

Received 17 September 2019 Accepted 3 October 2019

Edited by J. Simpson, University of Otago, New Zealand

Keywords: crystal structure; pyran; hydrogen bonding; Hirshfeld surface analysis; density functional theory.

CCDC reference: 1873687

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure, DFT and Hirshfeld surface analysis of 2-amino-4-(2-chlorophenyl)-7-hydroxy-4*H*-benzo[1,2-*b*]pyran-3-carbonitrile

M. Beemarao,^a S. Silambarasan,^b A. Jamal Abdul Nasser,^b M. Purushothaman^b and K. Ravichandran^a*

^aDepartment of Physics, Kandaswami Kandar's College, Velur, Namakkal 638 182, India, and ^bDepartment of Chemistry, Jamal Mohamed College, Tiruchirappalli 620 020, India. *Correspondence e-mail: kravichandran05@gmail.com

The benzopyran ring of the title compound, $C_{16}H_{11}ClN_2O_2$, is planar [maximum deviation = 0.079 (2) Å] and is almost perpendicular to the chlorophenyl ring [dihedral angle = 86.85 (6)°]. In the crystal, $N-H\cdots O$, $O-H\cdots N$, $C-H\cdots O$ and $C-H\cdots Cl$ hydrogen bonds form inter- and intramolecular interactions. The DFT/B3LYP/6-311G(d,p) method was used to determine the HOMO-LUMO energy levels. The molecular electrostatic potential surfaces were investigated by Hirshfeld surface analysis and two-dimensional fingerprint plots were used to analyse the intermolecular interactions in the molecule.

1. Chemical context

Pyran is an oxygen-containing heterocyclic group that exhibits various pharmacological activities. The pyran ring is a core unit in benzopyrans, chromones, flavanoids and coumarins. Numerous naturally-occurring compounds containing pyrans and benzopyrans show fascinating therapeutic activities, which include their use as antimicrobial (Khafagy et al., 2002), antiviral (Smith et al., 1998; Martínez-Grau & Marco, 1997), mutagenicity (Hiramoto et al., 1997), antiproliferative (Dell & Smith, 1993), antitumour (Mohr et al., 1975), antituberculosis (Ferreira et al., 2010), anti-HIV (He et al., 2011), antifungal (Schiller et al., 2010), antidiabetic (Bisht et al., 2011) and antiinflammatory agents (Wang et al., 1996, 2005). They are also used in cancer chemotherapy (Anderson et al., 2005), in sex pheromone therapy (Bianchi & Tava, 1987) to control central nervous system activities (Eiden & Denk, 1991) and as calcium-channel antagonists (Shahrisa et al., 2011),

CI NC H_2N H_2N

These attributes have prompted considerable research work in the synthetic field and interest in their structures, reactivities and biological properties. Against this background and to ascertain the structure of the title compound, namely 2-amino-4-(2-chlorophenyl)-7-hydroxy-4*H*-benzo[1,2-*b*]pyran-3-carbonitrile, crystallographic studies have been carried out and are here reported.

Figure 1

The molecular structure of the title compound, showing the atomnumbering scheme and displacement ellipsoids drawn at the 30% probability level. The intramolecular C4-H4 \cdots Cl1 hydrogen bond is drawn as a dashed line.

Figure 2

The crystal packing of the title compound, showing an $R_2^2(16)$ motif and the C(8) chain formed *via* a pair of O-H···N and N-H···O hydrogen bonds.

2. Structural commentary

Fig. 1 shows the molecular structure of the title molecule and the intramolecular $C4-H4\cdots Cl1$ hydrogen bond. The

Table	1			
Hydro	gen-bond	geometry	(Å,	°).

Cg1, Cg3 and Cg4 are the centroids of the O1/C2–C5/C10 ring, the C11–C16 ring and the benzopyran system, respectively.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N1-H1A\cdots O2^{i}$	0.86	2.19	3.037 (2)	167
$C9-H9\cdots O1^{i}$	0.93	2.50	3.416 (2)	168
$O2-H2\cdots N2^{ii}$	0.82	1.99	2.773 (2)	160
$C4-H4\cdots Cl1$	0.98	2.58	3.102 (2)	113
$C12 - H12 \cdot \cdot \cdot Cg1$	0.93	2.74	3.085 (2)	103
$C12 - H12 \cdot \cdot \cdot Cg4$	0.93	2.83	3.291 (2)	112
$C14 - H14 \cdots Cg3^{iii}$	0.93	2.85	3.494 (2)	127

Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) x - 1, y, z + 1; (iii) $x, -y + \frac{3}{2}, z - \frac{1}{2}$.

chlorophenyl-substituted benzopyran compound crystallizes in the monoclinic space group $P2_1/c$. The benzopyran and chlorophenyl rings in the molecule are planar, as confirmed by the puckering parameters (Cremer & Pople, 1975) and asymmetry parameters Q = 0.101 (2) Å, $\theta = 105.6$ (11)° and $\varphi =$ 349.9 (14)° (Nardelli, 1983).

The bond lengths and angles are well within the expected limits and comparable with literature values (Allen *et al.*, 1998). The plane of the benzopyran ring forms a dihedral angle of 86.85 (6)° with that of the chlorophenyl ring and confirms the fact that the two moieties are in an axial orientation. The chlorophenyl group is also planar, with a maximum deviation for atom C12 of -0.040 (1) Å. The orientation of the benzopyran and chlorophenyl rings is also confirmed by the torsion angles C3-C4-C11-C12 = 76.5 (2)° and C3-C4-C11-C16 = -100.4 (2)°.

In the benzopyran system, the attached carbonitrile, amino and hydroxy groups lie in the same plane, with a maximum deviation for atom N2 of -0.053 (2) Å. The sum of the bond angles around atom N1 of the pyran ring is in accordance with the sp^2 -hybridization state (360°; Beddoes *et al.*, 1986).

3. Supramolecular features

The packing of the molecules in the unit cell is stabilized by strong intermolecular C–H···O, O–H···N and N–H···O hydrogen bonds (Table 1). The O2–H2···N2ⁱⁱ interaction leads to the formation of a C(10) chain running along the *a* axis. The molecules are also linked by pairs of intermolecular

Figure 3

Part of the crystal structure showing the $R_2^2(8)$ dimers. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.

research communications

The overall crystal packing of the title compound, viewed along the *a*-axis direction.

N1-H1A···O2ⁱ and O2-H2···N2ⁱⁱ hydrogen bonds, forming inversion dimers with $R_2^2(16)$ ring motifs (Fig. 2) (Bernstein *et al.*, 1995), and the dimers are further connected by C9-H9···O1ⁱ hydrogen bonds, forming $R_2^2(8)$ rings along the *b*axis direction, as shown in Fig. 3. Three C-H··· π (Table 1) interactions complete the packing, forming a three-dimensional (3D) supramolecular structure. The overall crystal packing of the title compound is shown in Fig. 4.

4. Density functional theory (DFT) study

Figure 4

The optimized molecular structure and frontier molecular orbitals (FMOs) were calculated using the DFT/B3LYP/6-311G(d,p) basis set implemented in the *GAUSSIAN09* program package (Frisch *et al.*, 2009). The highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) are called FMOs as they lie at the outermost boundaries of the electrons of the molecules. The frontier orbital gap helps to characterize the chemical reactivity and the kinetic stability of the molecule. A molecule with a small frontier orbital gap is generally associated with a high chemical reactivity and a low kinetic stability, and is also termed a soft molecule. The electron distribution of the HOMO-1, HOMO, LUMO and LUMO+1 energy levels and the energy values are shown in Fig. 5. The positive and negative phases are represented in green and red, respectively.

The HOMO of the title molecule is localized on the entire molecule except for the chlorobenzene ring, while the LUMO is located on the whole molecule. However, the HOMO-1 is localized on the entire molecule, with the LUMO+1 confined to the chlorobenzene and benzopyran rings, except for the amino substituent. The DFT study shows that the FMO energies, *i.e.* $E_{\rm HOMO}$ and $E_{\rm LUMO}$, are -6.354 and -2.712 eV, respectively, and the HOMO-LUMO energy gap is 3.642 eV.

The title compound has a small frontier orbital gap, hence the molecule has high chemical reactivity and low kinetic stability.

5. Hirshfeld surface analysis

Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) and two-dimensional (2D) fingerprint plots (McKinnon *et al.*,

Figure 5 The frontier molecular orbitals (FMOs) of the title compound.

	•	2 •
research	communica	tions
i escui en	communicu	

Table 2		
Experim	ental	details.

Crystal data Chemical formula C16H11CIN2O2 298.72 М., Crystal system, space group Monoclinic, P21/c Temperature (K) 296 6.6658 (3), 30.1600 (16), 7.2193 (4) *a*, *b*, *c* (Å) 106.088 (2) β (°) $V(Å^3)$ 1394.53 (12) Z 4 Radiation type Μο Κα $\mu \ (\mathrm{mm}^{-1})$ 0.28 Crystal size (mm) $0.15 \times 0.10 \times 0.10$ Data collection Diffractometer Bruker SMART APEXII CCD Absorption correction Multi-scan (SADABS: Bruker. 2008) 0.959. 0.973 T_{\min}, T_{\max} No. of measured, independent and 21888, 2941, 2115 observed $[I > 2\sigma(I)]$ reflections 0.034 R_{int} $(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$ 0.632 Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ 0.037, 0.103, 1.05 2941 No. of reflections No. of parameters 191 H-atom treatment H-atom parameters constrained $\Delta \rho_{\rm max}, \, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$ 0.19, -0.29

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL2018 (Sheldrick, 2015), ORTEP-3 (Farrugia, 2012), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

2007) were performed and created with *CrystalExplorer17* (Turner *et al.*, 2017) for the idenfication of the intermolecular interactions in the title compound. The Hirshfeld surface diagram mapped over d_{norm} is shown in Fig. 6. The 3D d_{norm} surfaces were plotted with a standard (high) surface resolution and are shown as blue and red regions around the atoms

related with positive (hydrogen-bond donors) and negative (hydrogen-bond acceptors) electrostatic potentials, respectively.

The 2D fingerprint plots of the d_i and d_e points for the contacts contributing to the Hirshfeld surface analysis are shown in Fig. 7. They indicate that intermolecular H···H contacts provide the largest contribution (29.2%) to the Hirshfeld surface and the percentage contributions of the other interactions are C···H/H···C = 24.6%, N···H/H···N = 13.6%, Cl···H/H···Cl = 12.9% and O···H/H···O = 10.6%.

6. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.40, update of November 2018; Groom *et al.*, 2016) for the 4*H*-benzopyran fragment revealed 10 hits where the

Figure 7 The 2D fingerprint plots for the title compound.

research communications

fragment adopts a planar conformation. Nearly all the bond lengths in the title structure are the same within standard uncertainties as the corresponding values in the structure of 2-amino-4-(2-chlorophenyl)-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydro-4*H*-chromene-3-carbonitrile hemihydrate (CSD refcode LAPZIN; Hu *et al.*, 2012).

7. Synthesis and crystallization

A mixture of 2-chlorobenzaldehyde (6.2 g, 0.05 mol), malononitrile (3.3 ml, 0.05 mol) and resorcinol (5.5 g, 0.05 mol) in water (150 ml) was added to a 10% aqueous K_2CO_3 solution (10 ml) in a 250 ml round-bottomed flask. The resulting solution was refluxed for about 2 h. The progress of the reaction was monitored by thin-layer chromatography using silica gel-G plates. After product formation, the reaction mixture was kept in a refrigerator overnight. The solid mass that settled was filtered off by suction and washed well with a mixture of methanol and water, and finally dried in air. The resulting crude solid was recrystalized from methanol giving a white solid. The purified sample was recrystallized from 1,4-dioxane using the slow-evaporation method (m.p. 250–255 °C).

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were positioned geometrically (N-H = 0.88–0.90 Å and C-H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with $U_{iso}(H) =$ $1.5U_{eq}(C)$ for methyl H atoms and $1.2U_{eq}(C)$ otherwise.

Acknowledgements

The authors thank SAIF, IIT Madras, India, for the data collection.

References

- Allen, F. H., Shields, G. P., Taylor, R., Allen, F. H., Raithby, P. R., Shields, G. P. & Taylor, R. (1998). Chem. Commun. pp. 1043–1044.
- Anderson, D. R., Hegde, S., Reinhard, E., Gomez, L., Vernier, W. F., Lee, L., Liu, S., Sambandam, A., Snider, P. A. & Masih, L. (2005). *Bioorg. Med. Chem. Lett.* 15, 1587–1590.
- Beddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787–797.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.

- Bisht, S. S., Jaiswal, N., Sharma, A., Fatima, S., Sharma, R., Rahuja, N., Srivastava, A. K., Bajpai, V., Kumar, B. & Tripathi, R. P. (2011). *Carbohydr. Res.* 346, 1191–1201.
- Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Dell, C. P. & Smith, C. W. (1993). Eur. Patent Appl. EP 537949; Chem. Abstr. 119, 139102.
- Eiden, F. & Denk, F. (1991). Arch. Pharm. Pharm. Med. Chem. 324, 353–354.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Ferreira, S. B., da Silva, F. D. C., Bezerra, F. A. F. M., Lourenco, M. C. S., Kaiser, C. R., Pinto, A. C. & Ferreira, V. F. (2010). *Arch. Pharm.* 343, 81–90.
- Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., *et al.* (2009). *GAUSSIAN09*. Gaussian Inc., Wallingford, CT, USA.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- He, M. Z., Yang, N., Sun, C. L., Yao, X. J. & Yang, M. (2011). Med. Chem. Res. 20, 200–209.
- Hiramoto, K., Nasuhara, A., Michikoshi, K., Kato, T. & Kikugawa, K. (1997). *Mutat. Res.* **395**, 47–56.
- Hu, X.-L., Wang, Z.-X., Wang, F.-M. & Han, G.-F. (2012). Acta Cryst. E68, 0823.
- Khafagy, M. M., Abd El-Wahab, A. H. F., Eid, F. A. & El-Agrody, A. M. (2002). Farmaco, 57, 715–722.
- Martínez-Grau, A. & Marco, J. (1997). Bioorg. Med. Chem. Lett. 7, 3165–3170.
- McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.
- Mohr, S. J., Chirigos, M. A., Fuhrman, F. S. & Pryor, J. W. (1975). *Cancer Res.* 35, 3750–3754.
- Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.
- Schiller, R., Tichotová, L., Pavlík, J., Buchta, V., Melichar, B., Votruba, I., Kuneš, J., Špulák, M. & Pour, M. (2010). *Bioorg. Med. Chem. Lett.* 20, 7358–7360.
- Shahrisa, A., Zirak, M., Mehdipour, A. R. & Miri, R. (2011). Chem. Heterocycl. C, 46, 1354–1363.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Smith, W. P., Sollis, L. S., Howes, D. P., Cherry, C. P., Starkey, D. I., Cobley, N. K., Weston, H., Scicinski, J., Merritt, A., Whittington, A., Wyatt, P., Taylor, N., Green, D., Bethell, R., Madar, S., Fenton, R. J., Morley, P. J., Pateman, T. & Beresford, A. (1998). *J. Med. Chem.* 41, 787–797.
- Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). *CrystalExplorer.* Version 17.5. University of Western Australia.
- Wang, S. M., Milne, G. W. A., Yan, X. J., Posey, I. J., Nicklaus, M. C., Graham, L. & Rice, W. G. (1996). J. Med. Chem. 39, 2047–2054.
- Wang, Y., Mo, S. Y., Wang, S. J., Li, S., Yang, Y. C. & Shi, J. G. (2005). Org. Lett. 7, 1675–1678.

Bianchi, G. & Tava, A. (1987). Agric. Biol. Chem. 51, 2001-2002.

supporting information

Acta Cryst. (2019). E75, 1638-1642 [https://doi.org/10.1107/S2056989019013537]

Crystal structure, DFT and Hirshfeld surface analysis of 2-amino-4-(2-chlorophenyl)-7-hydroxy-4*H*-benzo[1,2-*b*]pyran-3-carbonitrile

M. Beemarao, S. Silambarasan, A. Jamal Abdul Nasser, M. Purushothaman and K. Ravichandran

Computing details

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT* (Bruker, 2008); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2018* (Sheldrick, 2015); molecular graphics: *ORTEP-3* (Farrugia, 2012); software used to prepare material for publication: *SHELXL97* (Sheldrick, 2008) and *PLATON* (Spek, 2009).

2-Amino-4-(2-chlorophenyl)-7-hydroxy-4H-benzo[1,2-b]pyran-3-carbonitrile

Crystal data

C₁₆H₁₁ClN₂O₂ $M_r = 298.72$ Monoclinic, $P2_1/c$ a = 6.6658 (3) Å b = 30.1600 (16) Å c = 7.2193 (4) Å $\beta = 106.088$ (2)° V = 1394.53 (12) Å³ Z = 4

Data collection

Bruker SMART APEXII CCD diffractometer Radiation source: fine-focus sealed tube ω and φ scans Absorption correction: multi-scan (*SADABS*; Bruker, 2008) $T_{\min} = 0.959$, $T_{\max} = 0.973$ 21888 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.037$ $wR(F^2) = 0.103$ S = 1.052941 reflections 191 parameters 0 restraints Hydrogen site location: inferred from neighbouring sites F(000) = 616 $D_x = 1.423 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2115 reflections $\theta = 2.7-26.7^{\circ}$ $\mu = 0.28 \text{ mm}^{-1}$ T = 296 KBlock, white crystalline $0.15 \times 0.10 \times 0.10 \text{ mm}$

2941 independent reflections 2115 reflections with $I > 2\sigma(I)$ $R_{int} = 0.034$ $\theta_{max} = 26.7^{\circ}, \ \theta_{min} = 2.7^{\circ}$ $h = -6 \rightarrow 8$ $k = -38 \rightarrow 38$ $l = -9 \rightarrow 8$

H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0392P)^2 + 0.5426P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.19$ e Å⁻³ $\Delta\rho_{min} = -0.28$ e Å⁻³ Extinction correction: SHELXL2018 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.0061 (13)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}^*/U_{\rm eq}$
C2	0.9057 (3)	0.54802 (6)	-0.1320 (2)	0.0342 (4)
C3	1.0377 (3)	0.58264 (5)	-0.0758 (2)	0.0334 (4)
C4	1.0200 (3)	0.61567 (5)	0.0772 (2)	0.0314 (4)
H4	1.156330	0.618094	0.172872	0.038*
C5	0.8634 (3)	0.59885 (5)	0.1766 (2)	0.0314 (4)
C6	0.8329 (3)	0.62022 (6)	0.3376 (3)	0.0379 (4)
H6	0.915142	0.644648	0.387878	0.045*
C7	0.6839 (3)	0.60615 (6)	0.4248 (3)	0.0408 (4)
H7	0.665264	0.621197	0.531266	0.049*
C8	0.5627 (3)	0.56954 (6)	0.3525 (3)	0.0379 (4)
C9	0.5916 (3)	0.54711 (6)	0.1960 (3)	0.0398 (4)
Н9	0.512626	0.522076	0.148322	0.048*
C10	0.7398 (3)	0.56246 (6)	0.1111 (2)	0.0335 (4)
C11	0.9601 (3)	0.66108 (5)	-0.0142 (2)	0.0322 (4)
C12	0.7556 (3)	0.66946 (6)	-0.1204 (3)	0.0400 (4)
H12	0.654979	0.647668	-0.127966	0.048*
C13	0.6976 (4)	0.70909 (7)	-0.2149 (3)	0.0539 (5)
H13	0.559727	0.713738	-0.285481	0.065*
C14	0.8442 (4)	0.74176 (7)	-0.2045 (4)	0.0621 (6)
H14	0.805563	0.768466	-0.268905	0.075*
C15	1.0465 (4)	0.73504 (7)	-0.0995 (4)	0.0600 (6)
H15	1.145714	0.757164	-0.091365	0.072*
C16	1.1027 (3)	0.69495 (6)	-0.0052 (3)	0.0446 (5)
C17	1.1869 (3)	0.58941 (6)	-0.1782 (3)	0.0402 (4)
01	0.7539 (2)	0.53801 (4)	-0.04856 (18)	0.0420 (3)
O2	0.4103 (2)	0.55394 (5)	0.4287 (2)	0.0552 (4)
H2	0.406537	0.569128	0.521925	0.083*
Cl1	1.36070 (9)	0.68831 (2)	0.12960 (12)	0.0757 (2)
N1	0.9057 (3)	0.51897 (5)	-0.2734 (2)	0.0455 (4)
H1A	0.816166	0.497735	-0.298713	0.055*
H1B	0.995343	0.521634	-0.338516	0.055*
N2	1.3050 (3)	0.59408 (7)	-0.2655 (3)	0.0608 (5)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

supporting information

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C2	0.0376 (10)	0.0333 (9)	0.0359 (9)	0.0032 (7)	0.0174 (8)	-0.0023 (7)
C3	0.0336 (9)	0.0322 (9)	0.0385 (10)	0.0028 (7)	0.0169 (8)	-0.0012 (7)
C4	0.0314 (9)	0.0305 (9)	0.0334 (9)	-0.0007 (7)	0.0110 (7)	-0.0026 (7)
C5	0.0339 (9)	0.0306 (9)	0.0310 (9)	0.0025 (7)	0.0113 (7)	0.0014 (7)
C6	0.0474 (11)	0.0339 (9)	0.0335 (9)	-0.0043 (8)	0.0132 (8)	-0.0054 (7)
C7	0.0556 (12)	0.0392 (10)	0.0332 (10)	0.0003 (9)	0.0215 (9)	-0.0050 (8)
C8	0.0423 (10)	0.0419 (10)	0.0349 (10)	-0.0008 (8)	0.0198 (8)	0.0007 (8)
C9	0.0442 (11)	0.0394 (10)	0.0403 (10)	-0.0071 (8)	0.0192 (9)	-0.0085 (8)
C10	0.0391 (10)	0.0340 (9)	0.0308 (9)	0.0008 (7)	0.0155 (8)	-0.0042 (7)
C11	0.0384 (10)	0.0298 (8)	0.0329 (9)	-0.0008 (7)	0.0172 (8)	-0.0043 (7)
C12	0.0434 (11)	0.0373 (10)	0.0395 (10)	-0.0014 (8)	0.0117 (9)	-0.0021 (8)
C13	0.0610 (14)	0.0490 (12)	0.0493 (12)	0.0128 (10)	0.0113 (10)	0.0079 (10)
C14	0.0862 (18)	0.0437 (12)	0.0623 (15)	0.0089 (12)	0.0303 (13)	0.0165 (11)
C15	0.0759 (16)	0.0375 (11)	0.0783 (16)	-0.0104 (11)	0.0407 (14)	0.0059 (11)
C16	0.0445 (11)	0.0405 (10)	0.0554 (12)	-0.0057 (8)	0.0248 (10)	-0.0037 (9)
C17	0.0408 (11)	0.0408 (10)	0.0433 (11)	-0.0024 (8)	0.0188 (9)	-0.0082 (8)
01	0.0484 (8)	0.0419 (7)	0.0444 (7)	-0.0136 (6)	0.0274 (6)	-0.0159 (6)
O2	0.0659 (10)	0.0596 (9)	0.0547 (9)	-0.0182 (7)	0.0409 (8)	-0.0158 (7)
Cl1	0.0392 (3)	0.0653 (4)	0.1207 (6)	-0.0156 (3)	0.0190 (3)	-0.0037 (4)
N1	0.0532 (10)	0.0422 (9)	0.0511 (10)	-0.0077 (8)	0.0309 (8)	-0.0147 (7)
N2	0.0571 (12)	0.0748 (13)	0.0627 (12)	-0.0146 (10)	0.0368 (10)	-0.0200 (10)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

C2—N1	1.345 (2)	С9—Н9	0.9300
C2—O1	1.347 (2)	C10—O1	1.3932 (19)
C2—C3	1.353 (2)	C11—C16	1.385 (2)
C3—C17	1.408 (2)	C11—C12	1.389 (2)
C3—C4	1.516 (2)	C12—C13	1.377 (3)
C4—C5	1.509 (2)	C12—H12	0.9300
C4—C11	1.525 (2)	C13—C14	1.375 (3)
C4—H4	0.9800	C13—H13	0.9300
C5-C10	1.375 (2)	C14—C15	1.367 (3)
C5—C6	1.393 (2)	C14—H14	0.9300
C6—C7	1.382 (3)	C15—C16	1.387 (3)
С6—Н6	0.9300	C15—H15	0.9300
С7—С8	1.382 (3)	C16—Cl1	1.737 (2)
С7—Н7	0.9300	C17—N2	1.146 (2)
C8—O2	1.366 (2)	O2—H2	0.8200
С8—С9	1.376 (2)	N1—H1A	0.8600
C9—C10	1.379 (2)	N1—H1B	0.8600
N1-C2-01	110.58 (15)	C5—C10—C9	123.36 (16)
N1—C2—C3	126.39 (16)	C5—C10—O1	122.36 (15)
O1—C2—C3	123.03 (15)	C9—C10—O1	114.28 (15)

C2—C3—C17	116.70 (15)	C16—C11—C12	116.58 (17)
C2—C3—C4	123.38 (15)	C16—C11—C4	123.24 (16)
C17—C3—C4	119.72 (15)	C12—C11—C4	120.11 (15)
C5—C4—C3	109.23 (13)	C13—C12—C11	121.94 (18)
C5—C4—C11	112.01 (13)	C13—C12—H12	119.0
C3—C4—C11	109.81 (13)	C11—C12—H12	119.0
C5—C4—H4	108.6	C14—C13—C12	119.8 (2)
C3—C4—H4	108.6	C14—C13—H13	120.1
C11—C4—H4	108.6	C12—C13—H13	120.1
C10-C5-C6	116 37 (15)	$C_{12} = C_{14} = C_{13}$	120.1(2)
C10 - C5 - C4	122 16 (15)	C_{15} C_{14} H_{14}	120.1 (2)
C6-C5-C4	122.10(15) 121.44(15)	C13 - C14 - H14	120.0
C_{1}	121.44 (15)	C_{14} C_{15} C_{16}	120.0 110 5 (2)
C7 C6 H6	121.00 (17)	$C_{14} = C_{15} = C_{10}$	119.5 (2)
$C_{1} = C_{0} = H_{0}$	119.1	$C_{14} = C_{15} = 1115$	120.3
C_{5}	119.1	C11 C16 C15	120.3
$C_0 - C_7 - C_8$	119.40 (10)		122.1(2)
	120.3		120.11 (15)
$C_8 = C_1 = H_1$	120.3		117.79 (16)
02-08-09	116.76 (16)	$N_2 - C_1 / - C_3$	1/8.0 (2)
02	123.03 (16)	C2—O1—C10	118.87 (13)
C9—C8—C7	120.21 (16)	C8—O2—H2	109.5
C8—C9—C10	118.71 (17)	C2—N1—H1A	120.0
С8—С9—Н9	120.6	C2—N1—H1B	120.0
С10—С9—Н9	120.6	H1A—N1—H1B	120.0
N1—C2—C3—C17	1.4 (3)	C4—C5—C10—O1	1.5 (3)
O1—C2—C3—C17	-179.18 (17)	C8—C9—C10—C5	1.0 (3)
N1—C2—C3—C4	176.25 (17)	C8—C9—C10—O1	-178.75 (16)
O1—C2—C3—C4	-4.3 (3)	C5—C4—C11—C16	138.04 (17)
C2—C3—C4—C5	10.3 (2)	C3—C4—C11—C16	-100.42 (19)
C17—C3—C4—C5	-175.06 (16)	C5-C4-C11-C12	-45.1 (2)
C2-C3-C4-C11	-112.94(19)	C3-C4-C11-C12	76.49 (19)
C17—C3—C4—C11	61.7 (2)	C16—C11—C12—C13	1.1 (3)
C3—C4—C5—C10	-8.7(2)	C4—C11—C12—C13	-176.05(17)
$C_{11} - C_{4} - C_{5} - C_{10}$	113.14 (18)	C11—C12—C13—C14	-0.3(3)
C3-C4-C5-C6	172.89 (16)	C12—C13—C14—C15	-0.5(3)
$C_{11} - C_{4} - C_{5} - C_{6}$	-65.2(2)	C_{13} C_{14} C_{15} C_{16}	0.5(3)
C10-C5-C6-C7	-12(3)	C_{12} C_{11} C_{16} C_{15}	-10(3)
C4-C5-C6-C7	177 30 (17)	C4-C11-C16-C15	175 98 (18)
$C_{5}-C_{6}-C_{7}-C_{8}$	0.8(3)	C12-C11-C16-C11	178 20 (13)
$C_{6} - C_{7} - C_{8} - O_{7}^{2}$	-179.04(18)	C4-C11-C16-C11	-4.8(2)
$C_{6} - C_{7} - C_{8} - C_{9}$	05(3)	C14-C15-C16-C11	0.3(2)
02 - C8 - C9 - C10	178 20 (17)	C_{14} C_{15} C_{16} C_{11}	-17807(18)
$C_2 = C_3 = C_2 = C_{10}$	-14(3)	$N1 - C^2 - O1 - C^{10}$	175 17 (15)
$C_{1} = C_{2} = C_{1} = C_{1}$	(3)	C_{3} C_{2} O_{1} C_{10}	-13(2)
$C_{4} = C_{5} = C_{10} = C_{5}$	-178 10 (17)	$C_{5} = C_{2} = C_{10} = C_{10}$	т.3 (3) 5 7 (3)
$C_{7} = C_{10} = C_{10} = C_{10}$	1/0.17(1/) 170.00(16)	$C_{10} = C_{10} = C$	-174.52(10)
CU-CJ-CIU-UI	1/9.99 (10)	U7-U10-U1-U2	-1/4.33 (10)

Hydrogen-bond geometry (Å, °)

Cg1, Cg3 and Cg4 are the centroids of the O1/C2–C5/C10 and C11–C16 rings, and the benzopyran system, respectively.

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A	
N1—H1A····O2 ⁱ	0.86	2.19	3.037 (2)	167	
C9—H9…O1 ⁱ	0.93	2.50	3.416 (2)	168	
O2—H2···N2 ⁱⁱ	0.82	1.99	2.773 (2)	160	
C4—H4···Cl1	0.98	2.58	3.102 (2)	113	
C12—H12···Cg1	0.93	2.74	3.085 (2)	103	
C12—H12…Cg4	0.93	2.83	3.291 (2)	112	
C14—H14…Cg3 ⁱⁱⁱ	0.93	2.85	3.494 (2)	127	

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*; (ii) *x*-1, *y*, *z*+1; (iii) *x*, -*y*-1/2, *z*-1/2.