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Abstract
DNA double-strand break (DSB) is a serious type of DNA damage and is known 
to trigger multiple responses within cells. In these responses, novel relationships 
among DSB, DSB repair, and transcription machineries are created. First, transcrip-
tion is repressed if DSB occurs near or at the transcription site, termed DSB-induced 
transcriptional repression, which contributes to DSB repair with the aid of DNA 
damage-signaling pathways, ATM- or DNA-PKcs-signaling pathways. DSB-induced 
transcriptional repression is also regulated by transcriptional factors TLP1, NELF, and 
ENL, as well as chromatin remodeling and organizing factors ZMYND8, CDYL1, PBAF, 
and cohesin. Second, transcription and RNA promote DSB repair for genome integ-
rity. Transcription factors such as LEDGF, SETD2, and transcriptionally active histone 
modification, H3K36, facilitate homologous recombination to overcome DSB. At 
transcriptional active sites, DNA:RNA hybrids, termed R-loops, which are formed by 
DSB, are processed by RAD52 and XPG leading to an activation of the homologous 
recombination pathway. Even in a transcriptionally inactive non-genic sites, noncod-
ing RNAs that are produced by RNA polymerase II, DICER, and DROSHA, help to 
recruit DSB repair proteins at the DSB sites. Third, transcriptional activation itself, 
however, can induce DSB. Transcriptional activation often generates specific DNA 
structures such as R-loops and topoisomerase-induced DSBs, which cause genotoxic 
stress and may lead to genome instability and consequently to cancer. Thus, tran-
scription and DSB repair machineries interact and cooperate to prevent genome in-
stability and cancer.
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1  | INFLUENCE OF DSB ON 
TR ANSCRIPTION

DNA damage influences various types of DNA metabolism, most 
prominently replication and transcription. The relationship be-
tween transcription and DNA repair has been most intensively 
analyzed in TCR, which removes lesions from the template DNA 
strands of actively transcribed genes repair by NER.1-4 UV dam-
age in the transcribed template strand induces stalled RNAPII. 
The stalled RNAPII is recognized by UVSSA, USP7, and Cockayne 
syndrome proteins, which results in translocating (including back-
tracking) stalled RNAPII and activating NER repair. In contrast, 
DSB represses transcription, termed as DSB-induced transcrip-
tional repression, under ATM (see Section 1.1 for more detail) or 
DNA-PKcs (see Section  1.2 for more detail) signaling pathways 
(Figures 1 and 2). These signaling pathways control transcription 
factors (details in 1.3) and chromatin remodeling and factors (de-
tails in 1.4) for the repression. Herein, we first discuss the mecha-
nism of DSB-induced transcriptional repression by referring to the 
recent findings.

1.1 | ATM signaling

ATM is reported to be one of the first factors to repress tran-
scription in the proximity of the DSB sites, and this repression is 
termed DSB-induced transcriptional repression (Figure  2). ATM 
represses both RNA polymerase I (RNAPI) and RNAPII-mediated 

transcription. Following IR, RNAPI-mediated ribosomal RNA syn-
thesis in nucleoli was found to be repressed by ATM.5 Additionally, 
the I-PpoI sites in 28S ribosomal RNA in the nucleolus were used 
to produce DSBs and induce transcriptional repression by ATM 
(Figure  2).6 Furthermore, DSBs outside the nucleolus silenced 
RNAPI-mediated rRNA transcription in the nucleolus, suggest-
ing the presence of an RNAPI-mediated transcriptional silenc-
ing in the different (in trans) chromosome in response to DSBs.7 
Conversely, RNAPII-mediated transcriptional silencing by ATM 
occurs in the proximity of the same (in cis) chromosome for 
DSBs.8 DSBs near the promoter region but not within the gene 
body trigger ATM-induced ubiquitination of H2A at transcriptional 
activation sites, leading to transcriptional silencing in cis. This 
ATM-mediated transcriptional silencing reduces phosphorylated 
RNAPII at Ser2, whereas the total RNAPII levels at transcriptional 
sites remain unchanged. This suggests that ATM-dependent tran-
scriptional silencing stalls and maintains RNAPII at transcriptional 
sites near DSBs. When DSBs are induced within the gene body, 
DNA-PKcs, but not ATM, represses the transcription by eliminat-
ing RNAPII from the template DNA (see Section 1.2 for more de-
tail). Therefore, DNA-PKcs is considered to repress transcription 
within the gene body to avoid collision between RNAPII and DSB 
repair machinery, whereas ATM only stalls and maintains RNAPII 
levels by changing the chromatin structure outside the gene body 
where no collision occurs between them.

Additionally, ATM phosphorylates PBAF, which is a complex 
belonging to the SWI/SNF chromatin remodeling complexes, ENL/
MLLT1 in SEC, and NELF-E; these phosphorylations promote changes 
in the repressive chromatin structure and negative transcriptional 
regulation (see Sections 1.3 and 1.4 for more detail; Figure 2).

1.2 | DNA-PKcs signaling

DNA-PKcs is also reported to control DSB-induced transcriptional 
repression within gene bodies by evicting RNAPII (Figure 2). DSBs 
induced by I-PpoI within the gene body of active transcription 
sites represses RNAPII-mediated transcription by the enzymatic 
function of DNA-PKcs but not ATM at the DSB site.9 The arrested 
RNAPII complex was degraded by DNA-PKcs signaling and the DSB 
was repaired by NHEJ. Notably, in the absence of DNA-PKcs, tran-
scription was not hindered by the presence of a DSB. DNA-PKcs 
associates with the HECT E3 ubiquitin ligase, WWP2, and recruits 
it at DSB sites in a transcription-dependent manner to ubiqui-
tinate RNAPII subunit RPB1 for degradation via the proteasome. 
Therefore, DNA-PKcs represses transcription by promoting the 
eviction of RNAPII from the transcribed template DNA10 to pro-
mote the NHEJ pathway.

K E Y W O R D S

cancer, DSB repair, genome instability, homologous recombination, transcription

F I G U R E  1   Transcription and DNA double-strand breaks (DSBs) 
cooperate to prevent genome instability and cancer. 1. Influence 
of DSBs on transcription. 2. Influence of transcription or its factor 
on DSB repair. 3. Transcriptional activation-induced DSBs are 
associated with cancer development
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1.3 | Transcription factors

DSB-induced transcriptional repression is also regulated by tran-
scription factors working at the transcriptional initiation and elonga-
tion stages. During transcription: (1) TLP, which has a function in the 
initiation stage; and (2) ENL and (3) NELF-F, which have a function 
in the elongation stage, have been reported to be involved in DSB-
induced transcriptional repression (Figure 2).

TLP was shown to repress transcription during the transcrip-
tional initiation stage by negatively regulating the transcription 
factor TFIIA at its processing.11 TLP is also required for stabiliza-
tion of protein p53, which leads to p53-induced apoptosis and se-
nescence following genotoxic stress.12 Several TLP mutations have 
been mapped in the p53-binding region of TLP in human cancer. TLP 
knockdown was shown to reduce apoptosis and sensitivity follow-
ing etoposide treatment compared with control cells.13 Interestingly, 
knockdown of TLP did not lead to global transcriptional shutdown 
and showed increased activation of HR repair compared with control 

cells.13 These results suggested that after DSBs TLP represses tran-
scription by inhibiting initiation, and this repression reduces HR re-
pair, preferential repair at transcriptional active sites.

Eleven nineteen leukemia (ENL) is a component of the SEC that 
functions in phosphorylation of C-terminal RNAPII and promotes 
transcriptional elongation. We previously reported that ENL is in-
volved in DSB-induced transcriptional repression with BMI1 and 
RING1B, the E3-ubiquitin ligase complex in PRC1, when DSB was 
induced at the promoter region. SEC binds to the RNAPII complex 
and promotes transcription during the elongation stage in gene ex-
pression.14-19 PRC1 ubiquitinates K119/120 at histone H2A (H2A 
K119/120 ubiquitination), leading to transcriptional repression 
during development.20-22 Thus, ENL and PRC1 have opposite tran-
scriptional functions of activation and repression, respectively.23,24 
During transcriptional activation, ENL and PRC1 do not co-localize 
and have different functions. However, after DSB induction, ENL is 
phosphorylated by ATM, leading to increased interaction between 
PRC1 and ENL.25,26 ENL in the SEC binds to RNAPII to promote 

F I G U R E  2   Influence of double-strand breaks (DSBs) on transcription. DSB-induced transcriptional repression prevents genome 
rearrangement and tumorigenesis. (1.1) Ataxia telangiectasia mutated (ATM) and (1.2) DNA-dependent protein kinase catalytic subunit 
(DNA-PKcs) regulate DSB-induced transcriptional repression. (1.3) Transcription factors also regulate DSB-induced transcriptional 
repression. TBP-like protein (TLP) represses transcription globally upon transcriptional initiation. Negative elongation factor E (NELF-E) 
is recruited to RNA polymerase II (RNAPII) in a poly [ADP-ribose] polymerase 1 (PARP1)-dependent manner and represses transcription. 
Eleven nineteen leukemia (ENL) in the super elongation complex recruits polycomb repressive complex 1 (PRC1) of the polycomb complex 
at transcriptional elongation sites in an ATM-dependent manner and promotes histone H2A K119/120 ubiquitination and repression. (1.4) 
Chromatin organizing factors such as histone modification complex, chromatin remodeling complex, and cohesion are also involved in DSB-
induced transcriptional repression. Zinc finger MYND-type containing 8 (ZMYND8) and the nucleosome remodeling and deacetylase (NuRD) 
complex are recruited at transcription sites via TIP60-mediated acetylation of histones to repress transcription. Chromodomain protein, Y 
chromosome-like (CDYL1) binds DSBs via H3 K9 methylation and recruits PRC2 at transcription sites to promote H3 K27 methylation for 
transcriptional repression. Cohesin and polybromo-associated BRG-/BRM-associated factor (PBAF) repress transcription and prevent mis-
rejoining of broken DNA ends to maintain genome stability
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elongation, therefore phosphorylated ENL recruits PRC1 at tran-
scriptional elongation sites to facilitate DSB-induced transcriptional 
repression by H2A K119/120 ubiquitination.

Negative elongation factor (NELF) cooperates with DSIF to 
repress transcriptional elongation by promoting RNAPII to pause at 
the TSS. NELF-E, a subunit of NELF, was shown to enhance MYC-
signaling and MYC-induced hepatocellular carcinoma, indicating its 
role as an oncogenic protein.27 NELF-E was shown to be phosphor-
ylated by ATM28-30 and was rapidly recruited to DSB sites follow-
ing laser microirradiation. Combined inhibition of ATM and NELF-E 
knockdown did not cause synergistic or additive effects on DSB-
induced transcriptional repression, indicating that ATM and NELF-E 
may function in the same silencing pathway. However, PARP1, but 
not ATM, is required for the recruitment of NELF-E at DSB-induced 
transcriptional repression sites and for the interaction between 
NELF-E and RNAPII. NELF-E knockdown led to a decrease in both 
HR and NHEJ activity. These results suggest that NELF-E is possibly 
recruited to ADP-ribosylated RNAPII to repress transcription can-
celling in response to DSBs for its repair.31

1.4 | Chromatin organizing factors

A previous study has shown that chromatin decondensation is 
prevented at transcription sites following DSB, suggesting that 
chromatin condensation plays an important role in DSB-induced 
transcriptional repression.9 Recent findings have suggested that 
when DSB is produced near the promoter region, DSB-induced 
transcriptional repression requires: (1) repressive factors, such as 
CDYL1, PRC1, and PRC2; (2) chromatin remodeling complexes, such 
as PBAF, one of the SWI/SNF nucleosome remodeling complexes, 
and ZMYND8 with NuRD complex, histone deacetylation com-
plex;25,32,33 and (3) cohesin, which functions to maintain higher order 
chromatin structures, including condensation (Figure 2).34

Loss of function of CDYL1 increases oncogene expression, 
suggesting that it has tumor suppressor activity.35 CDYL1 protein 
belongs to the CDY family that contains a chromodomain and enoyl-
CoA hydratase-like domain. CDYL1 interacts with REST, histone 
methyltransferase G9a, H3 K9 methylation, PRC2, HDAC1, and 
HDAC2 35-38 and functions in transcriptional repression. Following 
DSB, CDYL1 is recruited to the DNA damage site in a PARP1-
dependent but not in an ATM-dependent manner.32 CDYL1 is re-
quired for DSB-induced transcriptional repression by promoting 
accumulation of EZH2 in the PRC2 complex and H3 K27 methyla-
tion at the DSB site. These results suggested that PRC2 as well as 
PRC1 (see Sections 1.3 for more detail) has a role in DSB-induced 
transcriptional repression via CDYL1.

Chromatin remodeling complexes also function in DSB-
induced transcriptional repression. Chromatin remodeling activity 
and ATM-mediated phosphorylation of PBAF chromatin remodel-
ing complex were reported to be required for transcriptional si-
lencing and H2A K119/120 ubiquitination in response to DSBs.39 
Furthermore, ZMYND8 interacts with and recruits CHD4, a core 

component of the NuRD chromatin remodeling and deacetylase 
complex, to damaged chromatin to promote DSB-induced tran-
scriptional repression and HR but not NHEJ. ZMYND8 contains 
PHD, BRD, and PWWP chromatin-binding domains as well as an 
MYND domain for protein-protein interaction; and it represses 
metastasis-linked genes, which suppresses invasiveness in pros-
tate cancer cells.40 ZMYND8 was recruited at DSB sites via the 
interaction between its BRD domain and histone H4 acetylated by 
TIP60. Therefore, the interaction between ZMYND8 and histone 
H4 following DSBs recruits the NuRD chromatin remodeling com-
plex to transcription sites to promote DSB-induced transcriptional 
repression.

Cohesin, and cohesin loading factors are required for DSB-
induced transcriptional repression in both G1 and G2 phases, and 
cancer-associated mutations of SA2 play an important role in this 
repression. Furthermore, DSB-induced transcriptional repression 
prevents mis-rejoining of broken DNA ends and genome rearrange-
ments. These results suggest that DSB-induced transcriptional re-
pression plays a role in preventing tumorigenesis.34

It should be noted that the transcriptional repressive histone 
modifications such as H2A K119/120 ubiquitination, methylation of 
H3 K27 methylation, and negative transcriptional factors, are ap-
plied in DSB-induced transcriptional repression. However, it is in-
teresting that transcriptionally active histone modifications such as 
the acetylation of H4K16 and transcriptional activation factor ENL, 
are required for DSB-induced repression to switch off the transcrip-
tion in response to DSBs. The link between these transcriptional ac-
tive and repressive regulators remains unclear. Furthermore, among 
the factors required for DSB-induced transcriptional repression, 
ZMYND8 and CDYL1 promote HR,32,33 TLP reduces HR,13 and NELF 
promotes both NHEJ and HR.31 However, the pathways involved in 
DSB repair at the sites of DSB-induced transcriptional repression 
still remain unclear.

2  | INFLUENCE OF TR ANSCRIPTION AND 
RNA ON DSB REPAIR

While histone modifications and the chromatin structure influence 
DSB repair,41 transcriptional machinery and transcriptional active 
sites also influence the mechanisms underlying DSB repair (Figure 3). 
Recent findings have shown that DSB repair utilizes transcriptional 
histone modifications and transcription factors (see Section 2.1 for 
more detail). Furthermore, RNA including noncoding RNA functions 
as a scaffold or DSB repair proteins or as a template during DSB re-
pair (see Section 2.2 for more detail).

2.1 | DSB repair at transcription sites

Several reports have suggested that transcriptionally active regions 
are preferentially repaired by HR (Figure 3). After DSBs, RAD51 is an 
HR factor that binds transcriptionally active genes that are associated 
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with active transcriptional histone modifications, such as H3 K36 
methylation and H3 K9 acetylation.42 During transcription, the H3 
K36 methylation recruits LEDGF, which is a transcriptional coactivator, 
and binds methylated histone at the PWWP domain in its N-terminal 
region. After DSBs, LEDGF recruits CtIP to damaged chromatin via 
the H3 K36 methylation to promote end resection.43 While H3 K36 
is reported to be methylated by eight enzymes in human, including 
SETD2,44 SETD2 was also shown to be necessary for HR for promot-
ing the recruitment of RPA and RAD51.45 These findings suggested 
that LEDGF binds to H3 K36 methylation via SETD2 at transcription-
ally active regions, recruits CtIP, and promotes end resection to facili-
tate HR after DSBs.

Furthermore, at DSBs within transcriptional active sites in G2/S 
cells, RNA-DNA hybrid-containing R-loops, which are generated by 
the pausing of RNAPII at the active transcription sites, were shown 
to accumulate at DSB sites. R-loops recruited human RAD52 at the 
DSB sites and were processed by XPG, resulting in promotion of 
the HR pathway. Therefore, this pathway is described as transcrip-
tion-associated homologous recombination repair (TA-HRR).46 The 
defect in the TA-HHR process increased aberrant NHEJ, and the 
low expression of RAD52 increased the number of insertions and/
or deletions in cancer cells, which suggests that TR-HRR prevents 
genome instability.

2.2 | RNA-mediated DSB repair

In the DSB repair process, RNA has been reported to promote 
DSB repair (Figure 3). DICER and DROSHA (a complex of double-
stranded RNA-specific endoribonuclease), which produce small 
double-stranded RNAs involved in sncRNA (small noncoding RNA), 

recruit DSB repair proteins at the DSB sites, and these recruitments 
are inhibited by RNase.47,48 At the DSB sites, DICER and DROSHA 
are involved in the process of RNA production for DSB repair; and 
RNAPII is also required for this process.

In addition to the above sncRNAs, long noncoding RNA 
(lncRNA) have been reported to be involved in DSB repair. In 
S/G2-phase cells, DNA damage induces transcription of lncRNA 
at the DNA end of DSBs both within and outside gene bodies, and 
lncRNAs pair with the resected DNA ends to form DNA:RNA hy-
brids.49 These lncRNA-mediated DNA:RNA hybrids are recognized 
by BRCA1 and lead to the promotion of HR by recruiting BRCA2 
and RNaseH2 at DSB sites. Both lncRNA and TA-HRR (described 
in Section 2.1) mediated DNA:RNA hybrids (R-loop) mediated by 
recruit HR factors and promote HR, but the difference between 
them is transcriptional dependency. The recruitment of DSB re-
pair factors by lncRNA-mediated DNA:RNA hybrids could occur 
at non-genic sites, namely transcriptionally inactive sites by the 
induction of I-PpoI. However, TA-HRR can occur at only transcrip-
tionally active sites. Therefore, TA-HRR and lncRNA-mediated 
DNA:RNA hybrids can cover through transcriptionally active sites 
and inactive sites for genome stability. It was recently reported 
that DSBs within the gene body at transcriptionally active sites 
could recover transcription and produce RNAs, whereas DSBs at 
a promoter proximal region could not.50 It is interesting to know 
whether RNAs that are produced by recovery of transcription in 
gene bodies are involved in DSB repair.

Furthermore, RNA has been shown to serve as a template for 
DNA synthesis in bacteria and humans (Figure 3).51-53 In the chro-
mosomes in human cells, I-SceI-induced DSBs in GFP can be repaired 
using RNA-containing oligos.53 In yeast, synthetic RNA oligonucle-
otides could act as templates for DSB repair.51 Moreover, RNAs 

F I G U R E  3   Influence of transcription or transcription factors on double-strand break (DSB) repair. (2.1) Transcriptionally active regions 
promote homologous recombination (HR) repair via an interaction between H3 K36 methylation and the lens epithelium-derived growth 
factor-C-terminal binding protein interacting protein (LEDGF-CtIP) complex. The histone methyltransferase SET domain containing 2 
(SETD2) induces the H3 K36 methylation that is required for the recruitment of RAD51 and replication protein A (RPA) at DSB sites to 
promote HR. In G2/S-phase cells, DSB-induced R-loops at transcription sites are stabilized and processed by RAD52 and XPG to promote 
HR. (2.2) RNA also supports DSB repair. RNAs are produced and processed at DSB sites by RNAPII, and DICER and DROSHA recruit DSB 
repair proteins to promote DSB repair. lncRNAs are also recognized by breast cancer type 1 (BRCA1) to promote HR by recruiting BRCA2 
and RNaseH2. RNA could be used as a template of HR in yeast. In G1-phase cells, CSB recruits HR factors such as RPA, RAD51, and RAD52 
and promotes HR at transcription sites
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that were transcribed in a different chromosome (in trans) or in the 
proximity of the same chromosome (in cis) were shown to become a 
template for HR and that RAD52 facilitated HR using the transcribed 
RNA in cis.54 In vitro, yeast and human RAD52 also efficiently cata-
lyzes the annealing of RNA to DNA, suggesting that in human cells, 
RAD52 protein can promote transcribed RNA-mediated HR.

The abovementioned mechanism could enable cells to repair DSB 
by HR even in the G1 phase when sister chromatids do not exist. In 
the G0/G1 phase, NER factor, CSB, and recruited HR factors, such 
as RPA1, RAD51C, RAD51, and RAD52, promote HR at site-spe-
cific DNA strand breaks produced by oxidative damage (Figure 3).55 
Furthermore, the inhibitor of transcription sensitized WT cells but 
not CSB-deficient cells to IR. These results suggest that CSB con-
tributes to cell survival to promote HR at the active transcription 
sites. Although it remains unclear how homologous pairing during 
HR occurs in the G1 phase, there is the possibility that transcribed 
RNA at transcription sites are used as a template for HR.

Many uncertainties about the mechanism of DSB repair at transcrip-
tion sites still exist. While RNAPII has been reported to be inhibited 
by DSBs inside and outside of transcriptional regions under ATM and 
DNA-PKcs-signaling, other findings showed that RNAPII with DICER 
and DROSHA promotes RNA production at DSB sites. Thus, it remains 
unclear how RNAPII is regulated at DSB sites. Furthermore, if HR occurs 
preferentially at transcriptional activation sites, it remains unclear how 
in G1 phase of cells DNA damage at transcriptional activation sites is 
repaired by HR and what is the template of homologous pairing during 
HR. Further research is needed to understand the mechanism of DSB 
repair at transcription sites and the contribution of RNA in the process.

3  | INFLUENCE OF TR ANSCRIPTION-
INDUCED DNA DAMAGE ON C ANCER 
DE VELOPMENT

3.1 | R-loop at transcription sites

R-loops lead to the generation of genotoxic stress if they cannot 
be resolved and repaired by HR factors (Figure  4). During tran-
scriptional activation, R-loops are usually formed at transcriptional 
termination regions, and they promote the recruitment of HR fac-
tors at transcription sites,56 suggesting that active transcription 
could lead to genome instability without HR factors. Indeed, these 
genotoxic R-loops accumulate at transcriptionally active regions 
in BRCA1 and BRCA2-deficient cells,56,57 and unresolved R-loops 
cause nicking in single-strand DNA, DNA breaks, and/or other 
forms of DNA damage.58,59 BRCA1 and BRCA2 are HR factors 
that are involved in DSB end resection and homologous pairing 
in the HR pathway, respectively. BRCA1 recruits SETX, which is a 
RNA/DNA helicase that is involved in TCR and in the processing of 
RNAs such as tRNAs and sncRNAs,59,60 at transcription termina-
tion pause sites of highly transcribed genes to suppress R-loop-
associated DNA damage.57 In the absence of SETX, R-loops are 
processed into DSBs by the NER endonucleases XPF and XPG.59 
Therefore, the R-loop is a key factor that leads to the HR pathway 
during active transcription or after DSB induction at transcriptional 
active region (described in Section 2.1).In addition to the function 
in the HR pathway, BRCA1 is involved in transcription and TCR. 
BRCA1 interacts with and ubiquitinates RNAPII, and is involved 

F I G U R E  4   Transcription-induced double-strand break (DSB) and DNA breaks are associated with cancer development. (3.1) During 
transcriptional activation, R-loops generated by transcriptional terminal sites or RNA polymerase II (RNAPII) pausing sites are resolved and 
repaired by senataxin (SETX) and breast cancer type 1 (BRCA1). (3.2) Furthermore, androgen receptor (AR)-induced DSB at the promoter 
region by topoisomerase (DNA) II (TOP2) leads to oncogenic TMPRSS2-ERG translocation. Estrogen receptor (ER) also induces DSBs at 
promoter regions by TOP2. Tyrosyl-DNA phosphodiesterase 2 (TDP2) removes TOP2 covalently bound to DNA to repair cleavage via 
BRCA1-mediated nonhomologous end-joining (NHEJ). Loss of BRCA1 increases DSBs in TDP2-knockout breast cancer cells, suggesting that 
it may suppress tumorigenesis in ER-dependent tissues
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in TCR through the polyubiquitination of CSB.61-63; Therefore, 
BRCA1 may always localize near transcriptional machinery and 
protect transcription from various types of DNA damage.

3.2 | Topoisomerase-induced DSB at 
transcription sites

Topoisomerases are thought to be required during transcription 
to relax the supercoiled DNA formed in front of and behind the 
transcription machinery and during DNA replication (Figure 4).64,65 
TOP2 forms DSBs via its strand-cleaving activity at the promoter 
of estrogen-inducible genes with the ER for transcriptional activa-
tion.66,67 These DSBs are generated during the S-phase and may be 
repaired by HR.67

TOP2-β is also recruited at the promoter region of AR tar-
get genes and induces DSBs to promote gene expression.68 The 
TOP2-induced DSBs are transient and are re-ligated immediately 
but allow an intact DNA duplex to pass through DSB for resolution 
of topological stress to promote transcriptional activation. During 
the transiently produced DSB, TOP2 is bound covalently to DNA 
ends. Thus, if re-ligation fails, DSBs remains at stable TOP2-DNA 
complex.69 Such DSBs frequently induce chromosome rearrange-
ment including translocation. For example, TOP2-β and AR were 
shown to co-localize at the TMPRSS2-ERG genomic breakpoint, 
generating oncogenic TMPRSS2-ERG translocation.68 Therefore, 
TOP2-induced DSBs at transcription sites could generate geno-
toxic stress and cause cancer.

The mechanism of DSB repair at stable TOP2-DNA complex has 
been reported. Tyrosyl-DNA phosphodiesterase 2 (TDP2) removes 
TOP2 from DNA to repair the DSBs and is required for AR-mediated 
transcription and expression of neuronal genes.70 Recently, ER-
induced DSBs were reported to be increased in TDP2-knockout 
human breast cancer cells during the G1 phase, and BRCA1 was 
recruited at the DSB sites. Loss of BRCA1 causes prolonged DSBs 
after exposure to estrogen, suggesting its need for the repair of the 
ER-induced DSBs via NHEJ and, therefore, prominent DSBs were 
formed in NHEJ-deficient mice.71 Thus, BRCA1 may suppress tum-
origenesis in ER-dependent tissues by repairing ER-dependent DSBs 
that are generated by topoisomerase.

The above study explained how BRCA1 functions against fe-
male-organ-specific carcinogenesis to repair DSBs produced in 
ER-dependent proliferating cells. Further studies are needed to un-
derstand whether BRCA2, which is also associated with hereditary 
breast cancer, has the same function as that of BRCA1.

4  | CONCLUSION

Interactive relationships among, DSB, DSB repair, and transcription 
have recently been proposed for the protection of genetic informa-
tion from genotoxic stress. When DSBs are induced in the proxim-
ity of or within the gene body during active transcription, ATM or 

DNA-PKcs control the transcription. DSBs occurring outside the 
gene body during transcription induce transcriptional repression by 
ATM, which prevents genome rearrangement and tumorigenesis. 
DSBs within the gene body during transcription induce transcrip-
tional repression and NHEJ pathway by DNA-PKcs to avoid the col-
lision of transcription and repair machinery to promote NHEJ.

In contrast to the above finding, DSB induced at transcription-
ally active sites can be repaired via HR using transcriptional histone 
modifications, transcription factors, R-loop, and transcribed RNA. 
The finding that transcribed RNA is used as a template for homolo-
gous pairing suggests that the HR pathway occurs more frequently, 
even in the G1 phase, when sister chromatids do not exist. Because 
HR is a process to preserve genome stability to eliminate DSB, de-
fects of factors involved in the HR may give rise to tumorigenesis.

Conversely, activation of transcription is predisposed to gener-
ate genotoxic stress, such as the R-loop formed at gene termination 
and DNA breaks induced by topoisomerase, which are to be repaired 
by DSB repair factors. BRCA1, which is associated with hereditary 
breast cancer and ovarian cancer, is also involved in preventing the 
formation of R-loops, the repair of topoisomerase-mediated DSB, 
and HR at transcription active sites, suggesting that BRCA1 is a key 
factor required to ensure the safety of the transcriptional machinery 
and genome stability. Thus, it is essential to elucidate the link be-
tween transcription and DSB repair as it plays an important role in 
preventing genome stability and cancer.
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