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The functional role of midkine during development, following injury and in disease has been studied in a variety of tissues. In
this review, we summarize what is known about midkine in the vertebrate retina, focusing largely on recent studies utilizing
the zebrafish (Danio rerio) as an animal model. Zebrafish are a valuable animal model for studying the retina, due to its very
rapid development and amazing ability for functional neuronal regeneration following neuronal cell death. The zebrafish
genome harbours two midkine paralogues, midkine-a (mdka) and midkine-b (mdkb), which, during development, are expressed
in nested patterns among different cell types. mdka is expressed in the retinal progenitors and mdkb is expressed in newly
post-mitotic cells. Interestingly, studies of loss- and gain-of-function in zebrafish larvae indicate that midkine-a regulates cell
cycle kinetics. Moreover, both mdka and mdkb are expressed in different cell types in the normal adult zebrafish retina, but
after light-induced death of photoreceptors, both are up-regulated and expressed in proliferating Müller glia and
photoreceptor progenitors, suggesting an important and (perhaps) coincident role for these cytokines during stem cell-based
neuronal regeneration. Based on its known role in other tissues and the expression and function of the midkine paralogues in
the zebrafish retina, we propose that midkine has an important functional role both during development and regeneration in
the retina. Further studies are needed to understand this role and the mechanisms that underlie it.
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This article is part of a themed section on Midkine. To view the other articles in this section visit
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Abbreviations
ALK, anaplastic lymphoma kinase; Ascl1a, ascl1a achaete-scute complex-like 1a; BrdU, bromodeoxyuridine; CMZ, ciliary
marginal zone; GCL, ganglion cell layer; HC, horizontal cell; hpf, hours post-fertilization; hpl, hours post-lesion; Id2a,
inhibitor of DNA binding 2a; INL, inner nuclear layer; Insm1a, insulinoma-associated 1a; LRP1, low density lipoprotein
receptor-related protein 1; mdka, midkine-a; mdkb, midkine-b; ONL, outer nuclear layer; Ptn, pleiotrophin; Ptp99A,
protein tyrosine phosphatase 99A; RPTPβ/ζ, receptor protein tyrosine phosphatase β/ζ

Introduction
The retina is a complex neural circuit that converts photons
of light into electrical impulses, which encode and process
the images cast on the retina (Dowling, 2012). The retina has
a long history of serving as a model tissue for discovering the
mechanisms that govern brain development (Agathocleous
and Harris, 2009), for investigating synaptic function (Wei
and Feller, 2011) and for developing therapeutic approaches

to treating brain injury and disease (Seiler and Aramant,
2012). Among vertebrates, retinal structure and function are
evolutionarily very highly conserved. The retina is a lami-
nated tissue, formed by the orderly arrangement of six classes
of neuronal cell bodies, their processes and synaptic intercon-
nections, and one specialized type of glial cell, the Müller
glia, a radial glial cell that is unique to the retina and
functions, in part, similarly to astrocytes in other CNS regions
(Figure 1). Neuronal cell types consist of two classes of
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photoreceptors (rods that detect low light intensities and
cones that encode colour and function during daytime
vision), three classes of interneurons [horizontal cells (HCs),
bipolar cells and amacrine cells], and ganglion cells, which
send axons out of the eye to visual centres in the brain.

Midkine and pleiotrophin (Ptn) are the only two members
of a family of small heparin-binding neurotrophic factors.
Both cytokines perform multiple functions in developing and
adult tissues, including the brain, and also in a variety of
tissues following injury. Midkine was first discovered as a
retinoic acid-inducible gene in embryonal carcinoma cells
(Kadomatsu et al., 1988). In the mouse, midkine is highly
expressed during mid-gestation and is associated with
epithelial–mesenchymal interactions (Mitsiadis et al., 1995).
In the developing brain, both midkine and Ptn are localized
to the processes of radial glia, upon which neural progenitors
both migrate and differentiate (Kadomatsu and Muramatsu,
2004; Muramatsu, 2010), supporting an important role of
these cytokines in mouse neural development. Also within
the nervous system, protective and reparative roles have been
attributed to midkine (Muramatsu, 2011). For example,
midkine knockout mice show a delay in axonal degeneration
and regeneration in injured peripheral nerves (Sakakima
et al., 2009) and midkine expression is up-regulated following

ischaemia in the rat retina (Miyashiro et al., 1998) and brain
(Ishikawa et al., 2009), perhaps protecting against the effects
of ischaemia within these tissues (Ooboshi, 2011). Similarly,
Ptn plays a neuroprotective role in the nigro-striatal pathway,
in Parkinson’s disease (Marchionini et al., 2007) and also fol-
lowing neurotoxicity induced by drugs of abuse (Gramage
et al., 2010). Specifically, Ptn knockout mice are more vulner-
able to the amphetamine-induced damage in the dopamin-
ergic neurons of the substantia nigra and their axons in
the striatum (Gramage et al., 2010; see Herradón and
Pérez-García, 2013). Midkine and Ptn are up-regulated in
spinal motor neurons after injury (Sakakima et al., 2004), in
response to exposure to drugs of abuse, in both animal
models and humans (Ezquerra et al., 2007; Flatscher-Bader
and Wilce, 2008) and in the degenerating substantia nigra of
Parkinson’s disease patients (Marchionini et al., 2007). These
and other studies provide evidence for a role for both
midkine and Ptn in ameliorating the effects or effecting repair
after injury to nervous tissue.

In contrast to mammals, which have a single unique
midkine gene, the zebrafish genome encodes two midkine
paralogues, midkine-a (mdka) and midkine-b (mdkb). These
paralogues share 68% amino acid identity and are likely to
result from a genome duplication event during the evolution-

Figure 1
Structure of the retina. A: Microphotograph of a cross-section through the retina of an adult zebrafish, showing the different cellular and synaptic
retinal layers. B: Diagram of the neural circuit of the retina, showing the six neuronal cell types and the two supporting cell types (Müller glia and
retinal pigmented epithelium). In A, the scale bar = 25μm.
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ary history of teleosts (Winkler et al., 2003). In the zebrafish
brain, the expression of mdka and mdkb is differentially regu-
lated during development (see below) and in adulthood.
Interestingly, both paralogues are up-regulated during regen-
eration of multiple tissues and organs (Lien et al., 2006;
Schebesta et al., 2006; Calinescu et al., 2009a; Fujisawa et al.,
2011; Grotek et al., 2013; Parente et al., 2013), including the
retina, suggesting that in fish, as in mammals, these cytokines
also function to modify or repair tissue-specific injuries.

Role of midkine during
retinal development

The retina develops from a neuroepithelial sheet comprised
of undifferentiated progenitor cells undergoing active prolif-
eration. As for all complex organs, cellular differentiation in
the retina is governed by complex signalling events (see
Agathocleous and Harris, 2009). In zebrafish, neuronal differ-
entiation in the retina is amazingly rapid (Stenkamp, 2007).
Retinal progenitors first begin to withdraw from the cell cycle
and initiate programmes of differentiation around 28–32 h
post-fertilization (hpf; Schmitt and Dowling, 1996; Hu and
Easter, 1999). The initial differentiation begins within a nas-
oventral patch. This is then followed by waves of differentia-
tion that, analogous to the hands on a clock face, sweep
circumferentially from ventronasal to ventrotemporal
domains (Easter and Malicki, 2002). During retinal morpho-
genesis in zebrafish, the expression of mdka and mdkb are
differentially regulated (Calinescu et al., 2009a; Figure 2).
Starting at about 30 hpf (Calinescu et al., 2009a), mdka is
expressed in the mitotic retinal progenitors, though the level
of expression appears greatest at the ciliary marginal zone
(CMZ; Figure 2), which contains the retinal stem cell niche

(Raymond et al., 2006). As retinal morphogenesis proceeds,
mdka expression is down-regulated in cells that exit the cell
cycle. Starting at about 72 hpf and persisting through about
120 hpf, mdka is transiently expressed in Müller glia. The
final adult pattern emerges between 72 and 120 hpf and
consists of the exclusive expression of mdka in HCs (cf.
Figures 2 and 3A). In contrast, mdkb expression temporally
lags behind that of mdka, and mdkb is expressed in newly
post-mitotic cells within the inner nuclear and ganglion
cell layers (GCLs). This expression pattern persists into and
throughout adulthood (Calinescu et al., 2009a; Figure 3B).

The cellular expression of mdka in the embryonic retina
suggests that during retinal development, midkine-a (Mdka)
may govern aspects of retinal neurogenesis. With this as an
underlying hypothesis, Luo et al. (2012) used reverse genetics
approaches to investigate the function of Mdka during early
retinal development in the zebrafish. This study found that
Mdka regulates proliferation among retinal progenitors
by governing cell cycle kinetics (Luo et al., 2012). When
Mdka synthesis is blocked with mdka-targeted morpholino-
oligonucleotides, retinal progenitors fail to exit the cell cycle
and neuronal differentiation is delayed, although the under-
lying neurogenic programme within the retina is initiated at
the correct developmental stage. This delay in neuronal dif-
ferentiation following Mdka loss-of-function results from the
increased length of the cell cycle, largely a consequence of an
increase in the duration of the S-phase. The delay of neuronal
differentiation results in a mild microphthalmia. Comple-
menting the results from Mdka loss-of-function, over-
expression of Mdka in a line of transgenic fish carrying an
inducible mkda allele results in an acceleration of the cell
cycle, an excess number of retinal progenitors and a mild
macrophthalmia. This acceleration of the cell cycle does not
lead to premature cell cycle exit, however. Expression levels
of several core cell cycle regulators remain unchanged after

Figure 2
Expression of mdka and mdkb during retinal development. mdka (pink) is expressed in proliferating retinal progenitors, whereas mdkb (green) is
expressed in newly post-mitotic cells. Between 72 and 120 hpf, mdka is transiently expressed in Müller glia.
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Mdka loss- or gain-of-function, though the possibility exists
that Mdka could regulate the translation, duration or phos-
phorylation state of these proteins.

The retinal phenotypes observed following Mdka loss-
and gain-of-function were reminiscent of those observed
following loss- and gain-of-function of the putative transcrip-
tion factor-binding protein, Id2a (inhibitor of DNA binding
2a) (Uribe and Gross, 2010). Id2a loss-of-function lengthens
the cell cycle, delays neuronal differentiation and leads to
microphthalmia (Uribe and Gross, 2010), whereas Id2a gain-
of-function shortens the cell cycle, accelerates the S- to
M-phase transition and leads to a mild macrophthalmia.
Testing for potential epistatsis between Mdka and Id2a found
that Id2a functions downstream of Mdka in a shared signal-
ling pathway. Injecting id2a mRNA into embryos is sufficient
to rescue the Mdka loss-of-function and restores the normal
timing of cellular differentiation, and systematically altering
Mdka levels induces corresponding changes in the expression
of id2a (Luo et al., 2012). Based on these data, it was con-
cluded that Mdka and Id2a reside in a shared signalling
pathway that functions to govern cell cycle kinetics and neu-
ronal differentiation in the vertebrate retina. There were
slight differences in the retinal phenotypes in embryos fol-
lowing alterations in the expression of Mdka and Id2a,
respectively; however, the basis for these phenotypic differ-
ences awaits further clarification.

Unlike mdka, the function of mdkb during retinal devel-
opment is completely unexplored. Ubiquitous Mdkb gain-of-
function results in the absence of eyes or severely reduced eye
size (Winkler and Moon, 2001; Lim et al., 2013) and is likely
to be due to secondary effects resulting from the development
defects in the forebrain. In future studies, it will be important
to develop tissue-specific approaches to knockdown or over-
express Mdkb in the retina in order to examine its functional
role in the developing retina.

The function of midkine in the developing mammalian
retina has yet to be investigated. The evidence that midkine
may be functionally important, however, is based on a screen

for transcripts expressed in CNS progenitors in the mouse
(Livesey et al., 2004). In this study, midkine was identified as a
member of the core set of transcripts enriched in retinal
progenitors. Given the functional role of Mdka in the
zebrafish retina, one can hypothesize that in the developing
retina (and brain) of mammals, midkine may also play an
important functional role governing neurogenesis.

Interestingly, Ptn, the other member of this family of
heparin-binding growth factors, is expressed in the post-natal
rat retina and functions to determine the fates of late-born
neurons (Roger et al., 2006). Ptn is expressed in retinal pro-
genitors within the outer neuroblastic layer and post-mitotic
cells within the inner nuclear layer (INL). The over-
expression of Ptn diminishes the genesis of rod photorecep-
tors and promotes the genesis of bipolar cells.

Finally, miple, the Drosophila orthologue of vertebrate
midkine/pleiotrophin, plays a role in the development of the
invertebrate eye (Muñoz-Soriano et al., 2013). The compound
eye of Drosophila is a highly organized structure composed of
about 750 ommatidia, each containing a cluster of eight
photoreceptor cells (Hsiao et al., 2012). Each cluster of pho-
toreceptors develops from a precluster of five cells that, as the
photoreceptors differentiate, undergo a precise 90° rotation,
creating a mirror image between the dorsal and ventral
ommatidia along the dorsal–ventral midline (Wolff and
Ready, 1993; Mlodzik, 1999). Miple regulates this ommatidial
rotation by binding to the midkine receptor Ptp99A (protein
tyrosine phosphatase 99A) (Muñoz-Soriano et al., 2013), the
Drosophila orthologue of PTPζ (see below).

The expression of midkine in adult
zebrafish retina

In the retina of the adult zebrafish, as in the developing
retina, the expression of mdka and mdkb is differentially
regulated. mdka is expressed exclusively in HCs, whereas

Figure 3
Expression of mdka and mdkb in the adult zebrafish retina. A: In situ hybridization showing the expression of mdka in horizontal cells (arrows). B:
In situ hybridization showing the expression of mdkb in amacrine cells (arrowhead) in the inner tier of the inner nuclear layer and ganglion cells
(arrow). GCL, ganglion cell layer; INL, inner nuclear layer; ONL, outer nuclear layer. Scale bar = 25μm.
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mdkb is more broadly expressed in cells within the inner
nuclear and GCLs (Calinescu et al., 2009a; Figure 3). In the
midst of studies determining the adult expression of these
midkine paralogues, it was discovered that the expression of
mdka (and possibly of mdkb) is regulated by circadian
rhythms (Calinescu et al., 2009b). Circadian rhythms are bio-
logical oscillations entrained by the environmental light/dark
cycle, and the regulatory and metabolic networks that direct
the body’s adjustments to variations of external and internal
environment (Anderson et al., 2013). Using both in situ
hybridization and Western blot analysis, it was discovered
that both Mdka mRNA and protein reach peak levels shortly
after light onset, and the levels of both decrease as the day
progresses, reaching a minimum several hours after the onset
of darkness (Figure 4). It was confirmed that this pattern of
expression is governed by circadian rhythms, because the
cyclical expression of both mRNA and protein persists for at
least 48 h in the complete absence of light. The expression of
mdkb might also be governed by circadian rhythms, but the
data supporting this conclusion were less consistent than for
Mdka (Calinescu et al., 2009b). It is unknown if the expres-
sion of midkines in other brain regions of zebrafish is simi-
larly governed by circadian rhythms, but this possibility must
be considered when interpreting the significance of experi-
mentally induced changes in levels of expression.

The function of midkine
in neuroprotection and
retinal regeneration

It is well established that midkine is involved in the protec-
tion and repair in a variety of neural tissues (Muramatsu,
2010). The protective role of midkine in the CNS was first
demonstrated in the retina, where midkine promotes photo-
receptor survival following constant light exposure (Unoki

et al., 1994). In rats, an intraocular injection of midkine is
sufficient to rescue photoreceptors that would otherwise be
killed by exposure to constant light. This rescue of the pho-
toreceptors is both anatomical and functional (Masuda et al.,
1995). Interestingly, the normal levels of endogenous
midkine in the rat retina are up-regulated after pressure-
induced retinal ischaemia (Miyashiro et al., 1998). The fact
that midkine is up-regulated after retinal damage and pre-
vents light-induced death of photoreceptors leads to the
hypothesis that in the injured nervous system, midkine
might play an important role in neuroprotection.

Although basic retinal structure and function are evolu-
tionarily conserved among all vertebrates, there exist strik-
ing differences between vertebrate species in their ability to
regenerate retinal neurons following injury (Karl and Reh,
2010). The mammalian retina has a negligible ability for
neuronal regeneration, but retinas of non-mammalian ver-
tebrates, amphibians and fish (and birds to a lesser extent),
can fully regenerate the retina and restore function
(Hitchcock and Raymond, 2004). For zebrafish, any lesion
that kills retinal neurons is sufficient to induce complete
neuronal regeneration (see Hitchcock et al., 1992; Fausett
et al., 2008; Sherpa et al., 2008; Montgomery et al., 2010).
This regenerative neurogenesis relies upon Müller glia,
which also serves as the intrinsic retinal stem cell. Regardless
of the nature of the injury, the response of Müller glia and
their progeny is relatively stereotyped (Raymond et al.,
2006). At about 24 h post-lesion (hpl), Müller glia re-enter
the cell cycle. Progeny from individual Müller glia then
divide rapidly to form neurogenic clusters that envelope the
parent Müller glia. This proliferative phase peaks at about
72–80 hpl (Figure 5). Retinal progenitors within neurogenic
clusters then migrate to the sites of cell death, exit the cell
cycle and differentiate to replace the missing neurons
(Hitchcock et al., 1992; Fausett and Goldman, 2006;
Bernardos et al., 2007; Thummel et al., 2008; Nelson and
Hyde, 2010). Each type of regenerated neuron then re-
establishes its characteristic synaptic connections (Hitchcock
and Cirenza, 1994; Hitchcock, 1997).

One of the most utilized injury paradigms is a photolytic
lesion that selectively kills photoreceptors (Vihtelic et al.,
2006; Taylor et al., 2012; Thomas et al., 2012; Figure 5). The
advantage of this approach is that light-induced damage
selectively kills only photoreceptors and leaves other neuro-
nal classes undamaged. The selective death of photoreceptors
serves as a model for aspects of human photoreceptor dystro-
phies. As for all retinal injuries in zebrafish, the death of
photoreceptors (Figure 5A–D) stimulates Müller glia to
de-differentiate, enter the cell cycle and give rise to photore-
ceptor progenitors that migrate to the depleted outer nuclear
layer (ONL) (Figure 5E). These progenitor cells then exit the
cell cycle and differentiate into rod and cone photoreceptors.
Interestingly, the order of photoreceptor regeneration (cone
regeneration precedes rod regeneration) recreates the tempo-
ral pattern of photoreceptor genesis during retinal develop-
ment (Raymond et al., 2006).

Relatively little is known about the molecular mecha-
nisms that govern the ability of Müller glia to de-differentiate
and re-enter the cell cycle, though this is presently being
intensely investigated (Qin et al., 2009; Calinescu et al.,
2009a; Craig et al., 2010; Meyers et al., 2012; Nelson et al.,

Figure 4
Circadian regulation of Mdka levels in the adult zebrafish retina. The
expression of Mdka increases in anticipation of light onset and
decreases throughout the daylight hours, reaching a minimum
during the night.
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2012; 2013; Ramachandran et al., 2012; Wan et al., 2012).
Studies to date indicate that dying neurons are likely to signal
to Müller glia their imminent demise, and key transcriptional
regulators and signalling pathways within Müller glia govern
their ability to re-enter the cell cycle. For example, it was
recently discovered that dying photoreceptors synthesize
TNF-α (Nelson et al., 2013), which serves as a potential par-
acrine signal to Müller glia (see also Rattner and Nathans,
2005; Zhou et al., 2012). Similarly, recent studies have shown
that induction of the transcription factors ascl1a achaete-
scute complex-like 1a (Ascl1a) (Ramachandran et al., 2010),
Stat3 (Nelson et al., 2012) and Insm1a (insulinoma-associated
1a) (Ramachandran et al., 2012) are required for Müller glia to
re-enter the cell cycle.

Though they have yet to be studied experimentally, mid-
kines are hypothesized to also be important in neuronal
regeneration in the zebrafish retina. The presence of midkines
in the zebrafish retina was first discovered in a microarray
screen for genes whose expression is induced by photorecep-

tor death and during photoreceptor regeneration (Calinescu
et al., 2009a). The microarray data were validated both by
qRT-PCR and in situ hybridizations. Following photoreceptor
death, mdka expression expands from its restricted expression
in HCs (Figure 3A) to cells throughout the INL and ONL
(Figure 5C). Similarly, mdkb expression expands from the
inner tier of the INL to cells throughout this cellular layer,
including HCs (not shown). As shown by in situ hybridiza-
tion, this broadening of the expression within the INL
appears to be at a relatively low level. Markedly, however, the
expression of both midkine paralogues is induced at high
levels in Müller glia that have re-entered the cell cycle and in
dividing photoreceptor progenitors (Figure 5C,E). This de
novo induction of mdka and mdkb in Müller glia suggests an
important role for these cytokines in photoreceptor regenera-
tion. As discussed above, separate functions have been iden-
tified for Mdka and Mdkb in the developing brain of zebrafish
(Liedtke and Winkler, 2008; Luo et al., 2012). The fact that
both paralogues of midkine have coincident expression in the

Figure 5
Midkine expression in zebrafish retinal regeneration. A: Cone photoreceptors are immunolabelled (red signal) in an unlesioned retina. B:
Photoreceptors are nearly completely killed following exposure to a photolytic lesion. C: In situ hybridization showing that mdka is expressed in
proliferating photoreceptor progenitors (pink label) following photoreceptor death. The mdka message co-localizes with antibody staining for
bromodeoxyuridine (BrdU, green signal). D: Fourteen days following the onset of a photolytic lesion, rod (not shown) and cone photoreceptors
(red signal) are regenerated. E: Timeline of the different processes that occur in the adult zebrafish retina after light-induced damage and the
proliferative response of Müller glia. The pink colour represents the onset and duration of mdka expression in Müller glia and photoreceptor
progenitors. Scale bar = 25 μm (C) and 50μm (A, B and D). GCL, ganglion cell layer; INL, inner nuclear layer; ONL, outer nuclear layer; dpl: days
post-lesion.
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proliferating Müller glial suggests that both cytokines may
govern common cellular functions during neuronal regenera-
tion. Further studies are needed to understand the function of
these midkines during retinal regeneration.

Midkine receptors in the retina

As a growth factor, midkine exerts its function through
binding with a variety of receptors (see Sakamoto and
Kadomatsu, 2012), including anaplastic lymphoma kinase
(ALK) (Stoica et al., 2002), low density lipoprotein receptor
related protein 1 (LRP1) (Muramatsu et al., 2000), integrins
(Muramatsu et al., 2004), Notch2 (Huang et al., 2008), and
cell surface proteoglycans such as syndecan, glypican
(Kurosawa et al., 2001), neuroglycan-C (Ichihara-Tanaka
et al., 2006) and the receptor protein tyrosine phosphatase
β/ζ (RPTP β/ζ) (Maeda et al., 1999).

Although all the proposed midkine receptors are
expressed in the vertebrate retina (Table 1), at present it
remains unclear which receptor, or combination of receptors
(see below), transduce midkine function in this tissue. One
possibility is that, as in other tissues, ALK is involved in the
midkine-induced proliferation (Reiff et al., 2011). Also, a
recent study has shown that in the developing mouse retina,
notch2 is expressed in progenitors and Müller glia (Zhu et al.,
2013), an expression pattern that is reminiscent of that for
mdka in the developing zebrafish. In addition, in zebrafish the
cellular expression of mdka and notch2 are similar during

retinal regeneration (Cameron et al., 2005; Calinescu et al.,
2009a). Based on these data, it would be reasonable to evalu-
ate the potential functional relationship between Mdka and
either ALK or Notch2 both during development and regen-
eration in the zebrafish retina. Interestingly, in mice it has
been shown that RPTPβ/ζ (receptor protein tyrosine phos-
phatase β/ζ) inhibits the proliferation of oligodendrocyte pre-
cursor cells and promotes their development into mature
oligodendrocytes (Lamprianou et al., 2011). Whether or not
Mdka regulates cell cycle kinetics in the developing retina
through binding RPTPβ/ζ is still unclear. A potential complex-
ity is that midkine receptors may function as components in
a molecular complex. For example, RPTPβ/ζ and LRP6 can be
co-immunoprecipitated (Muramatsu et al., 2004). Clearly, ini-
tiatives are needed to identify and functionally characterize
midkine receptors and additional downstream signalling
pathways in both the developing and regenerating retina.

Conclusions

As in other regions of the mammalian brain, retinal neurons
that are lost through diseases or injury are not replaced. In
distinct contrast, in the zebrafish, spontaneous stem cell-
based regeneration occurs to replace lost neurons and restore
lost function. In zebrafish, Müller glia can re-enter the cell
cycle and regenerate all neuronal types – a process in which
midkine may play a central role. A better understanding of
this regulated reprogramming by Müller glia could provide

Table 1
Receptors for midkine and their expression patterns in retina

Receptor Known expression pattern in retina References

ALK Neural layer of E11.5 and E13.5 mouse retina Vernersson et al., 2006.

Notch2 Mouse Müller glia Roesch et al., 2008;

Mouse E9.5 optical vesicle, E11.5 and E14.5 retinal progenitors, presumptive
future Müller glial cells at P6, adult Müller glia

Zhu et al., 2013;

Weak expression in adult zebrafish retina but up-regulated after lesion Cameron et al., 2005.

LRP1 RGC in normal rat retina Shi et al., 2008.

Integrins Developing chick retina (α4; β1; α6 β1 integrins) Leu et al., 2004; Cann et al., 1996;
de Curtis et al., 1991)

Mouse RGC and undifferentiated retinal neuroblasts during axon extension
and migration (α4 β1 integrin)

Hikita et al., 2003.

Tiger salamander retina (α1–6 integrins) Sherry and Proske, 2001.

Syndecan-3
(N-Syndecan)

Transiently expressed in the neural fibres at early post-natal stages and in the
axons of RGCs in rat retina

Inatani et al., 2002.

Glypican Optic nerve, NFL of the optic cup and weakly in the INL at E16 rat retina Karthikeyan et al., 1994.

NGC NFL and IPL of post-natal rat retina Inatani et al., 2000.

RPTP β/ζ Chick Müller glia culture Shock et al., 1995;

Mouse E13 retina Horvat-Bröcker et al, 2008;

Mouse E13 retina (precursor cells) and mature retina (RGC, HC, NFL, IPL, OPL) Klausmeyer et al., 2007.

ALK, anaplastic lymphoma kinase; HC, horizontal cell; INL, inner nuclear layer; IPL, inner plexiform layer; LRP1, low-density lipoprotein
receptor-related protein 1; NFL, nerve fibre layer; NGC, neuroglycan C; OPL, outer plexiform layer; RGC, retinal ganglion cells; RPTP β/ζ,
receptor protein tyrosine phosphatase β/ζ.
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insights into reprogramming potential stem cells in the mam-
malian retina and brain. It is not too speculative to infer that
midkine, or drugs acting on midkine signalling pathways,
may have therapeutic use for stimulating neuronal regenera-
tion in the mammalian CNS. Key to this approach will be
knowledge of which receptor or combination of receptors
mediate midkine function in the brain. An immediate goal
will be to link the intrinsic neuronal regeneration in zebrafish
and the molecular biology of midkine signalling so that
potential therapeutic approaches for treating neuronal
degeneration in the human retina can be developed.
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