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Hyperlipidemia has been proposed as a risk factor of dementia and cognitive decline.
However, the findings of the relationship between cholesterol level and cognitive/brain
function have been inconsistent. Here, using a well-controlled sample from the
Parkinson’s Progression Markers Initiative (PPMI), we investigated the probable non-
linear relationship between plasma total cholesterol (TC) level, gray matter volume (GMv),
and cognitive performance in 117 non-demented subjects (mean age, 61.5 ± 8.9 years),
including 67 Parkinson’s disease (PD) patients and 50 demographically matched
controls. A quadratic relationship between semantic fluency (SF) performance and TC
levels was identified. Within the subjects with a desirable TC level (TC < 200 mg/dl),
low TC (lTC) levels were associated with reduced SF performance, as well as reduced
GMv in three medial temporal regions [including bilateral anterior hippocampus (HIP)]. In
contrast, no significant relationship between TC and cognition performance/GMv was
found in individuals with a high cholesterol level (i.e., TC ≥ 200 mg/dl). Further region of
interest (ROI)-based analysis showed that individuals with TC levels ranging from 100 to
160 mg/dl had the lowest GMv in the medial temporal regions. These findings suggest
that low-normal TC level may be associated with reduced cognitive function and brain
atrophy in regions implicated in neurodegenerative diseases, adding to a growing body
of literature supporting a probable non-linear relationship between cholesterol level and
brain health. However, this finding needs to be verified with other large public cohort
data that do not include PD patients.
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INTRODUCTION

Dyslipidemia, especially hyperlipidemia, is highly prevalent in adults worldwide (World Health
Organization, 2014). In the United States, the prevalence of hyperlipidemia is even more alarming:
39.7% of adults have borderline high (>200 mg/dl) or high (>240 mg/dl) total cholesterol (TC)
level (Mackey et al., 2017). This is worrisome as hyperlipidemia [high TC (hTC)] has been shown
to be a strong predictor of cardiovascular disease (CVD) and is a core metric in most CVD risk
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calculators. In addition, studies have suggested that hTC in
midlife is also a potential risk factor for dementia in late life
(Shepardson et al., 2011; Anstey et al., 2017).

However, while the relationship between cholesterol levels
[TC and its subcomponents: low-density lipoprotein (LDL),
high-density lipoprotein (HDL), and triglycerides (TGs)] and
cognitive functions has been extensively studied, the findings
have been largely inconsistent. For example, while some studies
have found higher TC and/or higher LDL was associated with
poorer cognitive performance (Yaffe et al., 2002; Carlsson et al.,
2009; Sparks et al., 2010; Meusel et al., 2017) or a higher risk of
dementia such as Alzheimer’s disease (AD) (Kivipelto et al., 2005;
Hayden et al., 2006; Solomon et al., 2009), others have found no
such effects (Mielke et al., 2010), or even the opposite pattern, i.e.,
higher TC and/or higher LDL levels were associated with better
cognitive performance (Elias et al., 2005; West et al., 2008; van
den Kommer et al., 2012; Aine et al., 2014; Lv et al., 2016) or
lower risk of dementia/cognitive decline (Mielke et al., 2005; Reitz
et al., 2005, 2010; van den Kommer et al., 2009). In addition,
although many studies have suggested that HDL is positively
correlated with cognitive functions (van den Kommer et al., 2012;
Elias et al., 2014) and high HDL level is associated with reduced
risk of future dementia (Reitz et al., 2010; Ancelin et al., 2013),
exceptions can be found (Ancelin et al., 2014), in addition to
null findings in many other studies. Many factors might have
contributed to the inconsistence, such as difference in study
samples (e.g., age, education, race, etc.) and neuropsychological
tests in different studies. One potentially important factor is that
there may be a non-linear relationship (e.g., a quadratic function)
between cholesterol levels and cognitive functions, as suggested
by several recent studies (Wendell et al., 2014, 2016; Lu et al.,
2017; Marcum et al., 2018).

Brain imaging studies of cholesterol level have been focusing
on cardiovascular risk/CVD. Among the few studies that have
investigated the relationship between cholesterol level and brain
structure/function, one of the most consistent findings is that
higher HDL levels have been linked to less brain atrophy in
middle-aged to older adults. With a group of 183 healthy adults
(mean age 58.4 years), HDL levels were found to be positively
correlated with gray matter volume (GMv) in bilateral temporal
poles, middle temporal gyri, temporo-occipital gyri, and left
superior temporal gyrus and parahippocampal region (Ward
et al., 2010). In another study involving healthy older controls
and individuals with mild cognitive impairment (MCI) or AD,
low HDL was associated with low hippocampal volume (Wolf
et al., 2004). In a very recent study with older adults (75 years
old or older) who had subjective memory complaints, HDL was
positively correlated with memory performance and gyrification
indices of bilateral insular and frontal opercular cortices (Kinno
et al., 2019). In a large longitudinal cohort study, higher HDL
levels were associated with less steep GMv decline in the
entorhinal cortex and parahippocampal gyrus, as well as a lower
risk of future cognitive impairment (Armstrong et al., 2019).

By contrast, the findings of the relationship between brain
structure/function and LDL or TC level have been less consistent.
For instance, with 82 cognitively normal older adults about the
same age (77.7–78.9 years old), Whalley et al. (2003) revealed

that total GMv negatively correlated with LDL and TC (Whalley
et al., 2003). Qiu et al. (2012) found a similar effect, but only
in men and only in the hippocampus (HIP) and the entorhinal
cortex (Qiu et al., 2012). Using fluorodeoxyglucose (FDG)-PET,
Reiman et al. (2010) found that higher TC in cognitively normal
adults (47–68 years old) was associated with hypometabolism in
the precuneus and parietotemporal and prefrontal regions, all of
which are known to be preferentially affected in AD (Herholz
et al., 2002). Using diffusion tensor imaging (DTI) techniques,
Williams et al. (2013) provided evidence suggesting that a higher
LDL was associated with reduced white matter integrity in the
right frontal and temporal regions, the superior longitudinal
fasciculus, and the internal/external capsules (Williams et al.,
2013). However, using resting-state functional MRI (fMRI)
techniques, Zhang et al. (2016) found that higher TC was
associated with both increased connectivity in the default mode
network and reduced connectivity in the salience network,
suggesting a more complicated picture (Zhang et al., 2016).
Furthermore, in several recent studies, higher LDL or TC
levels were linked to thicker cortical thickness (Leritz et al.,
2011; Coutinho et al., 2017), increased GMv in the frontal
cortex and the posterior cingulate cortex (PCC) (but only in
hypertensive adults) (Chung et al., 2018), and white matter
integrity (Aine et al., 2014), suggesting an opposite pattern, i.e.,
high cholesterol level could be potentially beneficial in middle-
aged to older adults.

Taken together, these previous studies suggest that the
relationship between cholesterol level and brain/cognitive
function warrants further research. In the present study,
we investigated the probable non-linear relationship
between plasma TC level, GMv, and cognitive performance
in a well-controlled and well-matched sample from the
Parkinson’s Progression Markers Initiative (PPMI) cohort.
Specifically, we tested two hypotheses derived from previous
studies. First, we predicted a quadratic effect between TC
and cognitive performance, i.e., an inverted U-shape,
with both low and hTC associated with lower cognitive
performance than mid-range TC. Second, accordingly, we
predicted that both low and hTC associated with reduced
GMv. These two hypotheses were examined in the whole
subject group as well as the subgroups that were defined
based on TC levels.

RESULTS

All data were downloaded from the PPMI website, and a
total of 117 participants were included in the present study
[44 female, 73 male; 67 Parkinson’s disease (PD) patients, 50
control participants]. In all data analyses (unless otherwise
specified), participants were divided into two groups: lTC group,
TC < 200 mg/dl (n = 69); and hTC group, TC ≥ 200 mg/dl
(n = 48).

The demographic data of the hTC group and the lTC group
are shown in Table 1. There were no significant differences
in age, years of education, the percentage taking medicine
for lowering TC, the percentage of PD patients, or Geriatric
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TABLE 1 | Demographic information.

Groups lTC (n = 69) hTC (n = 48) Group difference

Age 61.4 (9.7) 61.6 (7.7) n.s.

Education 15.1 (3.0) 15.3 (2.9) n.s.

Gender (female%)a 29% 50% p = 0.021

Medicine (taking med%)a 34.8% 22.9% n.s.

PD/control (PD%)a 40.6% 45.8% n.s.

APOE ε4 carrier (%)a 36.2% 25% n.s.

Geriatric Depression Scale 5 (1.2) 5.1 (0.9) n.s.

Total cholesterol 164.0 (24.6) 222.5 (16.7) p < 10−18

Low-density lipoprotein 88.7 (22.2) 133.4 (21.4) p = 0.008

High-density lipoprotein 53.6 (18.4) 63.9 (22.7) p < 10−26

Triglycerides 106.7 (50.5) 107.7 (54.2) n.s.

Data are presented as mean (standard deviation). Subjects were divided into
two groups: low total cholesterol (lTC) group, subjects with desirable TC range
(TC < 200 mg/dl), and high TC (hTC) group, subjects with borderline-high or high
TC level (TC ≥ 200 mg/dl). aContingency χ2 test. PD, Parkinson’s disease; n.s.
not significant.

Depression Scale scores. The percentage of female was lower
in the lTC than in the hTC group, but the significance did
not survive after being corrected for multi-comparison. As
expected, there were significant differences in TC between
groups (p < 0.001). Similar group differences were found
in LDL (p < 0.001) and HDL (p < 0.01) but not in
TG (Table 1).

Multivariate analysis of covariance (MANCOVA) analysis
revealed that there was no significant group difference in all
cognitive measurements between lTC and hTC (at least p> 0.05;
Table 2). However, a significant effect was found between
TC and semantic fluency (SF) total score [F(1,107) = 6.262,
p = 0.014]. To further test whether there is a quadratic
effect between TC and SF total score, a quadratic regression
analysis was performed. Indeed, a significant quadratic effect was
found between TC and SF total score (p = 0.013; Figure 1).
Additional partial Pearson correlation analyses revealed that in
the lTC group, TC was positively correlated with SF total score
(r = 0.337, p < 0.01; Figure 2A), but not in the hTC group
(p > 0.05; Figure 2B), and similar results were obtained when
HDL was controlled.

FIGURE 1 | A quadratic relationship between semantic fluency (SF) scores
and total cholesterol (TC) levels. The adjusted SF total scores were calculated
by regressing out the covariates (age, gender, education years, Geriatric
Depression Scale, patient category, taking medicine for lowering cholesterol,
and APOE ε4 carrier; see section “Materials and Methods”). *Individual
subjects’ data.

Voxel-based morphometry (VBM) analyses of GMv were
conducted separately for the lTC and hTC groups, using the TC
as the covariate, after controlling for other potential confounding
factors (see section “Materials and Methods”). The VBM analyses
revealed that in the lTC group, TC was positively correlated
with GMv in three medial temporal regions, including the
bilateral anterior HIP/parahippocampal cortex (PHC), and right
inferior temporal lobe (ITL) [p < 0.05 cluster-wise family-
wise error rate (FWE) corrected, Figure 3; see Supplementary
Table S3 for coordinates of the peak voxel for these three
clusters]. In the hTC group, however, no voxels survived at
the threshold of p < 0.001 [threshold-free cluster enhancement
(TFCE) uncorrected].

In the region of interest (ROI)-based analysis, the GMv of
the three clusters identified in Figure 3 was extracted, summed,

TABLE 2 | Neuropsychological test scores.

Cognitive domains Tasks lTC (n = 69) hTC (n = 48) Group Difference

Global MoCA 27.6(1.9) 27.6(2.1) n.s.

Visuospatial Line Orientation Score 13.1(2.2) 13.1(1.6) n.s.

Executive abilities—working memory Letter Number Sequencing Raw Score 10.6(2.7) 10.7(2.6) n.s.

Semantic Fluency Total Score 47.8(11.3) 51.9(10.0) n.s.

Processing speed—attention Symbol Digit Modalities Score 43.7(11.3) 43.6(10.8) n.s.

Memory HVLT-R Immediate Recall 24.9(4.2) 25.3(4.2) n.s.

HVLT-R Delayed Recall 8.3(2.6) 8.6(2.3) n.s.

HVLT-R Retention 0.8(0.2) 0.9(0.2) n.s.

HVLT-R Discrimination Recognition 9.8(2.4) 9.6(3.1) n.s.

Data are presented as mean (standard deviation). Low total cholesterol (lTC), subjects with TC < 200 mg/dl; high TC (hTC), subjects with TC ≥ 200 mg/dl. HVLT-R,
Hopkins Verbal Learning Test-Revised; MoCA, the Montreal Cognitive Assessment; n.s., not significant.
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FIGURE 2 | The relationship between semantic fluency (SF) scores and total cholesterol (TC) in the low TC (lTC) and the high TC (hTC) group, separately. The
adjusted SF total scores were significantly correlated with TC levels in the lTC group (r = 0.337, p < 0.01) (A), but not in the hTC group (r = 0.069, p > 0.05). (B) lTC
group, participants with TC < 200 mg/dl; hTC group, participants with TC ≥ 200 mg/dl.

FIGURE 3 | Low-normal total cholesterol (TC) levels correlated with reduced
gray matter volume (GMv) in three medial temporal regions in the low TC (lTC)
group. Three significant clusters were identified, including the bilateral anterior
hippocampus (HIP)/parahippocampal cortex (HPC), and the right inferior
temporal lobe (ITL). Age, gender, education years, Geriatric Depression Scale,
patient category, whether or not taking medicine for lowering cholesterol,
apolipoprotein (APO)E ε4 carrier status, and brain size were controlled (see
section “Materials and Methods”). Thresholds, p < 0.001 (Threshold-Free
Cluster Enhancement, uncorrected, voxel-wise), p < 0.05 [family-wise error
rate (FWE) corrected at cluster level], and cluster size (≥50 voxels). TFCE,
threshold-free cluster enhancement.

and normalized with total intracranial volume (TIV). The total
normalized GMv of three clusters was positively correlated with
SF total score (r = 0.351, p < 0.01; Figure 4). Mediation
analyses among total GMv of the three clusters, SF total score,
and TC were conducted to disentangle the relationship among
these three variables. A significant indirect effect of GMv on
SF total score through TC was found (standardized indirect
effect = 0.22, 95% CI [0.04–0.45] in 5000 bootstrap samples;
Figure 5).

In an additional analysis to further investigate the relationship
between TC and GMv, we divided all the subjects into five groups
based on TC levels (Figure 6; also see section “Materials and
Methods”). ANCOVA revealed a significant group effect for the
total GMv of the three ROIs [F(4,112) = 6.87, p < 0.0001].
Post hoc analyses showed that groups with TC level below 160

FIGURE 4 | Semantic fluency (SF) total score correlated with gray matter
volume (GMv) in the medial temporal regions in the low total cholesterol (lTC)
group. Pearson correlation analysis revealed a significant correlation between
the normalized total GMv of the three clusters identified in Figure 3 and SF in
the lTC group (r = 0.351, p < 0.01). ROI, region of interest. ** p < 0.01.

has significantly lower GMv than all other four groups (at least
p< 0.05; Figure 6).

DISCUSSION

In the present study, using a well-matched and well-controlled
sample from the PPMI dataset, we provided evidence suggesting
a non-linear relationship between TC level and cognitive
performance/GMv. Specifically, the data suggested that
low-normal TC (<160 mg/dl) was associated with reduced
performance on SF task and reduced GMv in three medial
temporal regions, including bilateral anterior HIP. Further
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FIGURE 5 | The positive effect of gray matter volume (GMv) in medial
temporal regions of interest (ROIs) on semantic fluency (SF) performance was
mediated through total cholesterol (TC). The standardized indirect effect from
GMv to SF was significant, a * b = 0.22, 95% CI (0.04–0.45) in 5000
bootstrapped samples, and the direct effect was not significant (p = 0.90).
Note: ***p < 0.001; *p < 0.05.

FIGURE 6 | Gray matter volume (GMv) of the medial temporal regions of
interest (ROIs). Participants with total cholesterol (TC) level lower than
160 mg/dl had significantly lower total GMv in the three medial temporal ROIs
(see Figure 3) than the other four groups (at least p < 0.05). Error bars
represent SEM. GMv, gray matter volume; TC, total cholesterol.

mediation analysis suggested that in these participants, the effects
of GMv on reduced SF performance were mediated through TC.

The non-linear (inverted U-shaped) relationship between TC
and cognitive performance in the present study is consistent
with findings from several recent studies (Wendell et al., 2014,
2016; Lu et al., 2017; Marcum et al., 2018). Using data from
the Baltimore Longitudinal Study of Aging, Wendell et al.
(2014) identified two opposite non-linear relationships between
cholesterol levels and performance on several neuropsychological
tests (including letter verbal fluency) in healthy older adults (age
54–83 years); that is, a U-shape in those 70 or older (i.e., worst
performance with midrange cholesterol level) and an inverted
U-shape in those younger than 70 (i.e., best performance with
midrange cholesterol level); a similar non-linear relationship was
also found with LDL (Wendell et al., 2016). In a cohort study in
China (age 50–65 years), Lu et al. (2017) identified an inverted
U-shape relationship between TC/LDL and neuropsychological

test scores in men versus a U-shaped relationship between HDL
and neuropsychological test scores in women (Lu et al., 2017).
These studies suggest that the relationship between cholesterol
levels and cognitive performance is likely non-linear, and the
precise relationship might depend on age, gender, and probably
other demographic factors as well. Highly relevant to the present
study, a large cohort study [Adult Changes in Thought (ACT)
Study, n = 6821] revealed older adults (60–80 years old) with low
(120 mg/dl) and high (210 mg/dl) non−HDL cholesterol levels
had modestly higher risk of AD than those with intermediate
(160 mg/dl) level (Marcum et al., 2018). Compared to those
previous studies with larger samples, the present study does not
have enough power to investigate the probable different roles of
age and gender, but the results are in a general agreement with
findings from these recent studies (Wendell et al., 2014, 2016;
Marcum et al., 2018), especially since the majority of the subjects
in the PPMI dataset were 70 or younger (similar results were
observed after excluding subjects older than 70).

The present study extended the abovementioned results
of non-linear relationship to a simple yet widely used
neuropsychological test for the detection of dementia: SF (more
specifically, animal fluency) test. SF performance has been
linked to medial temporal lobe (MTL) and anterior temporal
cortex (Pelletier et al., 2017), and there is a large body of
evidence supporting a diagnostic role of SF test in dementia
(Sebaldt et al., 2009; Sutin et al., 2019), including AD (Henry
et al., 2004). However, few studies have identified a significant
relationship between cholesterol level and SF performance. One
study suggests that higher levels of non-HDL cholesterol are
associated with poorer SF performance (Takeda et al., 2017).
Another study reveals evidence suggesting higher levels of
midlife TC levels might be linked to poorer SF performance
and episodic memory in late life (Solomon et al., 2009). The
results from these previous studies are different (even opposite)
from the present study; this could be due to multiple factors,
including difference in demographics, i.e., Hispanics (Takeda
et al., 2017) versus mainly Caucasians in the present study. Future
studies are needed to consolidate the inconsistence. However,
the present study is in line with several previous studies using
letter verbal fluency and with sample sizes much larger than
the present study. For instance, Elias et al. (2005) suggested
that word verbal fluency (not SF) is positively correlated with
TC (Elias et al., 2005), and Ylilauri et al. (2017) provided
evidence suggesting that moderate egg intake is associated with
better cognitive performance (including word verbal fluency),
which implicates that maintaining a certain cholesterol level
might be beneficial to maintain cognitive function in older
adults since eggs are a major source of dietary cholesterol
(Ylilauri et al., 2017). Taken together, it is possible that both low
and high cholesterol levels are associated with poor cognitive
performance and increased risk of cognitive decline, and low
cholesterol level might be associated with early pathological
changes similar to those seen in AD and dementia (especially
given the diagnostic role of SF in dementia). This hypothesis
is further supported by the findings of reduced GMv in medial
temporal regions in adults with lTC (TC < 160 mg/dl) in the
present study (see below).
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Underlying neural mechanism of the relationship between
cholesterol levels and cognitive performance/decline has not
been well established. While studies have generally agreed that
high HDL levels might be beneficial to brain health (Wolf
et al., 2004; Ward et al., 2010; Armstrong et al., 2019; Kinno
et al., 2019), the relationship between hTC/LDL levels and brain
function/structure remains controversial; both negative (Whalley
et al., 2003; Reiman et al., 2010; Qiu et al., 2012; Williams
et al., 2013) and positive (Leritz et al., 2011; Aine et al., 2014;
Coutinho et al., 2017; Chung et al., 2018) relationships have been
identified, even in the same sample (Zhang et al., 2016). In the
present study, we provided evidence suggesting low-normal TC
(TC < 160 mg/dl) is associated with reduced GMv in medial
temporal regions (including bilateral anterior HIP). Given the
fact that GMv loss in medial temporal regions and HIP has
been repeatedly reported in prodromal AD (Bell-McGinty et al.,
2005; Whitwell et al., 2007) and hippocampal volume in midlife
has been proposed as a strong risk predictor of AD (Coupé
et al., 2019), the link between low-normal TC and GMv loss in
these regions in the present study is worrisome, as it is possible
that low-normal TC might potentially predispose individuals
to AD or dementia. Indeed, a recent study has demonstrated
a U-shaped association between AD and non-HDL cholesterol
levels in old adults (60–79 years old) (Marcum et al., 2018). Future
longitudinal studies are needed to investigate the relationship
between low-normal TC range, brain health (such as GMv in
MTL), and risk of future dementia such as AD.

Nonetheless, our findings supported the assumption from
Wendell et al. (2016) that there might be distinct neural
correlates underlying the detrimental effect of low versus hTC
on cognitive functions (Wendell et al., 2016). That is, lTC
was cognitively detrimental because it has an adverse effect
on brain microstructure and function, while the association
between hTC and poor cognition might be mediated through
other cardiovascular risk factors comorbid with hTC. In line
with this hypothesis, the present study demonstrated that only
in participants with desirable TC levels (i.e., TC < 200 mg/dl),
TC is positively correlated with GMv in the medial temporal
regions (including bilateral HIP), and the individuals with
TC less than 160 mg/dl have the lowest GMv in these ROIs
than others (Figure 6). The lack of significant correlation
between TC and cognitive performance and GMv in the hTC
group (i.e., TC > 200 mg/dl) might be due to a small
sample size and insensitive measurement (i.e., SF and GMv
might be insensitive to detect cognitive decline/brain injury
associated with hTC), among other potential factors. Future
studies utilizing multi-model neuroimaging methods and more
comprehensive neuropsychological battery might help to gain a
better understanding of how TC and its subcomponents affect the
human brain/cognitive function.

There are several limitations of the present study. First, the
PPMI cohort used in the present study does not include old-
old participants (i.e., age ≥ 80). Therefore, our results cannot
be generalized to these old-old population. Previous studies have
shown that hTC might be beneficial to this population (Lv et al.,
2016; Wendell et al., 2016). However, this association might
simply reflect selective survival, as a recent meta-analysis failed to

find any relationship between late-life TC and dementia. Future
studies are needed to fill this gap regarding the relationship
between late-life TC and cognitive decline/dementia. Second,
we did not find any significant neural correlates in participates
with higher-than-normal TC. This could be due to the fact that
the present study did not have enough power or the neural
mechanism between TC and cognitive/brain function in the hTC
range might be different (i.e., different neuropsychological tests
and/or brain imaging techniques are needed). Future studies
might need to replicate our study with a larger sample size
and with more comprehensive neuropsychological tests and/or
multimodal neuroimaging techniques. Third, the apolipoprotein
E (ApoE) is the major transporter of cholesterol in the brain
and the major Apo regulating lipoprotein metabolism. ApoE
is encoded by the polymorphic APOE gene. APOE ε4 is the
gene variant that is associated with increased risk of late-
onset sporadic AD and may potentially predispose carriers to
hypercholesterolemia. In the present study, approximately one-
third of PD patients and controls were APOE ε4 carriers, with
a prevalence slightly higher than the general population in the
United States (approximately 15%). However, the relatively small
sample size limited our capability of detecting a significant
effect of APOE ε4 status on TC, LDL, HDL, or TG levels (at
least p > 0.5) (this was further complicated by the fact that
nearly 30% of participants were taking medication to control
blood cholesterol levels; Table 1). Therefore, future longitudinal
studies with a large sample size might be necessary to fully
explore the potential interactions between APOE ε4, age, and
cholesterol levels on brain structure and function (especially
in the context of AD risk). Fourth, while the results from
the present study and several previous studies suggest that
it might be beneficial to maintain certain cholesterol levels
(i.e., TC > 160 mg/dl) in middle-aged to older adults, this
conclusion should be taken with caution as individuals who
are actively enrolled in a study are likely to be on top of
their healthcare and might have reduced cardiovascular issues
compared to the general population. In addition, the results
cannot be generalized to the old-old population (i.e., 80 or
older) as the participants were relatively young in the PPMI
cohort (with an average around 61.5 years old). Therefore, the
comprehensive relationship between cholesterol levels (including
each of the subcomponents), cognitive function, risk of dementia,
and brain health/function remains an open question that needs to
be addressed in future studies.

In summary, our findings suggested that adults with low-
normal range TC are likely to have smaller GMv in the medial
temporal regions that have been shown to be preferentially
affected in AD, along with a reduced performance in SF that
has been used as a tool in dementia diagnosis. In addition, the
mediation analysis suggests that TC mediates the relationship
between brain atrophy and SF performance in those adults.
Taken together, the present study might have important clinical
implications that the optimal TC range might be somewhere
between 160 and 200 mg/dl, so cautions should be taken to
control the potential adverse relationship between lTC and
GMv, while being aggressive to control the cardiovascular
risk associated with hTC. Future studies and replications are
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warranted to identify the causal relationships among TC, brain
health (including brain atrophy), and cognitive performance.

MATERIALS AND METHODS

Participants
The PPMI study is a multicenter PD study designed to identify
PD-related biomarkers. Detailed information about the study
design can be found elsewhere (Marek et al., 2011) and at
the website1. This study was approved by the institutional
review boards of 21 research sites located in Australia, Europe,
and the United States (see https://www.ppmi-info.org/about-
ppmi/ppmi-clinical-sites/for a complete list). Written informed
consent from every participant was obtained prior to study
enrollment. Per statement on the PPMI website, all methods
were performed in accordance with the relevant guidelines and
regulations. The detailed info is too long to be included in
a paper but can be found at the website2, especially under
Study Design3. All participants were evaluated by comprehensive
clinical (motor, neuropsychological, and cognitive) and imaging
[dopamine transporter (DAT) imaging] assessments and bio-
sampling at screening, baseline, and follow-up sessions. PD
diagnosis within 2 years and DAT deficit were required
for PD participants’ eligibility at screening. Healthy controls
were matched to PD patients and had normal cognition, no
neurological disorders, and no first-degree family member with
PD. The present study used a subset of the PPMI participants
(n = 125, 45 female, 80 male) with the following criteria: available
magnetization-prepared rapid gradient-echo (MPRAGE) images
and TC measurements. PD patients and controls were collapsed
together (no significant difference between PD and controls were
found in TC, and similar but less significant results were observed
with only PD patients or controls, see Supplementary Material),
and disease status was included as a covariate in the data analysis.
Of the 125 participants, six participants with geriatric depression
scale higher than 8 were excluded, and two additional participants
with extreme TC level (>300 or <100) were also excluded. The
demographic information of the remaining 117 participants (44
female, 73 male; 67 PD patients, 50 control participants) is shown
in Table 1, and the MR images from the 117 participants passed
the quality control following the standard procedure and the
default criteria in the software packages (see below).

Neuropsychological Tests
Per PPMI website1, neuropsychological tests of the following
five domains were administered: Montreal Cognitive Assessment
(MoCA)-global cognitive function; SF and Letter–Number
Sequencing-working memory and executive function; Symbol–
Digit Modalities Test-speed of information processing; Hopkins
Verbal Learning Test-Revised (HVLT-R)-learning and memory;
and Benton Judgment of Line Orientation 15-item (split-
half)-visuospatial function (Table 2). The neuropsychological

1https://www.ppmi-info.org/
2www.ppmi-info.org/
3https://www.ppmi-info.org/study-design/

tests used in the PPMI study were conducted in a strictly
controlled environment according to the general test guidelines
for PPMI (see http://www.ppmi-info.org/wp-content/uploads/
2010/04/PPMI-General-Operations-Manual.pdf Section 6 for
detailed information). Specifically, all the tests happened in a
quiet room, with a properly trained examiner and an examinee
seated on opposite sides of a table.

Cholesterol Measurements (Plasma)
Blood sample collection and processing were described in
detail in the PPMI protocol manual1. Blood samples were
obtained during 8:00–10:00 a.m. after an overnight fast. Plasma
concentrations of TC, TG, LDL, and HDL were measured.
In all data analyses (unless otherwise specified), participants
were divided into two groups: lTC group, TC < 200 mg/dl
(n = 69); and hTC group, TC ≥ 200 mg/dl (n = 48). See
Table 1 for demographic information of each group. In addition,
the demographics of PD patients versus controls are shown in
Supplementary Table S1. The neuropsychological test scores of
four subgroups, PD with lTC level (lTC PD), PD with hTC level
(hTC PD), controls with lTC (lTC Controls), and controls with
hTC level (hTC Controls), are shown in Supplementary Table S2.

MRI Acquisition and Preprocessing
High-resolution T1-weighted images were acquired with
3D-MPRAGE at 1 mm3

× 1 mm3
× 1.5 mm3 (or

1 mm3
× 1 mm3

× 1.2 mm3) resolution. Detailed acquisition
parameters can be found at the PPMI website4. The software
package SPM125 and the toolbox Computational Anatomy
Toolbox (CAT, version 12.5)6 were used for preprocessing and
VBM analyses. Default processing pipeline settings of the CAT
were applied, including tissue segmentation, normalization,
quality control, and smoothed with an 8-mm full-width at
half-maximum (FWHM) Gaussian kernel.

Statistical Analysis
The statistical analyses were performed using standard methods
in SPSS 25.0 (Chicago, IL, United States), MATLAB 2018a (Math
Works, Natick, MA, United States). All statistical analyses were
two-tailed. Because of the assumption of a non-linear relationship
between TC and cognitive/brain function (which was supported
by a quadratic function between TC and SF test scores, see
Figure 1), we divided the participants into two groups, a lTC
group, i.e., with a desirable TC level (TC< 200 mg/dl) and a hTC
group, i.e., with a borderline high or hTC level (TC ≥ 200 mg/dl).
Unless otherwise explicitly specified, all analyses were conducted
independently for each of the two groups.

Contingency χ2 tests and two-sample t-tests were used to
examine probable group differences in demographics between the
lTC and the hTC groups (Table 1).

MANCOVA was used to test the relationship between
cognitive measurements and TC in the entire participant group.

4http://www.ppmi-info.org/wp-content/uploads/2017/06/PPMI-MRI-
Operations-Manual-V7.pdf
5www.fil.ion.ucl.ac.uk/spm/software/spm12/
6www.neuro.uni-jena.de/cat/
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In this analysis, nine cognitive measurements were defined as
dependent variables: MoCA Score, Line Orientation Score, Letter
Number Sequencing Raw Score, SF Total Score (the total number
of animal, vegetable, and fruit words), Symbol Digit Modalities
Score, HVLT-R Immediate Recall, HVLT-R Delayed Recall,
HVLT-R Retention, and HVLT-R Discrimination Recognition.
TC groups [defined as a dichotomous variable: hTC (1), lTC
(0)] were entered in the model as fixed factors. Independent
variables were TC and seven covariates: age, gender, education
years, Geriatric Depression Scale, patient category [defined as a
dichotomous variable: PD (1) or control (0)], taking medicine
for lowering cholesterol level [defined as a dichotomous variable:
yes (1), no (0)], and APOE ε4 carrier [defined as a dichotomous
variable: yes (1), no (0)]. Additional post hoc comparisons,
quadratic correlation, and partial Pearson correlation within each
group were performed, controlling for the abovementioned seven
covariates. Similar results were observed with raw scores and
without covariates.

In addition, we also investigated impacts of LDL, HDL, and
TG on cognitive performance and GMv. Overall, the LDL results
were highly similar to the main results with TC likely due to a
strong correlation between LDL and TC in this sample (r = 0.87,
p < 10−36, Supplementary Material). The results with LDL,
HDL, and TG can be found in the Supplementary Material.

Voxel-Based Morphometry Analysis
In the voxel-wise analysis, second-level multiple regression was
used to test the effect of TC level on GMv, controlling for
seven covariates listed above plus the TIV. The voxel and
cluster thresholds were set at non-parametric p < 0.001 with
TFCE (5000 permutations, and cluster-level p < 0.05 FWE-
corrected) and 50 voxels, respectively (Smith and Nichols,
2009). GM threshold of 0.1 was used to ensure that voxels
with less than 10% likelihood of GM were not included
in this analysis.

In the ROI-based analysis, significant clusters from the voxel-
wise analysis were identified as three ROIs. GMv of the three
ROIs was calculated by adding all the voxels that have higher
than 10% likelihood of being GM. Then, GMv were normalized
by dividing the TIV, and times a constant 1000. Normalized GMv
was then entered into the correlation analysis with SF score and
the mediation analysis with SF score.

In addition, we further divided the 117 subjects into five
groups based on TC levels [(100, 160), (160, 180), (180, 200),
(200, 220), and (220, 300)]. In this way, the number of subjects
was roughly the same across five groups (n = 25, 18, 26, 25, and
23, respectively; these five groups were not significantly different
in terms of demographic variables). An analysis of covariance

(ANCOVA) was performed to test whether the GMv in ROIs was
different across these five groups.
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