, 485 nm to metmyoglo-
bin, 560 nm to oxymyoglobin, and 635 nm to sulf-
myoglobin in thawed skinless chicken breast samples.
However, the wavelengths indicated as important by
this study are within the range of wavelengths associ-
ated with myoglobin and its redox forms which are
responsible for the red color in tissue (Liu et al.,
2004; Tang et al., 2004).
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Maps of Misclassified Pixels

For all tested models, misclassification of pixels is
more evident in control than thawed samples (Figure 8).
If the models are classifying based on color changes due
to myoglobin oxidation, as is strongly suggested by
inspection of the logistic regression coefficients, this
could be a result of variation of lipid oxidation rates
over the sample surface as the meat naturally ages in
control samples. In contrast, the myoglobin in thawed
samples has already oxidized resulting in a more stable
color and therefore more accurate prediction rate. The
same trend was observed when the models were applied
to the training set samples, as shown in the supplemen-
tary material.
CONCLUSIONS

Poultry thawed from frozen can be detected using por-
table spectral imaging in the visible wavelength range
(443−720 nm) using multivariate analysis methods com-
monly used in machine learning. Of the 5 methods tested
(decision tree, logistic regression, LDA, KNN, SVM),
logistic regression was found to be the most suitable
algorithm for detecting poultry thawed from frozen with
and without plastic lidding film covering samples. The
full logistic regression model had the highest accuracy
(87%) and sensitivity (83%) when applied to the test set
without plastic lidding and remained unchanged when
applied to the plastic covered test set, indicating the
model is robust enough to handle plastic lidding light
scattering. Further, the amount of data used for training
did not considerably affect the prediction results.
Although logistic regression and SVM both performed
with the same high accuracy and sensitivity, the compu-
tational time needed to implement SVM makes it less
suitable to detecting thawed poultry. LDA is also a rea-
sonable option, as it results in higher specificity and only
slightly lower accuracy and sensitivity in test sets while
remaining faster than SVM to implement. Although
decision trees are quick to implement, they resulted in
low classification accuracy and were less robust to the
lidding films. Finally, the KNN algorithm resulted in the
lowest accuracy in the test sets and was very time con-
suming to train and implement.
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