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Abstract: Class IIa bacteriocins are heat-stable, unmodified peptides with a conserved 

amino acids sequence YGNGV on their N-terminal domains, and have received much 

attention due to their generally recognized as safe (GRAS) status, their high biological 

activity, and their excellent heat stability. They are promising and attractive agents that 

could function as biopreservatives in the food industry. This review summarizes the new 

developments in the area of class IIa bacteriocins and aims to provide uptodate information 

that can be used in designing future research.  
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1. Introduction 

Many Gram-positive bacteria, particularly many lactic acid bacteria (LAB) are known to secrete 

ribosomally-synthesized peptides or proteins that have antimicrobial activity. These compounds 

(bacteriocins) have been shown to display inhibitory activity against closely related bacteria [1,2]. Four 

classes of bacteriocins have been defined based on common characteristics, mainly primary structure, 

molecular weight, mode of action, heat stability and their genetic properties [1,2]. Among these 

classes, class II, consisting of small peptides that do not contain modified residues, has been divided 

further into subgroups. Class IIa bacteriocins are characterized by the occurrence of a highly conserved 

hydrophilic and charged N-terminal region that has a disulphide bond linkage [1,2]. In some 

bacteriocins, an additional disulphide bond is present. The unambiguous consensus amino acid 

sequence of class IIa bacteriocins is the “pediocin box” YGNGV (where V can be replaced by L in 

some cases) [1–3]. This consensus sequence is included in the conserved N-terminal region 

YGNGVxCxK/NxxC (where X is any amino acid) [1,2]. Class IIa bacteriocins show their strong 

inhibitory effect on Listeria sp. as well as other food spoilage and pathogenic bacteria. They have 

received much attention due to their generally recognized as safe (GRAS) status, their high biological 

activity, and their heat stability. These compounds show great promise and are attractive candidates for 

use as biopreservatives in the food industry [4–7]. 

2. Diversity of Class IIa Bacteriocins 

To date, there are about 50 different kinds of class IIa bacteriocins that have been characterized to 

the extent that one can with a high degree of certainty determine whether the bacteriocin differs 

significantly from other bacteriocins (Supplementary Table 1). These bacteriocins have been isolated 

from a wide variety of LAB, including Lactobacillus sp., Enterococcus sp., Pediococcus sp., 

Carnobacterium sp., Leuconostoc sp., Streptococcus sp., as well as Weissella sp. [8,9]. They have also 

been found in the non-LAB Bifidobacterium bifidum [10,11], Bifidobacterium infantis [12], Bacillus 

coagulans [13] and Listeria innocua [14]. These bacteriocin-producing LAB have been isolated from 

various environments, including dairy products, fermented sausages, vegetables, and the mammalian 

gastrointestinal tract. 

The class IIa bacteriocins are initially produced as a protein precursor containing an N-terminal 

leader peptide. This leader peptide is removed by site-specific proteolytic cleavage during export, to 

yield the mature bacteriocins [2,15]. These mature bacteriocins rang in length from 25 amino acids for 

mutacin F-59.1 to 58 amino acids for acidocin A. The classification of Gram-positive bacteriocins is 

complex and several authors have proposed different classifications based on different  

criteria [1–3,16–18]. The present direction for defining novel classification schemes of Gram-positive 

bacteriocins tends to take into account the composition, three-dimensional (3D) structure and mode of 

action of the bacteriocins. Classification of class IIa bacteriocins have been broadly defined first on the 

basis of their conserved N-terminal region, the “pediocin box,” and then subdivided into 4 subclasses 

through sequence alignments of the less conserved C-terminal region [3,17,19,20]. 

The most recent repertoire of class IIa bacteriocins consists of 28 peptides [3]. In this paper, some 

class IIa bacteriocins were supplemented, including avicin A [21], bavaricin A [22], curvaticin  
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L442 [23], enterocin CRL35 [24], enterocin HF (P86183), bifidocin B [10,11], ubericin A [8], 

weissellin A [25], bacteriocin 602 [26], bacteriocin 1580 [26], bacteriocin 37 [26], bavaricin MN [27], 

bacteriocin (P86291.1), bacteriocin E50-52 [28], acidocin A [29], bacteriocin OR-7 [30], bacteriocin 

L-1077 [31], mundticin L [32], leucocin B [33], prebacterioncin SkgA2, bacteriocin MC4-1 [34], and 

duracin GL. The 3D structures of bacteriocins were evaluated by SWISS-MODEL Workspace [35–37]. 

The 50 class IIa bacteriocins were classified into eight groups on the basis of their conserved primary 

structures, 3D structures and mode of action (See Figure 1). The results showed high consistency with 

the classification of class IIa bacteriocins that were described earlier and discussed by Nissen-Meyer et al. [3] 

(see Supplementary Table 1). 

Group I contains 24 bacteriocins with a sequence length of between 25 and 49 amino acid residues. 

These peptides are secreted by 17 species of seven genera, including Bacillus sp., Bifidobacterium sp., 

Carnobacterium sp., Enterococcus sp., Lactobacillus sp., Leuconostoc sp., and Weissella sp. The 

bacteriocins in this group belong to subgroup 1 which was described in the classification of  

Nissen-Meyer et al. [3]. The bacteriocins of group I have a flexible hinge at the conserved Asp 

17residue. This group can be further subdivided into three subgroups according to their sequence 

similarities and differences.  

Subgroup I-1: includes avicin A, bavaricin A, curvaticin L442, enterocin CRL35, enterocin HF, 

listeriocin 743A, mundticin, mundticin CRL35, mundticin L, piscicocin CS526, piscicolin 126, 

sakacin P, and sakacin X. Members of this subgroup exhibit a common consensus motif 

IGNNxxANxxTGG located at the C-terminal region. Avicin A is produced by Enterococcus avium 

XA83 which was isolated from feces of healthy infants, and is a probiotic bacterium with diverse 

antimicrobial potential [21]. Mundticin L is virtually identical to enterocin CRL35. The only difference 

in sequence occurs in the fifth amino acid residue of the conserved sequence (YGNGX) of these 

mature bacteriocins, but this change has no influence on antimicrobial activity [32]. Sakacin P is 

produced by several L. curvatus strains LTH1174, L442 and CRL 705, which were isolated from 

Greek fermented sausages and fermented meat [38,39]; and by several Lactobacillus sakei strains I151 

and LTH673 isolated from sausage and fermented meat [40,41].  

Subgroup I-2 encompasses bifidocin B, coagulin, pediocin PA-1, which are produced by B. 

bifidum, B. coagulans, Enterococcus faecium, Lactobacillus plantarum, Pediococcus acidilactici, 

Pediococcus pentosaceus and Streptococcus mutans. The common consensus of this subgroup is 

KYYGNGVTCGK(L)HS(D)CS(R)VDW(R)GKATT(C)C(G)IINNG. 

Pediocin PA-1/AcH is a 44-amino-acid class IIa bacteriocin produced primarily by strains of the 

genus Pediococcus, including Pediococcus acidilactici strains PAC1.0 [42], H [43,44], E, F,  

M [45,46], K10 [47], HA-6111-2, HA-5692-3 [48], MM33 [49]; Pediococcus parvulus ATO34, 

ATO77 [50] and P. pentosaceus FBB61 [51]. Pediocin PA-1/AcH is also synthesized by L. plantarum 

WHE92 [52], L. plantarum DDEN 11007 [53] and E. faecium Acr4.  

The genetic determinants for the biosynthesis of pediocin PA-1/AcH are located within a  

plasmid-borne operon cassette in all producing lactic acid bacterial strains examined to date. In several 

strains, the sizes and organization of the various pediocin-encoding plasmids are similar [54–59]. It has 

been shown that the plasmids responsible for production in P. acidilactici H can be transferred 

intragenerically by conjugation [60]. The pediocin PA-1/AcH is the only class IIa bacteriocin for 

which both cross-species and cross-genera synthesis are known to occur [61].  
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Figure 1. Multiple sequence alignment of class IIa bacteriocins. 
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The entire amino acid sequences of curvaticin L442 and bifidocin B have not been determined and 

the reported sequence for the bifidocin B contains some uncertainties. The mature sequence of 

enterocin CRL35 is identical to that of mundticin CRL35, but their leader sequences have some 

differences. The mature sequence of leucocin A was identical to that of leucocin B and they also had 

differences in their leader sequences. Sakacin P was identical to bavaricin A, and the peptide we list as 

sakacin P was a variant of sakacin P. 

Coagulin is produced by no-LAB B. coagulans [13]. Interestingly, coagulin is almost identical to 

pediocin PA-1/AcH, showing 97.7% identity with pediocin PA-1/AcH. More specifically, the coagulin 

encoding DNA (coaABCD operon) showed 99% identity to that of the papABCD operon encoding the 

pediocin PA-1/AcH genes [62] (see Figure 2). A putative mob-pre (plasmid recombination enzyme) 

gene was identified in the coagulin-encoding plasmid pI4 [13]. The mob-pre genes present on several 

plasmids extracted from various Gram-positive genera, including Bacillus, Lactococcus, Streptococcus, 

Lactobacillus, Enterococcus, and Staphylococcus [13]. In several cases, the corresponding mob genes 

have been shown to be required for conjugative mobilization and site-specific recombination [63]. 

Therefore, it was speculated that horizontal gene/operon transfer between P. acidilactici and  

B. coagulans was possible despite they being relatively unrelated, one is LAB, and the other is  

no-LAB [13,62].  

Interestingly, mutacin F-59.1 from Streptococcus mutans 59.1 shared the conserved sequence 

KYYGNGVTCGKHSxSVDWxKXT [9]. S. mutans is a human indigenous oral bacterial species. It 

possesses an advantage against competitive species living in the same niche because of its  

bacteriocins [64]. The mutacin F-59.1 has a wide activity spectrum inhibiting human and food-borne 

pathogens [9]. Some amino acids of mutacin F-59.1 have not been determined.  

In this subgroup, the bacteriocin-producing strains B. bifidum NCFB 1454 (bifidocin B) and  

P. acidilactici MM33 (pediocin PA-1), are from human intestinal origin [49,65]. They could be 

developed for their probiotic properties and as inhibitors of pathogenic bacteria in the gut. Pediocin 

PA-1 from L. plantarum DDEN 11007 and pediocin A from P. pentosaceus FBB61, are produced by 

bacteria with established probiotic properties [51,53,66]. 

Bifidocin B is the first class IIa bacteriocin from a member of the genus Bifidobacterium, sharing 

56.8% homology with coagulin and inhibiting the growth of some species of the genera Listeria, 

Bacillus, Enterococcus, Lactobacillus, Leuconostoc and Pediococcus [11]. Recently, a new bacteriocin 

bifidin I from Bifidobacterium sp. was reported. Bifidin I from B. infantis BCRC 14602 and showed 

similarity with bifidocin B, but its whole sequences has not been determined [12]. Bifidin I showed a 

broad spectrum antimicrobial activity against Gram-positive bacteria and Gram-negative bacteria, 

including some food-borne pathogens, such as Staphylococcus aureus, Bacillus subtilis, Bacillus 

cereus, Listeria monocytogenes, Clostridium butyricum, Salmonella enteritidis, Salmonella enterica 

ssp., and Shigella dysenteriae [12]. 

Subgroup I-3 is represented by leucocin C, and weissellin A, which are produced by Leuconostoc 

mesenteroides, Streptococcus uberis and Weissella paramesenteroides. The common consensus of this 

subgroup is NYGNG(X)2C(X)4CXVXW(X)6IXNNS(X)3GLTG. 
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Figure 2. Organization of the gene clusters of class IIa bacteriocins. The figure was 

involved in production of avicin A in Enterococcus avium XA83 (avc, GenBank ID: 

FJ851402.1); bacteriocin MC4-1 in Enterococcus faecalis MC4 (bac, GenBank ID: 

EU047916.1); carnobacteriocin B2 in Carnobacterium maltaromaticum LV17B (cbn, 

GenBank ID: L47121.1); coagulin in Bacillus coagulans I4 (coa, GenBank ID: 

AF300457.1); divercin V41 in Carnobacterium divergens V41 (dvn, GenBank ID: 

AJ224003.1); enterocin A in Leuconostoc gelidum UAL 187 (ent, GenBank ID: 

AF099088); enterocin P in Enterococcus faecium P13 (ent, GenBank ID: AF005726.1); 

leucocin A in Leuconostoc gelidum UAL 187 (lca, GenBank ID: L40491.1); mesentericin 

52A in Leuconostoc mesenteroides subsp. mesenteroides FR52 (mes, GenBank ID: 

AY286003.1); mundticin KS in Enterococcus mundtii NFRI 7393/AT06 (mun, GenBank 

ID: AB066267); mundticin L in E. mundtii CUGF08 (mun, GenBank ID: FJ899708.1); 

pediocin PA-1 in E. faecium Acr4 (pap, GenBank ID: HQ876214.1); penocin A in 

Pediococcus pentosaceus ATCC 25745 (pen, GenBank ID: NC_008525.1); piscicolin 126 

in Carnobacterium piscicola JG126 (pis, GenBank ID: AF275938.1); plantaricin 423 in 

Lactobacillus plantarum 423 (pla, GenBank ID: AF304384); sakacin A in Lactobacillus 

sakei Lb706 (sap, GenBank ID: Z46867.1); sakacin G in Lactobacillus sakei CWBI-B1365 

(skg, GenBank ID: EU570253.1) ; sakacin P in Lactobacillus sakei LTH673 (spp, 

GenBank ID: AF002276.1); sakacin X in L. sakei 5 (sak, GenBank ID: AAP44569.1); 

ubericin A in Streptococcus uberis E (uba, GenBank IDs: EF203953.1 and EF203954.1). 

Open reading frames (ORFs) encoding the related proteins are marked with the different 

color. The number of amino acid residues within each encoded protein is shown below the 

corresponding ORF. 
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Figure 2. Cont. 

 

Leucocin C and leucocin C-TA33a are produced by different strains of L. mesenteroides, but they 

showed similar sequences [67]. Leucocin C-TA33a is from L. mesenteroides TA33a, which produced 

three bacteriocins (leucocin C-TA33a, leucocin B-TA33a and leucocin A-TA33a) with different 

inhibitory activity spectra [68,69]. The related research revealed that production of leucocin A-, B- and 

C-type bacteriocins was widespread in Leuconostoc/Weissella strains, including Leuconostoc 

carnosum LA54a, W. paramesenteroides LA7a, and Leuconostoc gelidum UAL 187-22 [68]. 

Weissellin A is a unique 4450 Da peptide which is produced by W. paramesenteroides DX which was 

isolated from a traditional Greek sausage. This bacteriocin exhibits strong activity against  

L. monocytogenes, Listeria inocua and Clostridium sporogenes [25].  

Subgroup I-4 is represented by bacteriocin 602 [26], bavaricin MN [27], divercin V41, divergicin 

M35, duracin GL, enterocin A, which come from Carnobacterium divergens, Enterococcus durans,  

E. faecium, L. sakei and Paenibacillus polymyxa. The common consensus of this subgroup is 

YYGNGV(L)YC.  

Group II contains bacteriocin 31, bacteriocin RC714, enterocin SE-K4, bacteriocin T8 (hiracin 

JM79), penocin A, bacteriocin 1580 and carnobacteriocin B2. The common consensus of this group is 

YGNGL(V)xCxKxxCxVxW. The bacteriocins in this group belong to subgroup 4 which was described 

in the classification of Nissen-Meyer et al. [3]. Most class II bacteriocin precursors contain a  

double-glycine-type signal peptide, and are translocated by dedicated ABC transporters and accessory 

proteins. However it is likely that some of these bacteriocins contain a different signal peptide. The 

sequence of hiracin JM79 is identical to that of bacteriocin T8. Hiracin JM79 is produced by 

Enterococcus hirae DCH5 isolated from wild mallard ducks, and contains a typical sec signal peptide 

that is believed to direct bacteriocins to the sec translocase embedded in the cytoplasmic  
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membranes [70]. The bacteriocin 31, bacteriocin RC714 and enterocin SE-K4 are also sec-dependent 

class II bacteriocin [71,72].  

Group III contains 10 bacteriocins, which can be further subdivided into two subgroups according 

to their sequence similarities and differences. The bacteriocins in this group belong to subgroup 2 

which was described in the classification of Nissen-Meyer et al. [3]. 

Subgroup III-1, represented by 8 bacteriocins (bacteriocin MC4-1, leucocin A, leucocin B-Ta11a, 

mesentericin Y105, plantaricin 423, plantaricin C19, prebacteriocin SkgA2, and sakacin G) has a 

conserved N-terminal region YYGNGxxCxxxxCxVNWGxA. Plantaricin 423 is bactericidal for many 

Gram-positive food-borne pathogens and spoilage bacteria, including Listeria spp., Staphylococcus 

spp., Pediococcus spp., Lactobacillus spp. and so on [73]. Structurally, the N terminus of leucocin A 

(LeuA) consists of a three-strand antiparallel β-sheet (residues 2–16) that is rigidified by this  

(9-14)-disulfide moiety [74]. Bacteriocin MC4-1 and prebacteriocin SkgA2 are similar to leucocin A 

and leucocin A variant (C9L, C14L) in the 3D structures. There structures were determined by the 

SWISS-MODEL Workspace [35–37,75]. 

Subgroup III-2 consists of lactococcin MMFII and bacteriocin (P86291.1). Lactococcin MMFII is 

produced by Lactococcus lactis MMFII, which was isolated from a traditional Tunisian cheese [76]. 

Lactococcin MMFII is the first class IIa bacteriocin produced by a lactococcal strain. It has activity 

against closely related Gram-positive bacteria, including Lactococcus lactis subsp. cremoris, 

Lactococcus lactis subsp. lactis, Lactobacillus delbrueckii, Lactobacillus casei, E. faecium, 

Enterococcus faecalis, and Listeria ivanovi. The bacteriocin (P86291.1) is also produced by 

Lactococcus sp., showing 90.2% identity with lactococcin MMFII.  

Group IV contains carnobacteriocin BM1, curvacin A, enterocin P and ubericin A. This group has 

the conserved sequences YGNGV(L)YCNxxKCWVNxxE. The group IV bacteriocins lack the  

hairpin-stabilizing tryptophan and/or cysteine residues that are present at or near the C-terminal end in 

most class IIa bacteriocins [3]. Carnobacteriocin BM1 is produced by Carnobacterium piscicola 

LV17B, which is isolated from fresh pork [77]. Curvacin A is produced by Lactobacillus curvatus 

LTH 1174, which originates from fermented sausage [78]. Enterocin P is produced by several  

E. faecium strains: IJ-31, P13, GM-1, ATB 197a, JCM5804T, LHICA 51, LHICA 28-4, and LHICA  

40-4, which were isolated from various environments, such as fermented sausage, dairy products, feces 

of newborn infants, and non-fermented animal foods [79–84]. Enterocin P showed strong inhibitory 

action toward Listeria sp. It was processed and secreted by the sec-dependent pathway [79]. Ubericin 

A is the first streptococcal class IIa bacteriocin to be characterized [8]. It is composed of 49 amino 

acids with an YGNGL motif at the N-terminal half [8]. Although ubericin A showed high similarity 

with bacteriocins of subgroup I-3 in amino acid sequences, it showed high similarity with curvacin A 

in its 3D structure that was determined by SWISS-MODEL Workspace [35–37].  

The bacteriocin E50-52, bacteriocin 37 and bacteriocin L-1077 are very different and form their 

own separate group. Bacteriocin E50-52 is produced by E. faecium NRRL B-30746, and shows diverse 

antimicrobial activity against both Gram-negative and Gram-positive bacteria, including 

Campylobacter jejuni, Yersinia spp., Salmonella spp., Escherichia coli O157:H7, S. dysenteriae, 

Morganella morganii, Staphylococcus spp., and Listeria spp. [28]. Bacteriocin 37 is produced by  

P. polymyxa NRRL B-30507, isolated from broiler chicken, and hasstrong antimicrobial activity 

against C. jejuni [26]. Bacteriocin L-1077 is produced by Lactobacillus salivarius 1077 (NRRL  
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B-50053), isolated from poultry intestinal materials, and has broad-spectrum antimicrobial activity 

against 33 bacterial isolates (both Gram-negative and Gram-positive bacteria), including  

L. monocytogenes A 9-72, E. coli O157:H7, Pseudomonas aeruginosa 508 [31]. 

The group VII bacteriocins consists of acidocin A and bacteriocin OR-7. This group has a 

conserved N-terminal region KTYYGTNGVHCTKxSLWGKVRLKN and conserved C-terminal 

region ILLGWATGAFGKTFH. Acidocin A is produced by L. acidophilus with activity against  

L. monocytogenes and other closely related Gram-positive bacteria [29]. Bacteriocin OR-7 has 65.5% 

amino acids sequence similarity with acidocin A with a C-terminal region that is 100% identical to that 

of acidocin A. Interestingly, bacteriocin OR-7 has different antimicrobial activity from acidocin A. It is 

active against both Gram-negative and Gram-positive bacteria [30] and has strong antimicrobial 

activity to Gram-negative bacterium C. jejuni in the chicken gastrointestinal system [30].  

The bacteriocin OR-7 and acidocin A have some differences with other class IIa bacteriocins. As a 

result there is a divergence of opinion as to whether bacteriocin OR-7 and acidocin A should be placed 

in the class IIa family of bacteriocin [3,19,29,30]. The position of the second cysteine is very different 

from the very conserved position of this cysteine in the class IIa bacteriocins, suggesting that 

bacteriocin OR-7 and acidocin A have a different 3D structure in their N-terminal region than the well 

conserved 3-stranded antiparallel β -sheet like structure which seems to be conserved in most class IIa 

bacteriocins [3]. Moreover, the sequence and length of the C-terminal region of bacteriocin OR-7 and 

acidocin A are also very different from other class IIa bacteriocins.  

Both bacteriocin OR-7 and acidocin A contained a “pediocin box”-like motif, YGNGVXCXnV, in 

the N-terminal region of the peptide typical of class IIa bacteriocins, except that a T was present as 

YGTNGV in the sequence [29,30]. Based on our assessment of previous studies, we are in agreement 

that bacteriocin OR-7 and acidocin A belong to class IIa family [19,29,30]. 

3. Biosynthesis of Class IIa Bacteriocins  

At least four genes are required for the production of class IIa bacteriocins, including a bacteriocin 

structural gene encoding a precursor, an immunity gene encoding an immunity protein, genes encoding 

an ATP-binding cassette transporter and an accessory protein for extracellular translocation of 

bacteriocin [2].  

The class IIa bacteriocin production was regulated by quorum sensing (QS) system. QS systems are 

present in the majority of Gram-positive and Gram-negative bacteria, as one primary mechanism for 

bacteria to monitor the environment for other bacteria and to alter behavior on a population-wide scale 

in response to changes in the number and/or species present in a community [85–87]. 

QS systems used for the regulation of class IIa bacteriocin production are composed of three gene 

products, including an inducer peptide, a membrane-associated histidine protein kinase (HPK), and a 

cytoplasmic response regulator (RR) [88]. The inducer peptide is ribosomally synthesized at low levels 

as a precursor which appears not to be biologically active and contain an N-terminal extension or 

leader sequence [89]. Subsequent cleavage of the precursor at a specific processing site removes the 

leader sequence from the antimicrobial molecule concomitantly. Then inducer peptide is secreted and 

exported through the dedicated transport system involving an ABC-type translocator and an accessory 

protein [15,88,89]. The presequence of the bacteriocin plays a dual role in bacteriocin biosynthesis [2]. 
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One is a protective role at the cytosolic side of the cell membrane by keeping the bacteriocin inactive. 

The other is as a recognition signal during export [2]. 

At a certain concentration threshold of the externalized inducer peptide, the transmembrane HPK 

detects a change in environmental signal and is activated, leading to its autophosphorylation [88,90]. 

Then the phosphorylated HPK transfers a phosphate group to its cognate RR. The phosphorylated RR 

acts as a transcriptional activator and activates expression of bacteriocin-related genes, including genes 

encoding bacteriocin, immunity protein, secretory apparatus, and regulatory proteins [2,88]. Bacteriocin 

and immunity genes most often reside on the same operon and are expressed concomitantly. The 

bacteriocin producer cells protect themselves from their own bacteriocin by the immunity protein. At a 

certain time, essentially all bacteriocin producer cells in the population are believed to secrete 

bacteriocins, and this result in a rapid activation of the bacteriocin production [89]. 

4. Genetic Organization of DNA Coding for Class IIa Bacteriocins  

Generally, most class IIa bacteriocin genes are arranged in one or a few operons, which include a 

bacteriocin structural gene encoding a precursor, an immunity gene encoding an immunity protein, 

genes encoding an ATP-binding cassette transporter and an accessory protein for extracellular 

translocation of bacteriocin, and in several cases two regulatory genes encoding a two component 

system for regulations of the biosynthesis of bacteriocin [19] (Figure 2). 

Production of bacteriocins is often correlated with the presence of a plasmid. Several class IIa 

bacteriocins, for example, enterocin A, divercin V41, sakacin P, carnobacteriocin B2 and 

carnobacteriocin BM1, have genes that have been shown to be located on chromosome  

fragments [19,77,91–93]. In many bacteriocin-producing bacteria, the bacteriocin structural gene and 

other related genes were located in one operon. However, genes encoding immunity and secretion 

functions may not always be linked to structure genes [89,94].  

At the present time, all known class IIa bacteriocins are ribosomally synthesized as precursor 

peptides with an N-terminal leader sequence. The leader sequences of most bacteriocins contain two 

conserved glycine residues, which may serve as a recognition signal for protein processing and 

secretion. This double-glycine-type leader sequences were cleaved and removed by ATP-binding 

cassette (ABC) transporters and their accessory proteins [2]. However, a few class IIa bacteriocins, 

including bacteriocin 31, enterocin P, enterocin SE-K4, listeriocin 743A, and hiracin JM79 are secreted 

by the general sec-dependent export system [14,70–72,79,95]. These bacteriocins have a hydrophobic  

N-terminal sec-dependent leader sequence, which directs the secretory protein to the cytoplasmic 

membrane and is processed by a signal peptidase during translocation across the cytoplasmic 

membrane. The related genes for production of these bacteriocins are unknown [14,71,72,79,95–98].  

Class IIa bacteriocins show a remarkable conservation of gene arrangement (Figure 2). The genetic 

organization of leucocin A gene cluster (lca locus) from L. gelidum UAL187 is a typical bacteriocin 

locus [99]. The lca locus includes two different directions operons with four bacteriocin-related genes 

lcaA, lcaB, lcaC and lcaD. The immunity protein gene lcaB is located immediately downstream of the 

structural leucocin A gene lcaA. The accessory transporter gene lcaD occurs also downstream of gene 

lcaC encoding an ABC transporter [99].  
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The genetic organization of sakacin P gene cluster (spp locus) from L. sakei LTH673 and LTH674 

is complicate, when compared to leuconcin A [40,93]. It is composed of three operons, which encode a 

61-amino-acid sakacin P precursor SppA, a sakacin P immunity protein SpiA; a transport and secretory 

system (a 718-amino-acid ABC transporter protein SppT and an accessory factor for ABC transporter 

protein SppE); and a three-component regulatory system (inducing peptide preprotein SppIP, HPK 

SppK and RR SppR), respectively [40,93]. The production of sakacin P in L. sakei Lb674 and LTH673 

is regulated by a typical peptide pheromone-based QS mechanism [40,93]. 

The genetic organization of divercin V41 presents an unusual organization [92]. The dvn locus 

encodes a 66-amino-acid divercin V41 precursor, an ATP dependent transporter, two immunity-like 

proteins and two components of a lantibiotic-type signal-transducing system [92] (see Figure 2). 

Interestingly, a so-called transport accessory protein was absent from the locus. Generally, the genes 

encoding the HPK are located upstream of the genes encoding RR in anti-listeria bacteriocin  

operon [100]. However, in the dvn locus of divercin V41, the HPK gene followed the RR gene, which 

is a characteristic of lantibiotic operons. The genetic organization of the fragment suggests important 

gene rearrangements [92]. 

Sometimes one locus can include productions of two bacteriocins. L. sakei 5 produces a  

plasmid-encoded bacteriocin sakacin P, as well as two chromosomally encoded bacteriocins, i.e., 

sakacin T, which is a class IIb two-peptide bacteriocin and sakacin X, which is a class IIa bacteriocin [101]. 

The sakacin TX locus encodes structural genes of sakacin T and sakacin X, including two adjacent but 

divergently oriented gene clusters (See Figure 2). The first gene cluster stxPRKT is believed to encode 

an inducing peptide, three proteins involved in regulation and secretion of these bacteriocins. The 

second gene cluster includes sakTα, sakTβ, sakIT, sakX and sakIX, which encode the structural and 

immunity genes for sakacin T and sakacin X [101].  

L. mesenteroides FR52 produces both mesentericin 52A and 52B [102]. Mesentericin 52A is a  

37-amino-acid class IIa bacteriocin, identical to mesentericin Y105 from L. mesenteroides Y105 [103]. 

Mesentericin 52B is a 32-amino-acid atypical class II bacteriocin, identical to mesentericin B105 from 

L. mesenteroides Y105 [104]. The mes locus of L. mesenteroides FR52 is involved in productions of 

mesentericin 52A and 52B [104]. The previous study revealed that ATP dependent transporter MesD 

and transport accessory protein MesE were involved in secretion and transport of these  

bacteriocins [104]. Mesentericin 52A and mesentericin 52B have own immunity genes mesI and  

mesH, respectively.  

The sakacin G gene cluster (skg locus) from L. sake 2512, R1333 and CWBI-B1365 was very 

interesting because it contained duplicated structural genes skgA1 and skgA2 [105–107]. There is only 

a two-amino-acid difference in sequence occurs in leader peptides of these prebacteriocins which 

makes these mature peptides, SkgA1 and SkgA2, essentially identical [106,107].  

The genetic organization of avicin A gene cluster (avc locus) from E. avium has been  

established [21]. It is the first bacteriocin locus identified in E. avium to be characterized at the 

molecular level [21]. The locus showed a particular gene organization. The accessory gene avcD 

associated with bacteriocin transport did not occur immediately downstream of the gene avcT  

(which encodes an ABC transporter), but two regulatory genes avcK (which encodes a HPK) and avcR 

(which encodes a RR) followed the gene avcT [21]. The avcK, avcR, and induction peptide  

pheromone-encoding gene avcF, constituted a three-component regulatory system in the avicin locus. 
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This indicated that the production of avicin A was regulated by the peptide pheromone-inducible 

regulatory system [21]. For most class IIa bacteriocins, three genes responsible for regulation are 

located in the same operon, but avcK, avcR, and avcF were located in two different operons (See 

Figure 2). In this locus includes two bacteriocins structural genes avcA and avcB. Avicin B is a 

divergincin-like bacteriocin, but it didn’t show antimicrobial activity and is probably a relic of a 

previous functional bacteriocin [21].  

5. Structure-Function Relationship and Target Recognition of Class IIa Bacteriocins 

To date, the 3D structures of leucocin A [74], carnobacteriocin B2 [108], sakacin P [109] and 

curvacin A [110] have been characterized by nuclear magnetic resonance (NMR) spectroscopy.  

The 3D analysis revealed that class IIa bacteriocins consist of a hydrophilic, cationic and highly 

conserved N-terminal β-sheet domain, and a flexible, diverse hydrophobic/amphiphilic C-terminal  

domain [3,74,108–110]. The former is structurally stabilized by a conserved disulfide bridge; the latter 

contains a central amphiphilic α-helix, ending with a structurally extended C-terminal tail. The 

amphipathic α-helix was critical for antimicrobial specificity and temperature-dependent activity of 

these class IIa bacteriocins [74,108,111–114]. The C-terminal part of some class IIa bacteriocins, such 

as enterocin A, divergicin M35, divercin V41, coagulin, pediocin PA-1, sakacin G and plantaricin 423, 

formed a hairpin structure which was stabilized by a disulfide bridge between a cysteine residue in the 

middle of the α-helix and a cysteine residue at the C-terminus [3].  

Two cysteines that come from the conserved N-terminal region (YGNGVxCxK/NxxC) of class IIa 

bacteriocins formed a conserved disulfide bond. In most class IIa bacteriocins, the disulfide bond is 

formed between cysteine9 and cysteine14. Extensive studies indicate that this conserved disulfide bond 

is required for antimicrobial activity for class IIa bacteriocins [115–117]. Mutants of mesentericin 

Y105 (cysteine9→serine9, cysteine14→serine14) showed a marked loss in antimicrobial effects [115]. 

The antimicrobial activity of pediocin PA-1 was abrogated by the substitution of 11 different amino 

acids at cysteine14 based on NNK scanning [116]. Substitution of the cysteines with serines in leucocin 

A (LeuA) abolished antimicrobial effects [117].  

However, some results from Derksen et al. indicated that the disulfide bond in leucocin A (LeuA) 

could be replaced by a noncyclic diallyl moiety without significant loss in activity [117]. The leucocin 

A (C9F, C14F), bis-allyglycine-leucocin A, and norvaline-leucocin A retained activities comparable to 

that of the natural leucocin A [75,114]. The researchers speculated that hydrophobic or π-stacking 

interactions can compensate for the absence of the disulfide in this molecule and assist receptor 

binding [75,114,117].  

Three analogues of leucocin A (LeuA) and six analogues of pediocin PA-1(Ped) were synthesized 

by replacing the conserved cysteines that form a disulfide bond with pairs of hydrophobic amino  

acids [114]. Noncovalent hydrophobic interactions in all of the leucocin A (LeuA) derivatives 

effectively replaced the disulfide and afforded peptides with full antimicrobial activity [114]. 

Apparently the propensity of the intraloop sequence of leucocin A (LeuA) to induce β-turns in 

combination with the hydrophobic interaction of the two Phe residues is sufficient to achieve the 

appropriate conformation for bioactivity [114,118]. 
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Sit et al. presented the 3D solution structures of the inactive (C9S, C14S)-leucocin A and the active 

(C9L, C14L)-leucocin A peptides [75]. Mutation of the two cysteine residues to serines or leucines did 

not affect the overall charge of the peptide, and therefore is highly unlikely to interfere with the 

electrostatic interactionsbetween the peptide and the bacterial cell surfaces. It was speculated that the 

N terminus may be serving a more crucial function, such as forming intermolecular contacts with other 

leucocin A–EIIt
man complexes during pore formation [75].  

Receptor binding might occur on the surface of a three-strand antiparallel β-sheet at the  

N terminus of the peptide as well as by recognition of the hydrophobic face of the amphipathic  

C-terminal α- helix, which is known to be required and determines specificity for particular  

organisms [112,119,120]. These results indicate that although the N-terminal loop has a vital influence 

on the activity of the peptide, additional interactions at the C terminus with the receptor must match 

and contribute to the overall activity [115,119–121]. 

Most class IIa bacteriocins present a single intramolecular disulfide bond between cysteine9 and 

cysteine14. The C-terminal part of a few class IIa bacteriocins, contains an additional C-terminal 

disulfide bridge, such as sakacin G (between cysteine24 and cysteine37), plantaricin 423 (between 

cysteine24 and cysteine37), pediocin PA-1/AcH (between cysteine24 and cysteine44), divercin V41 

(between cysteine25 and cysteine43), and enterocin A (between cysteine29 and cysteine47). The second 

disulfide bridge not only plays an important role in stabilizing the 3D structure of the C-terminal 

domain, but also correlates strongly with spectrum of activity [2,20,109,113,122,123]. The previous 

studies indicated that the second disulfide bridge in the class IIabacteriocins contributes to widening of 

the antimicrobial spectrum as well as to higher potency at elevated temperatures [113]. 

It is well known that class IIa bacteriocins kill target cells by forming pores and disrupting the 

integrity of target cell membranes, causing dissipation of proton motive force, depletion of 

interacellular ATP and leakage of amino acids and ions [2,19]. Numerous mode-of–action studies have 

demonstrated that the sugar transporter mannose phosphotransferase system (Man-PTS) serve as target 

receptors for class IIa bacteriocins on sensitive cells [124–131]. The Man-PTS, which is a complex 

sugar uptake system in the Gram-positive Firmicutes and Gram-negative Gammaproteobacteria, 

includes a general PTS protein enzyme I (EI), a histidine containing phosphocarrier protein (HPr) and 

a carbohydrate-specific protein complex (enzyme II, EII) [132].  

The enzyme II consists of four subunits: IIA, IIB, IIC and IID [132]. Subunits IIA and IIB are 

located in the cytoplasm and are responsible for phosphorylation. They are often found together on one 

protein. The IIC subunit is an integral membrane protein involved in sugar transport. The IID subunit 

is also a transmembrane protein [132]. The membrane proteins IIC and IID together form a  

membrane-located complex. IIA and IIB are in reversible contact with the membrane-located  

complex [129,133]. Other studies indicated that a single extracellular loop of the membrane-located 

protein IIC (MptC) was involved in specific target recognition by the class IIa bacteriocins, and was 

the major determinant responsible for species-specificity [125,130].  

The proposed mechanism of action for IIa bacteriocins is as follows: first, the N-terminal β-sheet 

domain of bacteriocin binds to the extracellular loop of IIC in the Man-PTS. Then, C-terminal  

α-helix-containing hairpin or hairpin-like domain of the bacteriocin interacts with the transmembrane 

helices of the Man-PTS, leading to conformational changes in the Man-PTS proteins in a manner that 

renders the transporter irreversibly open thereby causing uncontrolled efflux of essential molecules, 



Int. J. Mol. Sci. 2012, 13 16681 

 

 

disruption of the membrane integrity and in effect, cell death [131,134]. In bacteriocin producing cells, 

a cognate immunity protein tightly binds the receptor in a bacteriocin-dependent manner, to prevent 

killing by the bacteriocin [129]. However some class IIa bacteriocins, including enterocin P and 

sakacin A, showed a different mode of receptor recognition. They employ the IIC and IID complex as 

a receptor on target cells and then the cognate immunity protein (LciA) is tightly associated with the 

bacteriocin-receptor complex to render producer cells immune [129,135].  

Most class IIa bacteriocins have a relatively narrow inhibitory spectrum, inhibiting predominantly 

genera or species closely related to the bacteriocin producers. In order to reveal the mechanism of the 

receptor function specificity, a phylogenetic analysis of membrane-located proteins (IIC and IID) of 86 

Man-PTSs from a wide range of bacterial genera was performed [136]. These man-PTSs are clustered 

into three distinct groups, named groups I, II and III. Fourteen man-PTSs distributed all over the 

phylogenetic tree were selected for heterologous expression in L. lactis indigenous man-PTS-deletion 

mutant [136]. Bacteriocin sensitivity of the different L. lactis clones was determined with four class IIa 

bacteriocins, including pediocin PA-1, enterocin P, sakacin P, and penocin A [136]. The results 

indicated that only members of group I could serve as receptors for class IIa bacteriocins. A multiple 

sequence alignment analysis of IIC and IID proteins revealed three sequence regions (two in IIC and 

one in IID) that distinguish members of the group from those of the other groups, suggesting that these 

amino acid regions confer the specific bacteriocin receptor function [136]. 

The receptor efficiencies of Listeria, Enterococcus, Lactobacillus, Leuconostoc, Carnobacterium, 

Clostridium, Pediococcus and Streptococcus varied in a pattern directly related to their phylogenetic 

position [136]. The species of Enterococcus, Listeria and Carnobacterium showed most active 

receptors and were highly sensitive to four IIa bacteriocins; the species of Lactobacillus, Pediococcus 

and Clostridium are also frequently inhibited by these bacteriocins, although they are often less 

sensitive; and the strains of Streptococcus and Leuconostoc are occasionally reported to be sensitive to 

class IIa bacteriocins at a low level. These results are in line with previous comparative analyses of the 

inhibitory spectra of class IIa bacteriocins [122,137]. Different strains of the same bacterial species can 

vary greatly in sensitivity to a given bacteriocin [122,138]. The variation in sensitivity might be due to 

differential expression levels of the receptor [136].  

Generally, the conserved N-terminal region of class IIa bacteriocin was speculated to be involved in 

the receptor interaction, and the diverse C-terminal region was responsible for target cell  

species-specificity [136]. But some studies strongly suggest that the C-terminal region of class IIa 

bacteriocin might be involved in interaction between bacteriocin and its receptor [119,121,139,140]. 

Therefore it was speculated that N-terminal and C-terminal regions take part in the interaction with 

target cell receptor and that, they have different function during different stage of interaction. 

Synthesis of bacteriocin mutants and analogues provides valuable structure-activity relationships and 

tools to obtain further information on the peptide-receptor complex [117,119]. 

Resistance of Listeria spp. and other Gram-positive bacteria to class IIa bacteriocins was correlated 

with loss or reduction of expression of Man-PTS, inthe following phenotypes [132,135,141–143]:  

(i) absence of the IIAB subunit of Man-PTS in the proteomes of resistant bacteria [125,143]; (ii) 

mutations in the sigma transcription factor σ54 (rpoN) and the σ54-dependent transcription activator 

ManR of the mpt operon [124,126,127,144–146], (iii) a mutation in the promoter proximal mptA (IIA) 

cistron [125], and (iv) in-frame deletions in the mptD (IID) gene (which may have compromised the 
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folding and stability of IID and IIC) [144]. Recently natural food isolates of L. monocytogenes with 

different susceptibilities to class IIa bacteriocins were investigated [135]. The results also identified 

Man-PTS as a key player in the mechanisms of resistance. At the same time, downregulation of the 

mpoABCD (mannose permease one) operon in L. monocytogenes was shown to promote resistance to 

class IIa bacteriocins [147]. The mpoABCD operon putatively encodes a PTS permease of the mannose 

family similar to that encoded by the mpt operon. In silico analysis indicated that mpo transcription 

might be dependent on σ54. 

Bacterial strains sensitive to class IIa bacteriocins readily give rise to resistant mutants upon 

bacteriocin exposure. The development of highly tolerant and/or resistant strains may decrease the 

efficiency of bacteriocins as biopreservatives. The acquiring of resistance to bacteriocins can 

significantly affect physiological activity profile of bacteria, alter cell-envelope lipid composition, and 

also modify the antibiotic susceptibility/resistance profile of bacteria [148]. 

6. Discovery of Class IIa Bacteriocins 

To date, traditional screening strategies have relied on detection of antimicrobial activity as the 

basis for discovery of new and potent bacteriocins [131]. New bacteriocins are detected and identified 

by screening large number of potential bacteriocin-producing bacteria for antimicrobial activity. The 

screened bacteriocins are then purified and characterized. These classic screening strategies are  

time-consuming and labor-intensive, so researchers need to explore and develop more rapid and 

higher-throughput approaches for identification of bacteriocins potential [149–152]. The PCR assays 

that target bacteriocin-coding genes or bacteriocin regulation-related genes for rapid detection of 

bacteriocins have been developed [152–156]. Most PCR assays can only detect known bacteriocins 

because they use specific primers which were designed according to previously characterized 

bacteriocins [154,155,157]. Więckowicz et al. have developed a rapid PCR assay with primers which 

were designed on the basis of a large scale alignment of class IIa bacteriocin genes. Several potentially 

novel bacteriocin-coding sequences were found by means of this high-throughput PCR assay [152].  

A large number of LAB genomes have been published during the last decade [158,159]. At the 

same time, bioinformatics as well as new technologies such as transcriptomics, proteomics and 

metabolomic analysis have expanded tremendously in past decade. All of the above mentioned 

technologies have provided a basis for detection of bacteriocins by means of silico analysis [160]. 

Recently, there has been a trend from classical screening strategies for antimicrobial activity towards 

silico analysis of genomic data as computational approaches are able toaccelerate the process of novel 

antimicrobial peptides (AMPs) discovery and design [131,137,161,162].  

Dirix et al. identified over 50 bacteriocins or bacteriocin-like peptides by screening for peptides 

containing a double-glycine leader sequence and the corresponding ABC transports in 165 fully sequenced 

bacterial genomes (including 45 Gram-positive bacteria and 120 Gram-negative bacteria) [161,162]. 

Diep et al. identified a new class IIa bacteriocin penocin A in the genome of P. pentosaceus ATCC 

25745 by means of silico-based analysis. The antimicrobial activity of penocin A has been determined 

by experiments [137]. The silico analysis for prediction of bacteriocins, is a challenging task due to the 

small sizes and diversity in sequence, structure and function of bacteriocins [131].  
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Some databases and bioinformatics tools have been developed and designed for prediction of AMPs 

production by both Gram-positive and Gram-negative bacteria. For example, an antimicrobial peptide 

database (APD) was developed by means of sequence similarity and certain known principles of 

AMPs [163]. The database was updated in 2009 [164]. AMPer database provided hidden Markov 

models (HMMs) to automatically discover AMPs [165]. An integrated open-access database 

BACTIBASE (http://bactibase.pfba-lab-tun.org) [166], and a genome mining software BAGEL2 

(http://bagel2.molgenrug.nl) [167] were specifically designed for AMPs discovery [168,169]. Wang et 

al. constructed a new method by means of sequence alignment and feature selection methods to predict 

AMPs [170]. Recently Fernandes et al. employed adaptive neuro-Fuzzy inference system (ANFIS) as a 

pattern recognition tool to classify a putative peptide as an AMP or non-AMP [171]. 

Quantitative structure–activity relationship (QSAR) modeling is one of the most broadly used 

chemoinformatics approaches. It can be defined as quantitative models that correlate the variation in 

measured biological activity with the variation in molecular structure among a series of chemical 

compounds. QSAR has been applied successfully to AMPs discovery [172–175]. The CAMEL 

database employed QSAR and artificial neural networks (ANN) to predict AMPs function [176]. 

Recently a novel quantitative prediction method of AMP was established by QSAR modeling based on 

the physicochemical properties of amino acids [177]. 

The activity of an AMP is commonly expressed as the threshold concentration (minimum inhibitory 

concentration, MIC) upon which bacterial growth is inhibited. Biophysical studies with model 

phospholipid membranes often identify concentration thresholds upon which the peptide behavior 

becomes disruptive through pore formation or membrane lysis [178–183]. The connections between in 

vivo MICs and thresholds in model membranes have been recently proposed [183,184]. Recently, 

Melo et al. developed an interaction model of antimicrobial peptides with biological membranes [178]. 

A straightforward and robust method was presented and used to implement this relationship. The 

methodology provides a basis for fast, cost-effective alternatives for screening AMPs, with potential 

application to high-throughput screening approaches. These tools will accelerate and optimize the 

discovery and identification of novel bacteriocins. Howerverthese bacteriocins still have to be verified 

by measuring their antimicrobial activities according to excepted experimental procedures. 

7. Conclusions 

A large number of new class IIa bacteriocins have been detected and purified in the last decade. 

Some class IIa bacteriocins with wide-spectrum antimicrobial activity have been reported and new 

discovery methods have been introduced. Acuña et al. presented a novel procedure for designing 

hybrid bacteriocins through fusion of microcins with class IIa bacteriocins in order to produce new  

wide-spectrum bacteriocins with high specific activity [185]. All of these advancements will accelerate 

the developments of class IIa bacteriocins. 
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Supplementary Information 

Table S1. Some characteristics of the class IIa bacteriocins. 

Bacteriocin Account Nucleotide  Account Protein Prepeptie 

size (aa) 

MP size 

(aa) 

MP Mass 

(Da)  

pI Producer Origin References 

Group I          

Sub-group I-1          

Avicin A FJ851402.1 ACZ36002.1 61 43 4291.9  9.32 E. avium XA83  Feces of healthy infants [ 21]  

Bavaricin A/SppA AF526262 AAM88858.1 61 43 4435.9 8.76 L. sakei MI401  Sourdough [ 22] 

Curvaticin L442#  P84886.1     L. curvatus L442 Greek fermented sausage [ 23]  

Enterocin CRL35 AY398693 AAQ95741.1 58 43 4287  9.82 E. mundtii CRL35 Argentinian artisanal cheese [ 24] 

Enterocin HF  P86183  43 4333   9.37 E. faecium HS and TA29  Humans and fish  

Listeriocin 743A AF330821.1 AAK19401.1 71 43 4484  9.98 L. innocua 743 Food [ 186,  4]  

Mundticin  P80925.1  43 4287  E. mundtii ATO6 Fresh chicory endive [ 187] 

Mundticin CRL35 AY444743 AAR26473.1 58 43 4287  9.82 E. mundtii CRL35/AT06 Artisanal cheese [ 24] 

Mundticin KS  AB066267 BAB88211.1 50 43 4287  9.82 E. mundtii NFRI 7393/AT06 Fresh chicory endive [ 188] 

Mundticin L FJ899708.1 ACQ77507.1 58 43 4301.8  9.82 E. mundtii CUGF08  Alfalfa sprouts [ 32] 

Mundticin QU2    43 * 4287  E. mundtii QU 2  Fermented soybean  [ 189] 

Pediocin ACCEL#       P. pentosaceus ACCEL   

Piscicocin CS526 #       C. piscicola CS526 Cold-smoked salmon [ 190] 

Piscicolin 126 AY812745 AAX21354.1 62 44 4417 9.32 C.maltaromaticum UAL26 Vacuum-packaged beef   [ 191]  

Piscicolin 126 AF275938.1 AAK69419.1 62 44 4417 9.32 C. piscicola JG126 Spoiled ham [ 192]  

Piscicocin V1a    44 4417  9.32 C. piscicola V1 Fish [ 193] 

Sakacin P DQ019413.1 AAY44078.1 61 43 4461.9 8.74 L.curvatus LTH1174 Meat fermentation [38] 

Sakacin P DQ019414.1 AAY44080.1 61 43 4461.9 8.74 L.curvatus L442  Greek fermented sausage [ 39]  

Sakacin P AY875983 AAW79057.1 61 43 4435.9 8.76 L.sakei I151 Sausage [ 41]  

Sakacin P  AF002276.1 AAB93970.1 61 43 4435.9 8.76 L.sakei LTH673 Meat fermentation [ 40] 
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Table S1. Cont. 

Bacteriocin Account Nucleotide  Account Protein Prepeptie 

size (aa) 

MP size 

(aa) 

MP Mass 

(Da)  

pI Producer Origin References 

Sakacin P NZ_AGBU01000084.1 ZP_09041901.1 61 43 4435.9 8.76 L. curvatus CRL 705 Fermented sausage  

Sakacin X AY206863 AAP44569.1 61 43 4364 9.32 L. sakei 5 Malted barley [ 101]  

Sakacin X   ZP_09041912.1 61 43 4364 9.32 L. curvatus CRL 705 Fermented sausage  

Sub-group I-2          

Bifidocin B #    36 3801.5 8.05 B. bifidum  NCFB 1454 Human isolate [ 10, 11] 

CoaA/Coagulin/CoaA AF300457.1  AAG28763.1 62 44 4614.2 8.66 B. coagulans I4 Cattle feces [ 194, 13]  

Mutacin F-59.1  P86386.1   25 *   S. mutans 59.1  [ 9] 

PapA NC_004832.1 NP_857602.1 62 44 4627.2 8.66 P. acidilactici H  [ 195]  

Pediocin EU826148.1  ACF32966.1 62 44 4627.2 8.66 P. acidilactici MTCC 5101   

Pediocin A    44 4628 8.66 P. pentosaceus FBB61 Cucumber fementations [ 51]  

Pediocin AcH S74PEDACH  AAA98337.1 62 44 4627.2 8.66 P. acidilactici H Fermented sausage [ 44] 

Pediocin AcH    44 4627.2 8.66 L. plantarum WHE92 Soft cheese in France [ 52] 

Pediocin PA-1 HQ876214.1 AEH68223.1 62 44 4627.2 8.66 E. faecium Acr4   

Pediocin PA-1  AAB23877.1  44 *   P. acidilactici  [ 196] 

Pediocin PA-1 M83924.1  AAA25559.1 62 44 4627.2 8.66 P. acidilactici PAC1.0. Sorghum beer [ 197, 42] 

Pediocin PA-1    44 4628 8.66 L. plantarum DDEN 11007  [ 53, 66] 

Pediocin PA-1    44 4628 8.66 P. acidilactici MM33 Human stool [ 49] 

Pediocin PP-1     44 4602.2 8.66 P. pentosaceus CBT8 Kimchi [ 198] 

Pediocin SJ-1       P. acidilactici SJ-1 Meat [ 57] 

Prepediocin AcH S44537.1 AAC60413.2 62 44 4605.2 8.33 P. acidila ctici Ⅰ Lb42-923  [ 44] 

Prepediocin PA-1 AY705375.1  AAT95422.1 62 44 4627.2 8.66 P. acidilactici K10 Kimchi [ 47] 

Sub-groupI-3          

Leucocin C LCCC_LEUME  P81053.2  43 4595 8.76 L. mesenteroides 6 Malted barley [ 67] 

Leucocin C-TA33a    36 * 4598  L. mesenteroides TA33a Vacuum-packaged meat [ 69] 

Weissellin A    43 4450 9.32 W. paramesenteroides DX  [ 25] 
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Table S1. Cont. 

Bacteriocin Account Nucleotide Account Protein Prepeptie 

size (aa) 

MP size 

(aa) 

MP Mass 

(Da)  

pI Producer Origin References 

Sub-groupI-4          

Bacteriocin 602  P86393.1  39 3864 7.2 P. polymyxa NRRLB-30509 Broiler chicken, crop [ 26] 

Bavaricin MN  P80493.2  42 4769 10.0 L. sakei MN Meat [ 27] 

Divercin V41 AJ224003 CAA11804.1 66 43 4512.3 8.65 C. divergens V41 Fish viscera [ 92, 199]  

Divergicin M35  P84962.1  43 4518.75 8.3 C. divergens M35 Smoked salmon [ 200] 

Duracin GL  HQ696461.1  ADW93772.1 71 43 4966.7 8.74 E. durans 41D Cheese product  

Enterocin A X94181.1  CAA63890.1 65 47 4829 8.98 E. faecium CTC492 Fermented sausage [ 91] 

Enterocin A    65 47 4833 8.98 E. faecium WHE 81 Cheese [ 201] 

Enterocin A NZ_GG692545.1 ZP_05660016.1  65 47 4831.6 8.98 E. faecium 1,230,933   

Enterocin A  AB038464.1 BAA92138.1  65 47 4831.6 8.98 E. faecium N15  Japanese rice-bran paste [ 153] 

Enterocin A/ EntA AF099088.1 AAD29132 65 47 4831.6 8.98 E. faecium DPC1146  [ 202] 

Enterocin BC25 AF240561.1 AAF44686.1 65 47 4831.6 8.98 E. faecium BC25  [ 203] 

Group II          

Bacteriocin 31 /BacA D78257.1 BAA11329.1 67 43 5007.8 9.72 E. faecalis YI717 Clinical sample [ 72] 

Bacteriocin 1580  P86394.1  35 3486 7.8 B. circulans NRRLB-30644 Broiler chicken, crop  [ 26] 

Carnobacteriocin B2 L47121.1 AAB81310.1 66 48 4969.9 9.97 C. piscicola LV17B Pork  [ 77, 108]  

Bacteriocin 43  AB178871  BAF36626.1 74 44 5092.9 9.26 E.  faecium  [ 204] 

Bacteriocin RC714    43 4936.7 8.74 E. faecium RC714 Human fecal [ 205]  

Bacteriocin T8   74 44 5092.9 9.26 E. faecium T8 Children Infected with HIV [ 206] 

Enterocin SE-K4 AB092692.1 BAC20326.1 76 48 5356.2 9.93 E. faecalis K-4 Grass silage in Thailand [ 207, 71]  

Hiracin JM79 DQ664500 ABG47453.1 74 44 5092.9 9.26 E. hirae DCH5 Mallard ducks  [ 70] 

Penocin A/PenA  YP_803635  60 42 4688.4 9.72 P. pentosaceus ATCC 25745  [ 137] 
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Table S1. Cont. 

Bacteriocin Account Nucleotide  Account Protein Prepeptie 

size (aa) 

MP size 

(aa) 

MP Mass 

(Da)  

pI Producer Origin References 

Group III          

Sub-group III-1          

Bacteriocin MC4-1 EU047916 ABW08100.1 71 43 4890.6 9.27 E. faecalis MC4  [ 34] 

Carnocin CP52 CPU76763 AAB18989.1 66 48 4969.9 9.97 C. piscicola CP52 Cheese [ 208] 

Leucocin A M64371.1/LEULAIP AAA68003.1 61 37 3932.3 8.78 L. gelidum UAL 187 Vacuum-packaged meat [ 209, 33]  

Leucocin B-Ta11a S72922.1 AAC60488.1 61 37 3931.6 8.78 L. carnosum Ta11a Vacuum-packaged meat [ 33] 

Mesentericin 52A  AY286003 AAP37395.1 61 37 3869.5 8.78 L. mesenteroides subsp. mesenteroides FR52  Raw milk [ 102] 

Mesentericin Y105 X81803.1 CAA57405.1 61 37 3869.5 8.78 L.mesenteroides Y105 Goat's milk in France [ 103] 

Plantaricin 423 AF304384 AAL09346.1 56 37 3934.6 8.67 L. plantarum 423 Sorghum beer [ 73, 210-212] 

Plantaricin C19    36 3845.3 9.88 L. plantarum C19 Fermented cucumbers [213, 214] 

 

Prebacteriocin SkgA2   ZP_08080540.1 56 38 4159.8 9.03 L. ruminis ATCC 25644 Human gastrointestinal tract  

Sakacin G AF395533.1 AAM73712.1 55 37 3837.4 7.96 L. sakei 2512 Rhodia food collection [ 105] 

Sakacin G FJ621568.1 ACM68469.1  55 37 3837.4 7.96 L. sakei R1333 Smoked salmon [ 107] 

Sakacin G EU570253 ACB72724.1 55 37 3837.4 7.96 L. sakei CWBI-B1365 Raw poultry meat [ 106] 

Sakacin G EU570253 ACB72725.1 55 37 3837.4 7.96 L. sakei CWBI-B1365 Raw poultry meat [ 106] 

Sub-group III-2          

Lactococcin MMFII  P83002.1   37 4144.6 7.25 L. lactis MMFII Tunisian cheese [ 76]  

Bacteriocin  P86291.1  41 4601.3 7.25 Lactococcus sp.   

Group IV          

Carnobacteriocin BM1 L29058.1 AAA23014.1 61 43 4524.6 8.76 C. piscicola LV17B Fresh pork [ 77] 

Curvacin A S67323.1 AAB28845.1 59 41 4308.0 9.37 L.curvatus LTH 1174 Fermented sausage [ 78] 

Ubericin A EF203953.1 ABQ23939.1 70 49  5270.5 9.35 S. uberis E  [ 8] 

Enterocin P GQ369522.1 ACU28817.1 71 44 4701.3 7.25 E. faecium IJ-31 Dairy products in Islamabad [ 84]  

Enterocin P AF005726 AAC45870 71 44 4493 8.22 E. faecium P13 Spanish fermented sausage [ 79] 

Enterocin P AY728265 AAU29394.1  44 4714.3 5.51 E. faecium GM-1 Feces of a newborn infant [ 81] 
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Table S1. Cont. 

Bacteriocin Account Nucleotide  Account Protein Prepeptie 

size (aa) 

MP size 

(aa) 

MP Mass 

(Da)  

pI Producer Origin References 

Enterocin P-like AY633748 AAT58220.1  44 4701.3 7.25 E. faecium ATB 197a   

Enterocin P-like AB075741 BAC00780.1  40*   E. faecium JCM5804T  [ 80] 

Enterocin P DQ867125 ABI29857.1  44 4629.3 8.22 E. faecium LHICA 51 Nonfermented animal foods [ 82] 

Enterocin P DQ867124 ABI29856.1  44 4629.3 8.22 E. faecium LHICA 28-4 Nonfermented animal foods [ 82] 

Enterocin P FJ416487 ACJ46053.1  44 4629.3 8.22 E. faecium LHICA 40-4 Nonfermented animal foods [ 83] 

Piscicocin V1b    43 4526  8.76 C. piscicola V1 Fish [ 193] 

Sakacin A Z46867 CAA86942.1 59 41 4308.0 9.37 L. sakei Lb706 Meat [ 215–217] 

Group V          

Bacteriocin E50-52  P85148.1  39 4124.9 8.12 E. faecium NRRL B-30746  [28] 

Group VI          

Bacteriocin L-1077    37 3454 9.1 L. salivarius 1077 Healthy broiler chickens  [ 31] 

Group VII          

Bacteriocin 37  P86395.1  30 3465.4 10.1 P. polymyxa NRRL B-30507 Broiler chicken, crop [ 26] 

Group VIII          

Acidocin A  BAA07120 81 58 6501.5 10.93 L. acidophilus TK9201  [ 29] 

Bacteriocin OR-7     54 6214 10.32 L. salivarius NRRL B-30514 Cecal contents of chickens [ 30] 

aa, Amino acids; MP, Mature peptide; #, the whole sequence of bacteriocin has not been determined, including Curvaticin L442 and bifidocin B; *, some amino acids of bacteriocin has not been determined;  

B. circulans, Bacillus circulans; B. coagulans, Bacillus coagulans; B.bifidum, Bifidobacterium bifidum; C. divergens, Carnobacterium divergens; C. maltaromaticum, Carnobacterium maltaromaticum; C. 

piscicola, Carnobacterium piscicola; E. avium, Enterococcus avium; E. durans, Enterococcus durans; E. faecalis, Enterococcus faecalis; E. faecium, Enterococcus faecium; E. hirae, Enterococcus hirae; E. 

mundtii, Enterococcus mundtii; L. acidophilus, Lactobacillus acidophilus; L. carnosum, Leuconostoc carnosum; L. curvatus, Lactobacillus curvatus; L. gelidum, Leuconostoc gelidum; L. innocua, Listeria innocua; 

L. lactis, Lactococcus lactis; L. mesenteroides, Leuconostoc mesenteroides; L. pentosus, Lactobacillus pentosus; L. plantarum, Lactobacillus plantarum; L. ruminis, Lactobacillus ruminis; L. sakei, Lactobacillus 

sakei; L. salivarius, Lactobacillus salivarius; P. acidilactici, Pediococcus acidilactici; P. parvulus, Pediococcus parvulus; P. pentosaceus, Pediococcus pentosaceus; P. polymyxa, Paenibacillus polymyxa; S. 

mutans, Streptococcus mutans; S. uberis, Streptococcus uberis; W. paramesenteroides, Weissella paramesenteroides; HIV, Human Immunodeficiency Virus. 
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