
Frontiers in Genetics | www.frontiersin.org

Edited by:
Quan Zou,

University of Electronic Science
and Technology of China, China

Reviewed by:
Meng Zhou,

Wenzhou Medical University, China
Xiangrong Liu,

Xiamen University, China
Zhi-Ping Liu,

Shandong University, China

*Correspondence:
Min Li

limin@mail.csu.edu.cn

Specialty section:
This article was submitted to

Bioinformatics and
Computational Biology,
a section of the journal
Frontiers in Genetics

Received: 29 September 2019
Accepted: 23 December 2019
Published: 05 February 2020

Citation:
Li X, Li M, Zheng R, Chen X, Xiang J,
Wu F-X and Wang J (2020) Evaluation

of Pathway Activation for a Single
Sample Toward Inflammatory Bowel

Disease Classification.
Front. Genet. 10:1401.

doi: 10.3389/fgene.2019.01401

METHODS
published: 05 February 2020

doi: 10.3389/fgene.2019.01401
Evaluation of Pathway Activation
for a Single Sample Toward
Inflammatory Bowel Disease
Classification
Xingyi Li1, Min Li1*, Ruiqing Zheng1, Xiang Chen1, Ju Xiang1,2, Fang-Xiang Wu3

and Jianxin Wang1

1 School of Computer Science and Engineering, Central South University, Changsha, China, 2 Neuroscience Research Center
& Department of Basic Medical Sciences, Changsha Medical University, Changsha, China, 3 Department of Mechanical
Engineering and Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK, Canada

Since similar complex diseases are much alike in clinical symptoms, patients are easily
misdiagnosed and mistreated. It is crucial to accurately predict the disease status and
identify markers with high sensitivity and specificity for classifying similar complex
diseases. Many approaches incorporating network information have been put forward
to predict outcomes, but they are not robust because of their low reproducibility. Several
pathway-based methods are robust and functionally interpretable. However, few
methods characterize the disease-specific states of single samples from the
perspective of pathways. In this study, we propose a novel framework, Pathway
Activation for Single Sample (PASS), which utilizes the pathway information in a single
sample way to better recognize the differences between two similar complex diseases.
PASS can mainly be divided into two parts: for each pathway, the extent of perturbation of
edges and the statistic difference of genes caused by a single disease sample are
quantified; then, a novel method, named as an AUCpath, is applied to evaluate the
pathway activation for single samples from the perspective of genes and their interactions.
We have applied PASS to two main types of inflammatory bowel disease (IBD) and widely
verified the characteristics of PASS. For a new patient, PASS features can be used as the
indicators or potential pathway biomarkers to precisely diagnose complex diseases,
discover significant features with interpretability and explore changes in the biological
mechanisms of diseases.

Keywords: similar complex diseases, pathway activation, single sample, inflammatory bowel disease,
pathway biomarkers
INTRODUCTION

Complex diseases threaten human health and life quality. Similar complex diseases make the early
diagnosis of patients more difficult due to similar clinical symptoms. Therefore, mining effective
biological information to accurately discriminate between similar complex diseases has become the
most important research area of biomedicine. In the previous research, several methods based on a
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single biological network, such as the metabolic network,
regulatory network, or protein–protein interaction (PPI)
network, have been put forward to aid in disease prediction,
diagnosis, prognosis, and so on (Winter et al., 2012; Cun and
Fröhlich, 2013). Nevertheless, these methods are not robust
because of the low reproducibility (Yousefi and Dougherty,
2012; Amar et al., 2015; Choi et al., 2017) that results from the
cellular heterogeneity within tissues, the heterogeneity of
samples, and errors of measuring technologies.

Since genes generally take effect synergistically by forming
functional modules, inferring features related to disease
classification at the functional level can effectively ameliorate
the adverse effects of heterogeneity and obtain more reproducible
markers. Some methods utilize Gene Ontology (Ashburner et al.,
2000) to differentiate disease states (Zhang et al., 2017) while
others integrate pathway information. Pathways reflect biological
processes within cells, such as metabolism, signaling, and growth
cycles, and markers identified based on pathway information can
thus maintain functional interpretability (Haider et al., 2018).
Moreover, the occurrence and progression of complex diseases,
such as inflammatory bowel disease (IBD), are often related to
the dysregulation of significant pathways. Discovering the
involved pathways and quantifying their disorders are of great
significance in understanding complex diseases (Bild et al., 2006;
Thomas et al., 2008; Markert et al., 2011; Drier et al., 2013).

A series of methods for disease classification integrate
pathway information from the Molecular Signatures Database
(MSigDB) (Subramanian et al., 2005) or Kyoto Encyclopedia of
Genes and Genomes (KEGG) (Kanehisa and Goto, 2000).
Several works extract significant features from the genes along
pathways to distinguish diseases (Huang et al., 2003; Bild et al.,
2006; Lee et al., 2008a; Young and Craft, 2016). Although these
works can combine pathway information to classify diseases
effectively, they only regard a pathway as a set of genes and
ignore the edge information between genes, which may lead to
the loss of important information related to diseases. To
overcome this problem, some methods for analyzing the
intrinsic structures of pathways and integrating topological
characteristics of pathways have been proposed (Liu et al.,
2013; Han et al., 2017). These existing algorithms can
effectively utilize the topological information of pathways to
predict disease status. Nevertheless, none of them assesses
condition-specific states for each patient from a pathway
perspective, but this is essential to revealing the molecular
mechanisms of complex diseases at the system level.

By analyzing the high-dimensional information of expression
data and the differential distribution (i.e., volcano distribution)
of a single patient against a given number of normal samples
(Liu et al., 2016), we propose a novel framework to classify two
similar complex diseases by evaluating the pathway activation
based on single sample analysis. Our method consists of
two steps: (1) a fully connected network for each pathway
is constructed and the perturbation of each edge in the
network caused by the introduction of each disease sample is
evaluated. For all genes in the pathways, the statistical difference
of gene expression between a single disease sample and normal
Frontiers in Genetics | www.frontiersin.org 2
samples is evaluated; (2) a novel method named as AUCpath
is introduced to evaluate the pathway activation for single
sample (PASS) of each pathway from both node and edge
aspects, which converts the high-dimensional, small-sample
gene expression matrix into a PASS matrix. Finally, a random
forest classifier based on PASS features is built to examine the
classification performance.

We applied PASS to classify ulcerative colitis (UC) and
Crohn's disease (CD) (Ananthakrishnan, 2015). UC and CD
have many common clinical features, such as abdominal pain,
diarrhea, recurrent episodes, and so on. They are therefore
collectively referred to as IBD. IBD is a special kind of
intestinal inflammatory disease caused by common factors
such as genetics, environmental triggers, immunoregulatory
defects, and microbial exposure (Hanauer, 2006). Currently,
there is no gold standard for discriminating UC and CD, but
the responses and effects after medication of these two complex
diseases are not the same (Akobeng et al., 2016; Baumgart and
Sandborn, 2007), and this has motivated many attempts to
understand the differences in the molecular characteristics
between these two similar complex diseases at the tissue level
(Lawrance et al., 2001; Burczynski et al., 2006; Wu et al., 2007).
The improved understanding of the differential mechanisms of
UC and CD from a molecular perspective can improve the
diagnostic accuracy and have the potential to improve the
therapeutic effect and the success rate of clinical trials.

We compare our method with seven network-based, GO-
based, and pathway-based methods, respectively, and obtain
prominent performance against these methods. In addition,
our experimental results showed that our method can elucidate
the molecular mechanism of UC and CD and has the potential to
identify biomarkers with functional interpretability.
MATERIALS AND METHODS

Dataset and Preprocessing
We downloaded two pediatric datasets and three adult datasets
from the Gene Expression Omnibus (GEO) (Edgar et al., 2002),
namely GSE9686 (Carey et al., 2007), GSE3365 (Burczynski et al.,
2006), GSE36807 (Montero-Meléndez et al., 2013), GSE71730
(Gurram et al., 2016), and GSE16879 (Arijs et al., 2009). All of
them contain UC, DC, and normal samples.

In order to maintain the consistency of data and reduce the
impact of noise, we selected data from the same anatomical site
and patients under the same conditions. We excluded samples of
CD patients during treatment for GSE9686 and samples of
Crohn's ileitis for GSE16879. We mapped probes to gene ID
using files provided by the corresponding platforms, discarded
probes corresponding to multiple genes, and chose the median
when multiple probes were mapped to the same gene to
eliminate the influence of measurement errors. Only genes
detected in all datasets can be used for the downstream
analysis. As a result, there were 11242 genes included in all five
datasets. Table 1 summarizes the above datasets.
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From the KEGG database, all human pathways were
downloaded using the KEGGgraph package (Zhang and
Wiemann, 2009). A total of 294 pathways were extracted. Each
pathway consisted of a set of genes and their interactions; genes
were represented by nodes, and interactions were edges in the
KEGG human pathways. Genes that were not present in the
expression profiles and their corresponding interactions were
discarded. Considering the following analysis, pathways
containing only one edge were not included. Finally, 291
pathways were retained, and these contained 3926 genes in total.
Pathway Activation for Single Sample
Pathway-based features are more robust while maintaining
biological interpretability and tend to be small in number,
which can prevent overfitting. In this study, we introduced a
new method, called PASS, to evaluate the state of each known
pathway. PASS defined the state of a pathway from the aspect of
genes and regulatory links. Although it was difficult to analyze
the regulatory links in the pathway for each patient, the sample-
specific network (SSN) analysis provided a feasible and effective
way to mine the different regulatory patterns for each patient.

In this study, we first constructed a fully connected network
for each pathway. For each dataset, we analyzed the condition-
specific state for each disease sample based on the pathway and
thus assessed the PASS features. The schematic diagram of our
framework is shown in Figure 1.
Statistical Difference of Edges Between Single
Disease Sample and Normal Samples
For each fully connected network, we used a group of n healthy
samples to calculate the Pearson correlation coefficient (PCC) of
each pair of genes as background value of the corresponding
edge, denoted as PCCn. PCCn is defined as follows:

PCCn x1, x2ð Þ = E x1x2ð Þ − E x1ð ÞE x2ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E x21ð Þ − E2 x1ð Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E x22ð Þ − E2 x2ð Þ

p (1)

where x1 and x2 are the expression profiles of a pair of genes
that correspond to an edge, and E represents the operator of
mathematical expectation.

Next, a single disease sample was added to the set of the
normal samples, and the new PCC was calculated and denoted as
PCCn+1. After that, the difference between background and
interference values for the edges in each fully connected
Frontiers in Genetics | www.frontiersin.org 3
network could be quantified, which is represented as DPCCn

(equal to PCCn+1−PCCn). The difference was derived from the
influence of the newly added disease sample, thus it can reflect
the specific characteristics of this single sample. Statistically,
DPCCn obeys the volcano distribution. Therefore, the
significance of DPCCn can be estimated by the hypothesis test
Z-test. Z-value is calculated as follows:

Z =
DPCCn

1 − PCC2
nð Þ= n − 1ð Þ (2)

Statistical Difference of Gene Expressions Between
Single Disease Sample and Normal Samples
The statistical difference of genes between single disease sample
and normal samples in the expression level was calculated by fold
change:

FC xið Þ = b
�a

(3)

where b represents the expression value of gene xi in the
individual disease sample and �a is the mean of expression values
of gene xi over the n healthy samples.
Pathway Activation for a Single Sample
Based on the single sample analysis, we used AUCpath to
estimate the activation of a pathway, which can evaluate the
enrichment of an attention set as an area under the receiving
operating characteristic curve (AUC) according to the ranking of
all objects in a fully connected network. There were two sets,
called the attention set and the background set. The attention set
contained the subset of objects we considered as important, while
the background set contained all the possible objects except
important objects. We described the states of pathways from the
aspect of genes and regulatory links.

From the perspective of edges, the input was the Z-value of all
edges in each fully connected network, and the output was the
activation of each pathway. The scoring approach was divided
into two steps. First, the edges that exist in the pathway were
regarded as an attention set (i.e., positive label), and the
artificially added edges (in the step of the construction of fully
connected network) were considered as the background set (i.e.,
negative label). Then, all edges in each fully connected network
were ranked in ascending order of their Z-values. Second, AUC
TABLE 1 | Summary of the gene expression datasets.

Name Healthy UC CD Total genes Type of samples Reference URL

GSE9686 8 5 11 15747 Pediatric samples (Carey et al., 2007) https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE9686
GSE3365 42 26 59 12432 Adult samples (Burczynski et al., 2006) https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE3365
GSE36807 7 15 13 20486 Adult samples (Montero-Meléndez et al.,

2013)
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE36807

GSE71730 10 15 22 20486 Pediatric samples (Gurram et al., 2016) https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE71730

GSE16879 6 24 19 20486 Adult samples (Arijs et al., 2009) https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE16879
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was applied to evaluate whether edges in a pathway are enriched
in the top ranking, and we thus regarded the AUC value as the
quantitative indicator of pathway activation. It is defined as
follows:

AUCpath =
∑i∈ importantSubset ranki −

m 1+mð Þ
2

m� n
(4)

where ranki represents the ranked position of the i-th edge of
the attention set, m represents the number of edges in the
attention set, and n is the number of edges in the background set.

Besides, considering that genes were also critical for mining
effective information, we calculated the pathway activation from
the perspective of genes. We first obtained all genes in pathways.
For each pathway, genes on it were regarded as an attention set,
and other genes were considered as the background set. Then, we
assessed the enrichment of genes in the attention set as AUC
based on the ranking of all genes, whereby all genes were ranked
in ascending order according to their fold change between a
single disease sample and normal samples.

After the evaluation of pathway activation from both nodes
and edges, we obtained a matrix with PASS scores for pathways
and patients.
Frontiers in Genetics | www.frontiersin.org 4
RESULTS AND DISCUSSION

Stronger Effectiveness of PASS Compared
to the Representative Feature Engineering
Methods
We built a comprehensive scheme to demonstrate the performance
of our approach for distinguishing two similar diseases as well as
compare them with other state-of-the-art feature engineering
methods. We selected seven representative methods from three
aspects: network-based, GO-based and pathway-based methods,
that is, NetRank (Winter et al., 2012), stSVM (Cun and Fröhlich,
2013), comparative network stratification (CNS) (Zhang et al.,
2017), principal component analysis (PCA) (Young and Craft,
2016), normal tissue centroid (NTC) (Young and Craft, 2016),
gene expression deviation (GED) (Young and Craft, 2016), and
probabilistic pathway score (PROPS) (Han et al., 2017). For a better
comparison, we downloaded the PPI network from STRING
database (http://string-db.org/) for NetRank, stSVM and CNS,
and collected biological processes (BP) terms of Gene Ontology
(GO) (http://www.geneontology.org/) for CNS.

NetRank (Winter et al., 2012) is a modification of PageRank.
For a given gene, NetRank identifies the rank of a gene
according to the rank of its neighbors in a PPI network.
FIGURE 1 | Schematic diagram of the framework. (A) Fully connected networks are derived from pathways. The colored edges represent the real interactions in
pathways and are regarded as attention sets, and the black edges are artificially added to construct fully connected networks and regarded as the background sets.
(B) Single sample theory for the evaluation of differential value of each edge in fully connected networks. (C) Obtaining all genes in pathways. For a pathway, genes
on this pathway are considered as the attention set and others are treated as the background set. The fold change value of each gene in each disease sample
relative to the normal sample is evaluated for subsequent analysis. (D) PASS expression matrix. For each pathway, the AUCpath is used to evaluate the enrichment
of edges in a pathway as an AUC according to the ranking of all edges in a fully connected network, whereby all edges were ranked according to their Z-scores. For
each pathway, the AUCpath is used to assess the enrichment of genes in the pathway as an AUC based on the ranking of all pathway genes, whereby all genes
were ranked according to the gene expression data.
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stSVM (Cun and Fröhlich, 2013) is a feature selection method
which smooths the marginal statistic for differential expression
genes by random walk kernel.

CNS (Zhang et al., 2017) is a framework that captures
functional features for discriminating the disease states. Genes
that are enriched by the same function (GO term) are aggregated
through a flux balance model, and functional modules that
maximize the distinction between UC and CD are then obtained.

For genes on each pathway, PCA (Young and Craft, 2016)
compresses gene expression data and extracts principal
components for the classification of disease status. For the
hyperspace formed by genes on a particular pathway, NTC
(Young and Craft, 2016) treats each disease sample as a point
in the hyperspace and computes the Euclidean distance between
the coordinates of disease samples and healthy samples. GED
(Young and Craft, 2016) firstly uses the Kolmogorov–Smirnov
test to capture genes that have the different distribution in
normal and disease samples, and scores of those genes are then
calculated based on the expression deviation in normal and
disease samples. According to the scores, GED gives two
features to each pathway, one for over-expression and one for
under-expression. PROPS (Han et al., 2017) regards each
pathway as a Gaussian Bayesian model. For each gene, after
calculating the parameters in the model through normal samples,
probabilistic pathway scores can be obtained using the
loglikelihood values.

Improved Discrimination of PASS
Evaluated by Classification Performance
Analysis
We used the random forest classifier to verify the classification
results and applied three-fold cross-validation considering the
small sample size of several datasets. For unbiased evaluation, we
repeated these experiments for a total of 500 times for the entire
datasets. The results of eight methods are shown as ROC curves
and AUC corresponding to the ROC in Figure 2 and Table 2,
respectively. Although the AUC of PROPS on GSE3365
somewhat exceeded PASS, and the AUC of PCA on GSE16879
was equal to PASS, our method was more stable and more
prominent than the other seven methods on the five datasets.

Analysis of Differential Pathways With
Significance According to PASS
In order to validate the effectiveness of PASS features, we
analyzed the differential pathways according to the PASS
index. The p-value was calculated using two-sample t-test for
the five datasets. Supplementary Figure S1 shows the
quantitative distribution of p-value of differential pathways
based on the PASS scores for the five datasets. The pathway
activation we defined can acquire lots of differential features with
significance in two similar diseases, which indicates that the
PASS index can widen the gap between UC and CD.

We analyzed pathways that were differentially expressed (p-
value < 0.05) on all the datasets (Supplementary Table S1). The
majority of differential pathways have been shown to be related
to IBD as reported in the literature (Table 3). These pathways
Frontiers in Genetics | www.frontiersin.org 5
not only demonstrate the metabolic and immune abnormalities
of IBD, but they also reveal the pathogenesis of IBD from specific
perspectives. Furthermore, the expression of genes in differential
pathways related to IBD can reflect the changes in the course of
disease. For the differential pathways associated with IBD, we
analyzed the up-regulation and down-regulation of differentially
expressed genes with significance in UC and normal samples, CD
and normal samples. Figure 3 shows the Venn diagrams of
Epstein-Barr virus infection pathway, and others are shown in
Supplementary Figures S2–S10. Most genes have the same
regulatory relationship in UC and CD, but a small number of
genes have different expressions. This also verifies that these two
FIGURE 2 | Aggregate ROC curves.
TABLE 2 | Classification performance comparison on independent datasets.

Methods GSE9686 GSE3365 GSE36807 GSE71730 GSE16879

PASS 0.94 0.77 0.78 0.74 0.72
NetRank 0.88 0.75 0.65 0.69 0.56
stSVM 0.88 0.72 0.75 0.71 0.55
CNS 0.91 0.75 0.75 0.70 0.69
PCA 0.91 0.66 0.73 0.69 0.72
NTC 0.89 0.72 0.75 0.67 0.68
GED 0.88 0.70 0.73 0.67 0.70
PROPS 0.88 0.78 0.70 0.73 0.67
F
ebruary 2020 |
 Volume 10 |
TABLE 3 | Differential pathways related to IBD.

Entry Name Reference

hsa05169 Epstein-Barr virus infection (Yanai et al., 1999)
hsa00190 Oxidative phosphorylation (Soderholm et al., 2000; Söderholm

et al., 2002)
hsa00531 Glycosaminoglycan

degradation
(Lee et al., 2008b)

hsa00730 Thiamine metabolism (Mehanna et al., 2008)
hsa00860 Porphyrin and chlorophyll

metabolism
(Jansson et al., 2009)

hsa04012 ErbB signaling pathway (Ando et al., 2013)
hsa04340 Hedgehog signaling pathway (Ghorpade et al., 2013)
hsa04920 Adipocytokine signaling

pathway
(Karmiris et al., 2006)

hsa00062 Fatty acid elongation (Belluzzi et al., 2000)
hsa00020 Citrate cycle (TCA cycle) (Schicho et al., 2012)
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types of diseases are very similar, but there are differences
between them.

Furthermore, we have visualized samples using the two
principal components of our PASS features and overlaid the
classification results from PASS model (Figure 4). The CD
samples misclassified as UC and the UC samples misclassified
as CD are mainly concentrated in the overlapping regions of the
two types of diseases. However, some UC samples are more like
Frontiers in Genetics | www.frontiersin.org 6
CD samples, while some CD samples resemble UC samples,
which leads to the misclassification of samples.

Enrichment of Known Disease-Associated
Genes
After choosing a p-value < 0.01 as the threshold of statistical
significance, we obtained the significant differential pathways.
Next, we analyzed the enrichment of the known disease-
associated genes (DAGs) in differential expression pathways.
DAGs relevant to UC and CD were collected from DisGeNET
(Piñero et al., 2016), and a hypergeometric test was used to
calculate the p-value of the enrichment of DAGs:

P = 1 − ∑m−1
i=0

(M
i
)(N−M

n−i
)

(N
n
)

(5)

where N is the number of genes in all pathways, M is the
number of DAGs, n is the number of genes in the differential
pathways, and m is the number of DAGs enriched in the
differential pathways.

For convenience, we transformed p-value to −log10(p−value).
We compared the statistical significance of the enrichment of
DAGs in the significant differential pathways identified by PASS
index with other pathway-based indexes (Figure 5). It shows
that, with the exception of being outperformed by PROPS in
GSE36807, the differential pathways obtained from PASS values
have the statistical significance of the enrichment of DAGs and
FIGURE 3 | Expression of genes in Epstein-Barr virus infection pathway. (A)GSE9686,(B)GSE3365, (C)GSE36807, (D)GSE71730, (E)GSE16879.
FIGURE 4 | Visualization of classification results using the two principal
components of PASS features.
February 2020 | Volume 10 | Article 1401
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have lower p-values than other methods in all datasets. This
indicates that the PASS index has the ability to identify
differential features enriched by DAGs.
CONCLUSION

Complex diseases are not determined by a single gene, but by
the combination of multiple genes, multiple factors, genetics,
and the environment, similar complex diseases are more
difficult to diagnose due to similar symptoms. In this study,
we have presented PASS as a novel framework for classifying
two main types of IBD from a single disease sample rather
than a population of patients. For each pathway, we evaluated
the difference between each patient and healthy sample
from the perspective of genes and their interactions and
calculated the pathway activation of individual samples.
From the edge aspect, we constructed a fully connected
network for each pathway, where edges in the pathway were
regarded as the attention sets and artificially added edges were
used as the background sets. Subsequently, we calculated the
extent of perturbation of each edge based on single sample
theory. From the node perspective, we collected all genes on
all pathways. For each pathway, nodes on it were the attention
set and others were the background set. Then, we evaluated
the statistic difference of each node between single patient and
healthy samples. Hereafter, we evaluated the pathway
activation of each patient by computing the enrichment of
attention set as an AUC according to the ranking of all genes
or edges in the fully connected network.

We applied our method to UC and CD, which are two similar
complex diseases of IBD. We compared PASS with seven state-
of-the-art approaches (NetRank, stSVM, CNS, PCA, NTC, GED,
and PROPS) on five IBD datasets. The results show that our
Frontiers in Genetics | www.frontiersin.org 7
PASS had the more discriminative power and was more stable
than other seven methods. Besides, the PASS index can capture
more differential expressed pathways with biological
interpretability, which indicates that our PASS feature can
widen the gap between UC and CD and aid researchers in
comprehending the pathogenesis of these two similar
complex diseases.

Our method can be applied to the classification of two similar
diseases and has improved classification accuracy compared to
seven state-of-the-art methods. However, due to the complexity
and difficulty of similar complex diseases, there is still a space for
improvement in the discriminative power. The performance of
the PASS method relies on the all human pathway data and the
topology of pathways, and more complete pathway information
can better reveal the biological processes within cells and the
statistic difference between a single disease sample and healthy
samples calculated by our method can be also more accurate.
With the rapid development of human interaction databases, we
believe that the completer and more accurate pathway
information could help to further improve the diagnosis of UC
and CD.
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