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Microbial communities perform emergent activities that are essentially different from those carried by
their individual members. The gut microbiome and its metabolites have a significant impact on the host,
contributing to homeostasis or disease. Food molecules shape this community, being fermented through
cross-feeding interactions of metabolites such as lactate, acetate, and amino acids, or products derived
from macromolecule degradation. Mathematical and experimental approaches have been applied to
understand and predict the interactions between microorganisms in complex communities such as the
gut microbiota. Rational and mechanistic understanding of microbial interactions is essential to exploit
their metabolic activities and identify keystone taxa and metabolites. The latter could be used in turn
to modulate or replicate the metabolic behavior of the community in different contexts. This review aims
to highlight recent experimental and modeling approaches for studying cross-feeding interactions within
the gut microbiome. We focus on short-chain fatty acid production and fiber fermentation, which are fun-
damental processes in human health and disease. Special attention is paid to modeling approaches, par-
ticularly kinetic and genome-scale stoichiometric models of metabolism, to integrate experimental data
under different diet and health conditions. Finally, we discuss limitations and challenges for the broad
application of these modeling approaches and their experimental verification for improving our under-
standing of the mechanisms of microbial interactions.
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1. Introduction

The gut microbiota harbors hundreds of different microbial spe-
cies that actively metabolize dietary and host-derived substrates,
with an evident influence on host health [1-3]. Next-generation
sequencing has greatly increased our understanding of the compo-
sition of the microbiota. 16S rRNA and metagenomic studies have
allowed scientists to evaluate the structure of this community in
terms of relative abundance of species (richness), intra and inter-
diversity, and metabolic functions [4]. Advances have been made
to understand the assembly process in the infant gut microbiota
[5], characterized by a succession of microorganisms, the wide
diversity in microbiome compositions in the adult and elderly,
the impact of antibiotics on this community, and its resilience
[6,7]. These advances have contributed to new hypotheses or vali-
dations of the role of the gut microbiota in disease.

Unfortunately, this static view does not take into account all the
interactions that shape the composition of a microbial community
so complex such as the microbiota. With hundreds of gut microor-
ganisms inhabiting (or transiting) this ecosystem, active at dis-
parate rates, present at different abundances and colonizing
different niches, the extent of microbial interactions is enormous
and a challenging task to analyze or quantify. At least 30,000 inter-
actions could be counted at a specific time in the gut microbiota
[8]. Conversely, current experimental set-ups to study microbial
interactions have analyzed only small synthetic consortia up to
25 gut species [9,10]. There is evidently a gap in our understanding
of microbial interactions, which has raised the interest in top-
down systems biology approaches to simplify this tremendous
complexity.

Microbial interactions vary in their specificity and cost resulting
in different ecological outcomes [11]. Microbe-microbe interac-
tions in the gut include quorum-sensing [12], a process little stud-
ied in gut microbes. Genomic analysis of gut microbes suggest the
intestine is dominated by interference competition [13], with a
high abundance of genes producing antimicrobials such as bacteri-
ocins and Type 6 Secretion Systems (T6SS) [14]. The human host
has several ways to modulate its microbiome, such as
immunoglobulin A coating, secretions, or antimicrobial peptides
[15,16]. The forces influencing microbiome profiles are largely
unknown. However, physiological factors such as intestinal oxygen
concentration, peristaltic movements, and innate immunity effec-
tors are evident [17]. Moreover, microbes are not homogeneously
distributed in the intestine, displaying a concentration gradient,
and they usually prefer a luminal lifestyle or residing near the
mucus layer [18].

Diet is one of the main factors dictating which species will be
dominant in the microbiota. Major bacterial groups and patterns
regarding the fermentation of complex dietary polysaccharides
have been described [19]. These include microbes able to access
complex glycans and other species that can capture degradation
products (monosaccharides, amino acids) or fermentation byprod-
ucts. Then cross-feeding takes place, which can be understood as
the metabolic exchange between microorganisms. The exchange
of short-chain fatty acids (SCFAs) such as acetate, and organic acids
such as lactate and succinate, is a common metabolic interaction
[20,21]. Other molecules such as amino acids, vitamins, or
branched SCFAs also participate in metabolic cross-feeding [22].

While cross-feeding interactions are at the core of the gut
microbiome network [8,9,23], there is a lack of quantitative studies
revealing their actual prevalence in the gut. Among other
approaches, kinetic models based on ordinary differential equa-
tions (ODE) have been used to quantify the extent of interactions
and influence of certain gut microbes, among others [24]. An
approach of preference are genome-scale metabolic models
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(GSMMs). These are mathematical structures derived from
genome-scale network reconstructions [25], described by all the
reactions associated with metabolic genes in the organism’s
genome. GSMMs are complemented with experimental data about
cellular composition, growth capabilities, and consumption/pro-
duction profiles to represent the metabolic phenotype [26]. By
using appropriate optimization procedures [27,28], cellular growth
and the exchange rate of metabolites can be quantified, which can
be later validated using co-culture studies [29].

The cross-talk between top-down and bottom-up systems biol-
ogy approaches, modeling, and experimental approaches is cur-
rently being used to provide a rationale for complex diseases.
They have been applied to determine the alteration of cross-
feeding patterns in inflammatory bowel disease (IBD) [30] and
Parkinson’s disease (PD) [31,32] and to design therapeutic
approaches towards health improvement through microbiota
modulation [9]. Ultimately, through the integration of increasingly
broader and deeper omics datasets, modeling approaches enable
the exploration of explanatory hypotheses with varying degrees
of complexity that can be later verified, significantly reducing the
amount of experimentation, and yielding novel insights about
the interaction mechanisms. However, there are several challenges
and opportunities in this field. This review summarizes recent
advances in the ecology and modeling approaches to study cross-
feeding in the gut microbiota.

2. Experimental studies of cross-feeding

The study of cross-feeding interactions has been supported by
improvements in microbial isolation techniques and deposition
in culture banks [33]. Most gut microbes are highly oxygen-
sensitive and present unpredictable metabolic requirements. One
example is KLE1738, a gut isolate that solely uses
Bacteroides-derived GABA as a carbon and energy source [34].
Cross-feeding experimental set-ups often use a catalog of poten-
tially representative gut microbes that should be simple to culture,
traceable, and representative or relevant to their ecosystem [35].
Current experimental models to study cross-feeding include
microwell assays, batch fermentations with a small number of
microorganisms, and fecal inocula in bioreactors [35]. Advanced
systems such as SHIME (Simulator of Human Intestinal Microbial
Ecosystem) provide global information and general deductions
regarding dietary alterations [36]. Continuous bioreactors have
also been studied, with the advantage of reaching steady-state
and inflow and outflow rates similar to human digestion [37].
Advances in multi-layer microfluidics in vitro systems have
enabled satisfactory mimicking microbial processes along the gas-
trointestinal tract [38-41]. There are still limitations with the accu-
rate simulation of host-related responses, e.g., continuous removal
of cross-feeding metabolites, enzyme and acid secretions, and
immune surveillance. However, current systems have shown pro-
mise for a representative simulation of human-microbe interac-
tions under relevant conditions [41].

Metabolic interactions in the gut microbiota usually involve a
complex carbohydrate and an SCFA, although amino acids have
also been shown to participate [42,43]. For example, human milk
oligosaccharides (HMOs) promote cross-feeding of glycan degrada-
tion products between Bifidobacterium species, thereby promoting
the colonization of butyrate-producing bacteria in the newborn
(Fig. 1) [5]. Host-derived molecules, such as mucin glycans and
bile-salts, can also support metabolic exchanges [22,44-48]. Buty-
rate production derived from microbial fermentation networks
balances pH, provides immune system stimulation and reduces
the risk of infections [2]. Bacteroides spp. are among the most stud-
ied bacteria for their broad preference for dietary glycans such as



Fig. 1. Schematic representation of cross-feeding interactions in the gut microbiota, starting from different dietary sources and leading to butyrate production. HMOs: human
milk oligosaccharides; AXOS: arabinoxylanooligosaccharides; XOS: xyloligosaccharides.
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xylan, pectins, and starch [49]. Their degradation process usually
results in cross-feeding interactions. Inulin is a prebiotic, a fructose
polymer of up to 60 molecules. Several members of the gut
microbiota have the machinery for its consumption, including Bifi-
dobacterium, Roseburia, Bacteroides, and Lactobacillus species [50].
Inulin-derived fructans, as well as SCFAs derived from inulin fer-
mentation, are well known for promoting the growth of
butyrate-producing bacteria such as Faecalibacterium prausnitzii
[51]. This stimulation is mediated by acetate and lactate. Other
important cross-feeding currencies are formate [52] and H2 [53],
which could be used by methanogenic gut archaea (Blautia
hydrogenotrophica). Notably, there are indications of complemen-
tary functions as evidenced by pathway parts (e.g., related to nitro-
gen metabolism) expressed by different human gut bacteria [54].
Fig. 1 provides examples of cross-feeding interactions in the gut
microbiota.
3. Metabolic interactions and ecology based-modeling

Metabolic cross-feeding can be understood as the exchange of
metabolites between microorganisms. It differs from true coopera-
tion in that the production of metabolites does not represent a fit-
ness cost for the producer, i.e., they are byproducts or the result of
macromolecule degradation, and therefore their production does
not need additional energy [55]. Cooperation is associated with
more dependent interactions, where one microorganism invests
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part of its energy in synthesizing a metabolite that is necessary
for another, concomitantly receiving a benefit for this production.
An interesting example of true cooperation is presented by
Bacteroides ovatus, a gut commensal that degrades several polysac-
charides such as inulin, amylopectin, and xylan [56]. Inulin degra-
dation by this microorganism requires two putative extracellular
xylanases (BACOVA_04502/04503). Mutant analyses revealed that
these enzymes do not provide a direct benefit for B. ovatus in vivo.
The surface degradation of polysaccharides sometimes results in
the extensive release of degradation products for other microor-
ganisms, for instance, Bacteroides vulgatus. The expression of these
enzymes represents a cost for the producer B. ovatus [56]. Interest-
ingly, mutant analyses also showed that B. ovatus receives a benefit
in a more complex microbiota mediated by these enzymes. How-
ever, most Bacteroides species do not engage in cooperative meta-
bolic interactions and maximize intracellular glycan degradation
instead [57,58]. A similar observation is found in the infant gut
microbiota, where two glycan degradation strategies have been
characterized between Bifidobacterium longum subsp. infantis and
Bifidobacterium bifidum [59]. These interspecies interactions could
be classified as true cooperation involving the production of costly
proteins that benefit the community. Some studies predict cooper-
ation to be unstable in steady-state and probably not dominant in
complex ecosystems [4]. However, this view has been challenged
by other studies [55,60,61].

Exploitative competition is characterized by limited resources
that reduce the growth of two or more microorganisms.
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Exploitative competition and metabolic commensalism were pre-
dicted as the most prevalent interactions among 773 gut microbes
[62]. Competition for cross-feeding substrates such as monosac-
charides, oligosaccharides, and SCFAs is common in the gut micro-
biota, even for taxonomically unrelated microorganisms [62].
Competition usually results in two possible outcomes: niche parti-
tioning or competitive exclusion [63].

A dense cross-feeding network is predicted in the gut micro-
biome [62]. Exchanged metabolites derive from the fermentation
of complex dietary carbohydrates, proteins, or host secretions.
Other released metabolites are fermentation end-products that
report no cost for the producer, but a clear benefit for the user.
Anaerostipes caccae, a prominent butyrate-producing bacterium in
the gut microbiota, presents a product yield five-fold higher in
butyrate from lactate, a cross-feeding metabolite, compared to glu-
cose [9,64]. Sometimes this metabolic interaction could be bidirec-
tional (both microorganisms receiving a benefit), or unidirectional
instead [21]. Indirect benefits for the release of cross-feeding
metabolites could be the removal of potentially toxic byproducts
or continuing microbial fermentation.

While cross-feeding interactions are widespread in the gut
microbiota, in vivo they are limited by distance [65]. Four Lactococ-
cus lactis strains with different metabolic capabilities were cul-
tured in a 3D system allowing unidirectional cross-feeding (a
galactose consumer-glucose producer, a lactose consumer, a glu-
cose consumer, and a competitive glucose consumer). All strains
were embedded in agarose beads to monitor glucose exchange
by flow cytometry [66]. Combining the experimental results with
mathematical modeling of reaction–diffusion processes, a maxi-
mum of 15 mm between beads was established as the limit for
cross-feeding in an aqueous medium. This study highlights the
importance of spatial limitations in metabolite diffusion in cross-
feeding. It would be interesting to contrast these findings with
co-localization data in biofilms of microcolonies in the gut micro-
biota. These communities are exposed to other influences such as
shear forces, oxygen gradients, and host-derived antimicrobials.

In a more complex set up, intestinal contractions have been
shown to influence microbiota composition through mixing [67].
The minigut is a fluid channel mimicking the gut including impor-
tant variables such as flow rate and mixing. Simple diffusion mod-
els were able to capture the microbial behavior in time in this
system [67]. Interestingly, the gut microbiota is dependent on
feeding/fasting regimes and the host’s circadian rhythm [68].
Therefore, the gut microbiota shows an oscillatory nature in its
composition with diurnal cycles [69,70]. Interestingly, jet-lag
induces microbiome dysbiosis in mice, characterized by glucose
resistance [71]. Microbial metabolites such as butyrate also show
daily variations [72]. Some studies have proposed mathematical
models to understand the influence of time and space in the gut
microbiota [37,73,74].

How do cross-feeding interactions emerge? McNally combined
an in silico reductive gene-loss model with GSMMs between two
generalist E. coli strains and identified that metabolic interdepen-
dencies commonly appear as evolved cross-feeding interactions
[75]. Some strains could not develop the ability to cross-fed on cer-
tain metabolites being released (missed opportunities). From thou-
sands of trajectories, 35% resulted in a commensal community, 10%
collapsed, and 51% were independent. Metabolic interdependen-
cies were found between tyrosine and thymidine. Formate and
tyrosine were the metabolites that created the largest dependency
from the other partner, while acetate and succinate most usually
never created interdependency. In the long term, metabolic
cross-feeding permits the co-occurrence of species in certain com-
munities by the emergence of metabolically interdependent
groups [76]. This co-occurrence is reinforced by gene loss as an
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adaptation where one microorganism obtains all its carbon and
energy sources from the enzymatic action of others [63].

Are some gut species essential, or in contrast functionally
replaceable, in terms of ecosystem stability? The gut microbiome
is characterized by functional redundancy [77], supporting stabil-
ity and resilience to particular interventions. The keystone species
concept derives from the ecological theory of Paine [78], which are
species so essential for the stability of an ecosystem that their loss
or removal results in a collapse of the community. A synthetic
microbiome with 14 species, including one butyrate producer,
was recently cultured in batch bioreactors, with inulin as a dietary
source. Experiments were repeated leaving one species out at a
time, to study the impact of individual deletions [10]. All combina-
tions followed similar trajectories in terms of their biomass pro-
duction and inulin substrate consumption. The community
however did not collapse in any of the deletions [10]. SCFAs pro-
files were however different in each deletion experiment. For exam-
ple, deletion of Bacteroides dorei incremented acetate amounts, and
deletions of Ruminococcus gnavus and Bacteroides vulgatus resulted
in higher butyrate concentrations. An increment in a SCFA suggested
that the deleted species contributed negatively to SCFA production.
Consequently, only three species contributed significantly to buty-
rate production: E. coli, B. dorei, and L. symbiosum. Besides, negative
interactions between bacterial pairs were also identified: E. coli
absence allowed a higher growth of Bifidobacterium adolescentis,
and the deletion of B. dorei and L. symbiosum resulted in a commu-
nity dominated by Lactobacillus plantarum [10].

Another recurrent question when analyzing cross-feeding inter-
actions is whether they are organized in modules or form higher-
level hierarchies. Functional studies indicate a multi-level trophic
organization in the microbiome, with at least three and up to 10
functional groups [19]. Using ecology-based modeling, Wang
et al. predicted four iterative, trophic levels of metabolite produc-
tion and consumption in the gut microbiota [79]. Their analysis
started with a manually-curated metabolic reconstruction of
microbial interactions and nutrient dependencies [46], containing
567 gut microbes and 235 metabolites consumed and secreted
by these microorganisms. Combined with metagenomics data,
the number of substrates converted into metabolites feeding other
microbes potentially being carried to lower trophic levels was
determined. A part of these substrates was also converted into bac-
terial biomass, and certain byproducts are used by the next trophic
level [79]. Their approach also includes intestinal nutrient intake
and byproduct release. Intra and inter-person diversity were
shown to be unevenly distributed across four trophic levels. As
expected, the diversity of metabolites was higher in upper trophic
groups and narrower in the lower groups. One conclusion obtained
from this analysis was that genus-level competition could explain
taxonomic diversity of the microbiome [79].

This ecological platform has been recently combined with
machine-learning methods to predict novel, unexplored metabolic
interactions in the gut microbiome. The gut cross-feeding predictor
(GutCP) builds from the multi-level trophic organization and pre-
dicts a theoretical metabolome from metagenomics data and
known consumption links [8]. The GutCP algorithm improved the
original network, reducing the error between prediction and actual
data by adding new consumption links. Undiscovered interactions
that result in more accurate estimations would possibly be true
cross-feeding interactions. The main features of ecological as well
as other modeling approaches are shown in Fig. 2.
4. ODE-based mechanistic models of microbial communities

Computational modeling approaches of microbial interactions
are at the forefront of microbial community research [80-82]. They



Fig. 2. Representation of computational biology approaches to interrogate metabolic interactions in the gut microbiota. A: Species deletions simulate and study the impact of
the absence of one species in a community, while combinations of literature-based metabolic reconstructions of the gut microbiota and machine learning allow evaluating
the hierarchy in metabolic interactions. B: gLV-based models evaluate the impact of one microorganism in another’s growth, usually by estimating an interaction coefficient
a. Its combination with Bayesian methods has been used to design microbiome consortia. C: ODE-based models simulate mechanistic processes as equations and require
extensive parameterization. D: GSMMs combined with community design algorithms enable the identification of cross-feeding metabolites in simple and large networks. The
main features and requirements of each approach are highlighted in the blue and orange boxes, respectively.
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are helpful to identify interactions and mechanisms that are likely
to occur, reducing the burden of extensive experimentation (Fig. 2).
They could be classified as static or dynamic models, depending on
if they explicitly include information on how the components of a
community interact over time. Dynamic modeling approaches
describe how a microbial community and its components change
over time, enabling the study of variations in the properties
included in the model. The first classification of dynamic models
is based on the level of detail, from the coarseness of the
population-level strain composition of a consortium to detailed
models of all metabolic reactions in each cell. A second classifica-
tion uses the type of algorithm employed to simulate the model.
Two of the main types are deterministic models based on differen-
tial equations and stochastic models whose behavior depends on
randomly selected events. A third criterion serves to classify what
is represented in the model. Metabolic models represent the meta-
bolism of the bacteria in the community, often at a molecular level,
while in ecological models, strains or species interact, reproduce
and change their numbers and behaviors at what can be called cel-
lular level [8,83].

Models based on Ordinary Differential Equations (ODEs)
employ a set of mathematical functions to represent microbial
communities at different levels of detail. These deterministic
mathematical functions describe the changes in quantity or
concentration of different species in time. One of the simplest
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microbial community ODE-based models is the generalized
Lotka-Volterra equation (gLV) [84]. Using a small number of
parameters such as growth rate and abundances in single and
co-culture, it evaluates the effect of one microorganism on the
growth rate of another. Therefore, it is a suitable model for assess-
ing pairwise interactions and determining whether they are posi-
tive (cooperation) or negative (competition). Using a synthetic
microbiome of 12 species, their pairwise interactions were exper-
imentally determined in vitro using the gLV model [85]. Deter-
mined parameters were useful to infer interspecies interactions
in the whole consortium. The model was validated with time-
resolved measurements of the full consortium and single species
deletions [85]. This and other in vitro studies show that pairwise
interactions appear to be sufficient to predict higher-order interac-
tions and drive community dynamics, at least in the gut microbiota
[11,85,86].

A similar framework was recently applied to design high-
butyrate microbiome consortia based on microbial interactions
[9]. A two-stage modeling approach was followed: the gLV model
representing community dynamics, and a Bayesian inference
approach determined parameter uncertainties. Using a 25-species
synthetic microbiome, paired co-cultures produced a wide range
of butyrate concentrations (0–50 mM). However, complete or
one species-deleted consortia showed narrower concentrations.
Interestingly, deletion of Anaerostipes caccae dropped butyrate
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concentration to zero, and deletion of Desulfovibrio piger, a H2S pro-
ducing microbe, significantly increased butyrate concentration. It
was later shown that butyrate production by A. caccae is highly
sensitive to H2S and pH. This modeling framework identified how
much one single species contributed to growth and butyrate pro-
duction in the synthetic consortium [9].

Other approaches use ODE-based models where the equations
aim to predict microbial interactions based on mechanistic knowl-
edge. For example, in Pinto et al. [87], four equations with 17
parameters were employed to build an ODE system that simulates
microbial abundance, substrate consumption, and production of
SCFA in a four infant gut species consortium. This approach used
modified Monod expressions [88] to model cell growth under var-
ious conditions including product inhibition and cooperation. Add-
ing more bacteria to the simulation means the number of
equations and parameters increases, giving rise to the so-called
combinatorial expression problem when it comes to fixing the val-
ues of the parameters that reproduce known experimental data
[89]. For relatively small communities with few different types of
microorganisms, this problem is manageable with current compu-
tational infrastructures and time-resolved measurements.
5. Genome-scale stoichiometric models of metabolism

5.1. Genome-scale network reconstructions

Genome-scale network reconstructions (GENREs) encompass
the entire collection of enzyme-catalyzed reactions encoded by
genes of known function found in an organism’s genome [90]. As
such, they describe its metabolic potential. Starting from the anno-
tation of the organism’s genome, Gene-Protein-Reaction (GPR)
relationships are identified, which link the genotype with the
metabolic phenotype. Detailed protocols have been developed to
standardize and ensure high quality for the reconstruction [90].
Several computational platforms and tools have been developed
to leverage the current genomic information and accelerate the
reconstruction of these networks for single and multiple organisms
in a (semi)automatic fashion [91-93]. These top-down tools inte-
grate functional gene annotation – either performed by these or
external tools – using databases like KEGG [94] and BioCyc [95].
Potential gaps in the network, i.e., missing reactions due to uniden-
tified metabolic enzymes, can be resolved using appropriate
gap-filling tools [96,97]. There are also bottom-up tools for GENRE
construction that employ high-quality template metabolic net-
work(s) for the reconstruction process [97-99]. These tools typi-
cally yield higher quality reconstructions, although their
performance ultimately depends on the initial network template
(s). CarveMe is an automatic tool for the development of metabolic
models for microbial communities [98]. It has demonstrated high
efficiency and performance for generating a community network
of 74 members of the human gut microbiota, and the assembly
of a comprehensive GENREs database with over 5,500 bacterial
metabolic reconstructions [98]. More recently, novel reconstruc-
tion pipelines tailored to use metagenomic data have been pro-
posed for building community reaction networks.
Metage2Metabo [100] has shown to yield meaningful community
networks of the human gut microbiota capable of respectively
enabling community-level flux balance computations and identify-
ing keystone species in terms of metabolic cooperation [100].

The continuous and rapid reconstruction of GENREs of greater
quality has led to the emergence of various reconstruction cata-
logs. AGORA is a comprehensive resource for community modeling,
particularly human gut microbiota. It contains over 773 literature-
based GENREs for various microbial species [62]. An extension to
this resource with over 7200 GENREs of members of the human
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microbiome, called AGORA2, has been recently developed, and it
is under review at the time of preparing this article [101,102].
GENREs from AGORA have been employed to simulate bile acids
metabolism in the human gut [103], identify microbial gut alter-
ations associated with Parkinson’s disease [31], characterize
host-microbe symbiosis in the mammalian gut [104] and co-
metabolism in the human intestine [105]. NJC19 [106] is another
reconstruction resource that contains human and mouse
microbiome data (6 mouse and human cell types and 883 micro-
bial species) that can be leveraged to construct more comprehen-
sive models of human molecular physiology [107].

5.2. Genome-scale metabolic models and constraint-based methods

GSMMs encode the information contained in GENREs into a
mathematical structure – the stoichiometric matrix –, which con-
tains the mass balances for each intracellular metabolite and
enables flux calculations. Provided that sufficient external sub-
strate sources (i.e., exchange reactions) and a growth equation
are defined and included in this matrix, a feasible flux distribution
or metabolic phenotype can be computed. It assumes no accumu-
lation of intracellular metabolites (i.e., steady-state) and requires
solving the resulting system of linear equations. As this system is
almost always undetermined, i.e., there are infinite solutions that
can explain the set of observed exchange reactions, particular flux
solutions are computed using optimization or constraint-based
modeling (CBM) methods [108]. A popular tool for CBM is the
COBRA Toolbox (COnstraint-Based Reconstruction and Analysis),
which includes a diversity of computational methods for
genome-scale metabolic modeling and reconstruction and analysis
[28].

CBM methods require the formulation of an objective function
and definition of capacity constraints (reaction bounds) to com-
pute a feasible steady-state flux solution. A typical objective func-
tion is the maximization of cellular growth as a proxy for biological
fitness. However, other alternatives have also been proposed when
the latter objective does not yield accurate predictions [109]. This
method is known as Flux Balance Analysis (FBA), and it has been
successfully applied in numerous studies for modeling interactions
among multiple cells or organisms [110], understanding human
physiology [43,111], disease [112], and studying evolutionary pro-
cesses [113]. Another commonly used FBA-derived method is Flux
Variability Analysis (FVA) [114], which enables the calculation of
alternative optima under the assumption of FBA (sub)optimality.
FBA-based methods have also been extended for modeling
dynamic processes. For instance, dynamic FBA (d-FBA) [115]
describes the accumulation of biomass and external metabolite
concentrations by coupling the evolution of a set of ODEs for the
latter species – parameterized with kinetic expressions (e.g.,
Michaelis-Menten) – with the iterative solution of FBA problems
at each time step. As in FBA, no net accumulation of intracellular
metabolites is enforced. Importantly, d-FBA enables the descrip-
tion of the evolution of cellular growth with the corresponding
changes in metabolic states and can be naturally extended to
model communities.

The modeling capabilities of FBA-based methods are ideal for
modeling complex communities where metabolic parameters are
scarce. Applications include modeling microbe-microbe and host-
microbe interactions such as metabolic cross-feeding (metabolite
exchange between species) and competition (uptake of common
substrates). For example, FBA shows how fructoselysine is a key
cross-feeding metabolite in dual gastrointestinal infections [116].
Nevertheless, FBA-based methods for modeling microbial commu-
nities require special considerations, and it has not been until
recently that robust methods have emerged. Challenges related
to the accurate description of flux exchanges between taxa and
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the selection of a biologically relevant objective function must be
addressed. One of the earliest CBM methods for modeling commu-
nity growth was OptCom, which was later followed by its dynamic
extension d-OptCom [27], based on the same assumptions of d-
FBA. These methods use a multi-level multiobjective optimization
approach to optimize the total community biomass while maxi-
mizing individual-specific growth rates. Inspection of the direc-
tionalities of the metabolic exchange profile enables the
determination of possible interactions (e.g., syntrophy, cross-talk,
commensalism, and competition). Community FBA (cFBA) [117]
and SteadyCom [118] are more recent methods where the commu-
nity growth rate is maximized, which is the same for all the com-
munity members under the assumption of a steady-state balanced
growth. As a byproduct of this calculation, the microbial composi-
tion that supports this optimal growth can also be found. For
instance, the application of SteadyCom recapitulated the known
dominance of the bacterial phyla Bacteroides and Firmicutes in
the gut microbiota under the average American diet [118]. Notably,
SteadyCom can be readily combined with other CBM methods like
FVA to determine the abundance and metabolic flexibility of a
community under suboptimal conditions. The aforementioned
methods assume perfect mixing in the culture, i.e., there are no
concentration gradients. This assumption may not be reasonable
in some scenarios, for example, in some regions of the human
gut [119]. Furthermore, it may hinder the analysis of emergent
metabolic interactions due to spatial distribution and concentra-
tion gradients [25,120,121].

5.3. Probing microbe-diet-host interactions in health and disease using
GSMMs

A key indicator of a healthy gut microbiota health is its compo-
sition, which remains fairly stable over long periods even under
short-term perturbations [122]. Alterations in the human gut
microbiota are collectively referred to as dysbiosis and can be typ-
ically linked to certain health conditions such as metabolic, gas-
trointestinal, and mental disorders [123-125]. A recent study
illustrated the predictive power of GSMMs and CBM methods for
probing the metabolic behavior of the microbiota of healthy and
Parkinson’s disease patients [31]. By constraining the relative
abundance of the microbiota members derived from 16S rRNA
sequencing data of fecal samples, personalized community models
were evaluated for their production potential of 129 metabolites
under a simulated average European diet. FBA showed that nine
metabolites were differentially affected by Parkinson’s disease,
including methionine and cysteinylglycine. These results were
later verified in a different study where four microbial reactions
involved in homoserine metabolism (precursor of methionine)
were identified to be altered in Parkinson’s disease patients [32].
In a recent study, GSMMs were used to build and interrogate per-
sonalized brain region models of diseased Alzheimer’s and healthy
patients [112]. Integration of large transcriptomic datasets and tar-
geted metabolomics data into the GSMMs suggested that some of
the bile acids found in brain samples from Alzheimer’s subjects
originate in the gut microbiota and are then transported to the
brain [112].

Another application of GSMMs for probing the consequences of
dysbiosis comes from Crohn’s disease. The latter condition is char-
acterized by altered blood and fecal metabolome and gut micro-
biota composition [126]. By using metagenomics data and fecal
metabolites from a group of control and Crohn’s disease patients,
personalized microbiota models were built and analyzed for signif-
icant differences in the predicted metabolite secretion profile in
the feces and the species contribution to each metabolite under
an average European diet [30]. Simulation results pointed to
reduced diversity in the number of secreted metabolites due to
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the reduced microbial diversity in Crohn’s disease patients. Pro-
teobacteria were found to increase the potential for amino acids
synthesis, which was in line with experimental observations [30].

GSMMs have also been employed to understand the interac-
tions present in a healthy gut microbiome. A collection of meta-
bolic models was built from metagenomic samples from
individuals fed on a Western diet [127,128], to simulate cross-
feeding interactions potentially involved in SCFA production in
the gut microbiota. Analysis of possible metabolic interactions
revealed competition as the most common interaction, agreeing
with previous reports [129]. A closer examination of the micro-
biota behavior also suggested potential niche partitioning; either
a group of bacteria consumes fibers and starches (e.g., inulin, xylan,
and pectin), or another consumes branched-chain amino acids
[127]. In another study, a tool called CASINO [42] was developed
to quantify the changes induced in the human gut microbiota fol-
lowing a dietary intervention in obese and overweight individuals.
Again, 16S rRNA data was employed to personalized the metabolic
models [43] and predict metabolic production profiles in plasma
and feces. Amino acids and SCFA levels were correctly predicted
after the dietary change. These predictions were underpinned by
acetate cross-feeding between B. thetaiotaomicron, R. bromii, and
B. adolescentis to E. rectale and F. prausnitzii, which in turn sup-
ported butyrate production by the latter [43].
6. Other approaches for community modeling

Other dynamic modeling approaches such as stochastic model-
ing [130,131] or agent-based modeling [132,133] have been
applied to interrogate microbial interactions. They use experimen-
tal time series of microbiome compositions. Unfortunately, data on
microbial interactions at a large scale is usually scarce, and this
information is indispensable for this type of modeling [134]. Other
approaches help to understand the composition and functions of
different communities but do not simulate their dynamical proper-
ties. This type of static modeling relies on a wide array of algo-
rithms and computational methods to determine and study the
interaction between different organisms, even if most of the time
they only evidence the existence of a relationship, not its type.
For example, using Bayesian modeling, it is possible to determine
the structure/topology of the gene regulatory network of several
bacteria living together in the same environment [135]. Other
approaches use machine learning algorithms, for example, to
determine a network of cross-feeding interactions [136]; classifica-
tion of host-disease phenotypes from metagenomic data
[137,138]; or which bacteria are part of the normal community
in certain gut regions [139]. Machine learning has been recently
combined with GSMMs, expanding the potential of both
approaches [140]. An inherent difficulty of machine learning is that
this approach requires relatively large amounts of data to parame-
terize the algorithm and estimate its performance [141], thus
reducing the applicability of machine learning in this field.

Finally, co-occurrence networks could provide important infor-
mation regarding microbial interactions [142]. They rely on the
identification of the co-occurrence of two or more species in mul-
tiple samples. In this way, if two species appear in the same sample
and are absent in others, they are related. This approach also
requires numerous experiments that help determine the species
found in a sample, taking advantage of extensive collections avail-
able in databases such as IMG/M [143] or datasets like the Human
Microbiome Project [HMP] [144]. Co-occurrence has been applied
to different conditions, for example, to identify relationships
between different taxa [145], predict microbial relationships
within and between body sites [142], microbial communities
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linked to colorectal tumors [146], obesity, and diabetes type 2
[147], inflammatory bowel disease [148], and asthma [149].
7. Challenges and outlook

Microbial interactions stand out at the inner core of the compo-
sition of the human gut microbiota. Their study is hampered by the
inherent complexity of this community in terms of functional
diversity and forces shaping these cross-talks. For this task, exper-
imental and modeling approaches have shown relevant patterns
and highlighted how microbial interactions influence host health
and disease.

A significant experimental gap in this field is how little we
know regarding the functions and metabolic potential of gut
microbes. Their high numbers, differences in spatial and time dis-
tributions as well as the large diversity of species, sets a high bar
for their modeling. The metabolism of only a few gut species is well
known, but for most gut microbes, only general aspects are under-
stood. Moreover, sometimes only one amino acid different is nec-
essary for a gut microbe to inactivate a drug [150]. Besides
culturing techniques and microbial collections, high-throughput
experimental studies for pairwise interactions are highly
demanded, as well as reliable gut simulation platforms closely sim-
ulating intestinal processes.

Another experimental gap is how to reduce the breach between
synthetic in vitro studies and the actual relevance of microbial
interactions in the gut. It is difficult to comprehensively quantify
the extent of microbial interactions in the gut or how changes in
metabolic interactions contribute to disease, such as IBDs. Besides,
it is unclear if the extent of experimentally validated cross-feeding
interactions is biologically meaningful. Importantly, cross-feeding
is only one of many microbial interactions that could be found in
the gut microbiota. The host or other competitive or cooperative
interactions would challenge in vitro results. In any case, experi-
mental studies of cross-feeding have been instrumental in deriving
general conclusions on which metabolites, groups of microorgan-
isms, or pathways are involved in this process. These validations
are the foundations of several modeling approaches, and several
of them might not have been prevalent in vivo.

Modeling approaches can significantly help reduce the hypoth-
esis space and offer testable experiments to validate potential
metabolic interactions in the human gut. Amongst the various
modeling approaches employed for this purpose, we have high-
lighted ecological, mechanistic ODE-based (kinetic), and genome-
scale stoichiometric modeling as valuable tools for probing the
interaction space. While ecological and kinetic models are rela-
tively simple to interpret, they are often limited by the amount
of data required for their construction (i.e., identifying the relevant
model structure) and parameter fitting [151]. It is expected that
increasing accessibility to next-generation sequencing, especially
metagenomics, contribute positively to this gap. In contrast to eco-
logical and kinetic models, GSMMs are mathematical structures
that can be readily reconstructed using high-throughput sequenc-
ing data fed to various computational pipelines [91-93]. These
model structures are often referred to as ‘‘parameter-free”, mean-
ing they do not require to fit parameters but rely on the imposition
of constraints derived from the data. The larger the amount of data
available, the more reduced the solution space, leading to tighter
predictions. While expression, protein, and fluxomic data can be
readily used as constraints [109], the use of metabolomic data is
not so direct. However, recent approaches have shown promise
(see for example, MAMBO [152]). More importantly, GSMMs
describe the metabolic potential of the cell and thus, offer unparal-
lel capabilities for understanding the mechanisms of interaction in
great detail. The latter helps explain the surge in the GSMMs use to
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analyze the gut microbiota [110]. Still, reconstruction of accurate
GENREs remains a challenging task, as our knowledge of the diver-
sity in metabolic functions is limited to well-studied organisms.
Consequently, the metabolic capabilities of GSMMs are inevitably
restricted, which raises questions about the relevance and overall
validity of GSMMs for less studied organisms – particularly preva-
lent in the gut microbiome [153]. Overall, careful consideration
and use of GSMMs has to be exercised when modeling the gut
microbiota. Recent tools like MEMOTE [154] can help users better
understand the quality and coverage of GSMMs.

A critical challenge for modeling the host-gut interactions is the
temporal and spatial resolution required to identify critical cross-
feeding interactions. The spatial distribution of the gut microbiota
is highly heterogeneous as its diversity. Different types of Inflam-
matory Bowel Diseases (IBDs) can be promoted by an abnormal
spatial distribution of the microbial gut members due to diet and
inherent host responses, among others [155]. Scenarios resembling
some of these conditions can be modeled with GSMMs [25],
although they require more sophisticated computational methods
that are more far more difficult to implement [120,156,157]. More
recently, the COMETS framework has been released as an open-
source package enabling the temporal and spatial simulation of
microbial consortia using GSMMs in different environments
[158]. As more data under experimentally relevant conditions
becomes available (e.g., using microfluidics in vitro systems [41]),
we foresee that modeling tools capturing temporal and spatial
variations in microbial consortia will become more relevant for
contextualizing cross-feeding in the human gut.
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