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Abstract

Motivation: Mass spectrometry (MS) based quantification of proteins/peptides has become a

powerful tool in biological research with high sensitivity and throughput. The accuracy of quantifi-

cation, however, has been problematic as not all peptides are suitable for quantification. Several

methods and tools have been developed to identify peptides that response well in mass spectrom-

etry and they are mainly based on predictive models, and rarely consider the linearity of the

response curve, limiting the accuracy and applicability of the methods. An alternative solution is to

select empirically superior peptides that offer satisfactory MS response intensity and linearity in a

wide dynamic range of peptide concentration.

Results: We constructed a reference database for proteome quantification based on experimental

mass spectrum response curves. The intensity and dynamic range of over 2 647 773 transitions

from 121 318 peptides were obtained from a set of dilution experiments, covering 11 040 gene

products. These transitions and peptides were evaluated and presented in a database named

SCRIPT-MAP. We showed that the best-responder (BR) peptide approach for quantification based

on SCRIPT-MAP database is robust, repeatable and accurate in proteome-scale protein quantifica-

tion. This study provides a reference database as well as a peptides/transitions selection method

for quantitative proteomics.

Availability and implementation: SCRIPT-MAP database is available at http://www.firmiana.org/res

ponders/.

Contact: chend@fudan.edu.cn or jqin@bcm.edu

Supplementary information: Supplementary data are available at Bioinformatics online.
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1 Introduction

Mass spectrometry-based protein quantification has become an

increasingly popular method in biological research, providing high

throughput and sensitivity (Bensimon et al., 2012; Picotti and

Aebersold, 2012). MS1-based peptide extracted ion chromatograms

(XIC) and MS2-based multiple reaction monitoring (MRM) are two

approaches employed in quantitative proteomics (Addona et al.,

2009; Mueller et al., 2008). The MS1-based quantification relies on

accurate mass and peptide elution time, in which all peptides are

detected and then aligned across several LC-MS/MS experiments to

use all features of the peptides (Cox and Mann, 2008; Tsou et al.,

2010). In the MS2-based quantification, in the case for MRM, the

first quadrupole is used as a mass filter to selectively inject the target

peptide ion, and one or several fragment ions generated by collision

dissociation are sequentially observed by the detector over time,

resulting in a chromatogram-like trace with retention time and sig-

nal intensity as coordinates (Anderson and Hunter, 2006; Picotti

et al., 2009).

It is generally accepted that the kernel for accurate MS1 and

MS2 quantification is the selection of peptides and transitions,

which provide high signal intensity and low level of interfering sig-

nals. We previously reported that a successful MS1 absolute quanti-

fication largely depends on the characteristics of the tryptic peptides

that are influenced by the extent of trypsin digestion of the protein,

MS signal intensity, and the response linearity when the concentra-

tion of the peptide is varied (Ding et al., 2011). In the MS2-based

quantification, fragment ions are used, the intensities of fragments

derived from one precursor ion vary substantially (Lange et al.,

2008). Several tools and databases were developed to facilitate tar-

get selection, particularly for MS2-based approaches (Deutsch et al.,

2008; Martin et al., 2008; Mead et al., 2009; Sherwood et al.,

2009). The SRMAtlas project led by Ruedi Aebersold’s team

(Deutsch et al., 2008) is based on high-quality experimental pro-

teome identification and is the most influential resource for selected/

multiple reaction monitoring (SRM/MRM)-based proteomic work-

flow. The standard deviation of AUC (area under the curve) for

marker ions can be obtained within the range of �10 to 30% when

the selection rules are followed (Xie et al., 2011). Nevertheless, cur-

rent proteomics quantification as a whole (Lange et al., 2008;

Mann, 2006; Ong et al., 2002) is based on the premise that selected

targets should display a linear response within the experimental

range (Whiteaker et al., 2010) to ensure the accuracy of direct com-

parison of peptide/transition signals. This is not verified and the

available quantification resources lack well-defined response curves

and relative signal indices for peptide/transition sets on the pro-

teome scale.

In this study, we constructed an experimental mass spectrum

response curve database for both data dependent acquisition (DDA)

and data independent acquisition in the form of SWATH, which

includes absolute MS signal response curves for all measurable pep-

tides and their fragment ion transitions from the tryptic digests of

the HeLa cell line. MS measurements were carried out using up to

2.5 orders of magnitude of serial concentration dilution to cover a

reasonable dynamic range. We extracted XIC data for MS1 quantifi-

cation and utilized SWATH to acquire transition XIC data for MS2

quantification. The abundances and response curves of over 2 647

773 transitions from 121 318 peptides were calculated and stored in

a database named SCRIPT-MAP (http://www.firmiana.org/respond

ers), covering 11 040 gene products. A scoring algorithm incorporat-

ing MS intensity, correlation coefficient (R2), linear range, slope,

and the detection limit in the low abundance range was developed

to determine a quantitative index (Fquan) for all identified peptides

and transitions. Best responder peptides were chosen according to

the Fquan indices and could be used for robust MS-based proteome

quantification. The SCRIPT-MAP may advance the accuracy of

quantitative proteomics in biological research.

2 Materials and methods

2.1 Sample preparation
For protein profiling, proteins from HeLa cells were extracted using

8 M urea and reduced using dithiothreitol for 4 h at 37�C followed

by alkylation using iodoacetamide for 60 min at room temperature

in the dark. Samples were digested using trypsin at a mass ratio of

1:50 enzyme/protein overnight at 37�C.

For better quantification of transcriptional factors (TFs), nuclear

extracts were first enriched by catTFRE, a DNA affinity reagent

that can effectively enrich endogenous transcription factors and co-

regulators (Ding et al., 2013a). Briefly, biotinylated catTFRE DNA

was immobilized on Dynabeads and then mixed with nuclear

extracts (NE). The DNA-NE mixture was incubated for 2 h at 4�C;

the protein-bound Dynabeads were washed twice with NETN and

twice with PBS. Proteins were eluted by SDS-loading buffer and

separated on SDS-PAGE. Peptides were prepared by in-gel digestion;

the peptide concentration was estimated using Nano-Drop.

For small scale validation, 293T cell were lysed in the lysis buffer

(50 mM NH4HCO3, 2% sodium deoxycholate, 25 mM NaCl, pH

8.5) and processed by reductive alkylation and trypsin digestion.

A total of 10 routine experiments over a month period, as well as 5

serial dilution experiments (1000, 500, 250, 125 and 62.5 ng of

293T lysate) were analyzed.

Several human tissue samples were measured to demonstrate the

utility of this method. Normal heart tissue or non-cancerous tissues

adjacent to tumours were obtained from heart transplant operation

or gastric, liver, lung cancer surgeries, respectively. This study was

approved by the Ethics Committee of Beijing Proteome Research

Center and was performed according to the Declaration of Helsinki

Principles.

For isotope labelled QconCAT (Beynon et al., 2005) experi-

ments, we chose 32 metabolic enzymes from selected metabolic

pathways, including glycolysis, gluconeogenesis, TCA cycle, fatty

acid degradation and lipid synthesis. The SCRIPT-MAP database

was queried to select BR peptides to assemble a recombinant

QconCAT protein. The selected BR peptides were reverse-translated

to cDNA sequences, and the assembled cDNA fragment was synthe-

sized and inserted into the pGEX-4T-2 vector for the expression of a

GST-fusion protein. The transformed E. coli were cultured over-

night in LB media containing ampicillin (100 lg/ml) and then

expanded to SILAC D-MEM Flex-medium (GibcoVR ) containing

ampicillin (100 lg/ml) without fetal bovine serum (Ding et al.,

2011). Heavy arginine and heavy lysine were added to a final con-

centration of 100 lg/ml. Fusion proteins were purified by

Glutathione Sepharose (Invitrogen) column and eluted with gluta-

thione. The 13C labelling efficiency of the QconCAT was 99.1% for

K, and 98.3% for R, respectively. The 13C labelled recombinant

QconCAT protein containing BR peptides were spiked into human

tissue samples and digested with trypsin together.

A dual-RPLC-MS/MS procedure was used for data acquisition.

The first-dimension RP separation was performed on an L-3000

HPLC System (Rigol) employing a Durashell RP column (5 lm,

150 Å, 250 mm�4.6 mm ID, Agela) with 2% acetonitrile as phase

A and 98% acetonitrile as phase B at pH 10. Twenty-four fractions
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were collected with a gradient from 5 to 35% of phase B at a flow

rate of 1 ml/min.

Fractions collected from the first RPLC were dissolved in HPLC

loading buffer and were diluted in sequentially by 2-fold, resulting

in the amount of 2000, 1000, 500, 250, 125, 62.5, 31.25, 15.63,

7.81, 3.91 ng of proteins/sample, respectively. The second dimension

LC system was directly coupled to a hybrid Q-TOF (Triple-TOF

5600, AB SCIEX) MS for either DDA or SWATH data acquisition.

The pre-column on AB 5600 was 5 lm, 300 Å, 2 cm�100 lm ID;

the analytical column was 3 lm, 120 Å, 15 cm�75 lm ID. The

mobile phase consisting of 0.1% formic acid in water (phase A) and

0.1% formic acid in acetonitrile (phase B) were run at a flow rate of

350 nl/min in 75 min.

2.2 MS data acquisition
Both data-dependent acquisition (DDA) and independent acquisi-

tion (SWATH) mode were applied to compare the different strat-

egies. In the DDA mode, the source was operated at 2.5 kV and a

survey MS scan range of m/z 350–1250. The top 50 precursor ions

were selected in each MS scan for subsequent MS/MS scans. MS

scans were acquired for 0.25 s, and the 50 MS/MS scans were

acquired at 0.04 s each. The MS/MS dynamic exclusion was set at

12 s. The CID energy was automatically adjusted using the rolling

CID function of Analyst TF 1.5.1. In the SWATH mode, the proce-

dure was carried out as previously described (Gillet et al., 2012).

Briefly, the source was operated at 2.5 kV and the MS1 scan range

of m/z 350–1250. The MS2 SWATH scans recorded consecutive

high-resolution fragment ion spectra of all peptides within a defined

25 Da precursor ion window during the LC separation. The Q1 scan

range was set at 400–1000 m/z and the accumulation time of 100 ms

for each individual MS2 scan. The total cycle time was 2.65 s

(100 ms�24 SWATH scansþ0.25 s MS1 scan).

In the validation experiments using the 293T lysate, a LTQ

Orbitrap Velos mass spectrometer (Thermo Fisher) was used for

quantification in the DDA mode. MS1 was scanned by Orbitrap at

the resolution of 60 000, AGC target of 1�106, maximum ion

injection time of 10 ms, in the scan range of 375–1300 m/z. MS2

was scanned by ion trap, with AGC target of 3�104, maximum ion

injection time is 10 ms, isolation window is 3 m/z. The CID collision

energy was 35%, with top 25 ions scanned by MS2 at dynamic

exclusion set as 18 s. The XIC of peptides were extracted and calcu-

lated manually for abundance determination.

2.3 Data processing
Wiff files from the Triple-TOF 5600 were first searched using

ProteinPilot version 4.2 in the Paragon search engine against the

human ref-sequence protein database (version 2013.07, 36 229

entries). The false discovery rate (FDR) was set at 1% at the protein

level. For peptide XIC extraction, we first transferred the Wiff data

to an mzXML-formatted file and then loaded the identification

results for MS1 feature references. We extracted XICs of identified

peptides by searching against the MS1 results based on the peptide

identification information, and estimated the abundance by the area

under the extracted XIC curve. By using peptide cross-assignment,

we could quantify a peptide identified only once within all LC-MS/

MS trials in the dilution set. The PeakViewVR software with a

SWATH plug-in (AB SCIEX) was used for transition XIC extrac-

tion. Information obtained in the DDA mode, including RT, m/z

and rank patterns of transition intensity of the peptides, were used

as a reference map. Transition XICs were extracted accordingly

from data-independent scans of SWATH mode results.

The non-redundant peptide list was used to assemble proteins by

applying the parsimony principle (Yang et al., 2004). Differentiable,

distinct and equivalent proteins with more than one unique peptide

were retained. Protein abundances were then estimated using the

iBAQ algorithm. MS results from serial dilutions were transferred

into SCRIPT-MAP, an in-house MySQL-based relational database.

3 Results

3.1 Data acquisition for best responder database
We previously reported the development of a fast proteome sequenc-

ing strategy (Ding et al., 2013b) that enabled us to identify and

quantify more than 100 000 non-redundant peptides (representing

8000 gene products) in half a day. This highly efficient approach

allows for proteome-wide quantitative serial-dilution screening. We

chose HeLa cells as proteome source because they are widely used in

research community and could serve as a more representative pro-

teome system. Whole cell extracts were trypsinized and pre-

fractionated into 24 fractions using high-pH reverse phase liquid

chromatography (RP-LC). Multiple (1:1 to 1:512) serial dilution

MS measurements were carried out and analyzed using both DDA

and SWATH data acquisition modes (Fig. 1A and B), resulting in

480 MS runs (24 fractions�10 dilutions�2 data acquisition

modes) and a total measurement time of 240 h. A total of more than

4 800 000 high-resolution fragmentation spectra were submitted to

the paragon search engine, resulting in 95 658 non-redundant pepti-

des representing 10 249 gene products. In order to increase the pro-

teome coverage, we also employed the catTFRE (Ding et al., 2013a)

approach to enrich low abundance endogenous DNA-binding

proteins (transcription factors and transcription co-regulators). MS

measurements were carried out on 10 dilutions with 6 fractions

following catTFRE pull-down, resulting in a total of 120 MS runs.

As a result, 7870 proteins, 41 490 peptides and 264 036 transitions

were identified, in which 1442 proteins, 25 660 peptides and 144

864 transitions were exclusively identified by the catTFRE approach

(Table 1). All identified peptide ions and fragment ions were ana-

lyzed and imported into an in-house database for data integration

and processing. A total of 19 815 proteins from 11 040 gene
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products which covered 322 KEGG pathways were identified and

quantified (Fig. 1C).

3.2 A comprehensive evaluation of MS response curves
We gathered all identified peptides and transitions, and evaluated

their MS response curves as x-y graphs of area under the curve

(AUC) against loading amount of protein in the set of serial dilution

experiments. R2 (correlation between measured AUC against load-

ing amounts), slope and linear range were calculated for each plot to

determine the linear performance of the peptides and transitions.

Generally, best responders exhibited the best R2 values, widest lin-

ear range and lowest MS detection limit. We manually examined the

peptide/transition response curves and optimized a formula to match

their quantitative features. While slope is an important parameter

that measures the response of AUC to the amount variation, using

slope alone did not always find the ideal responders (Fig. 2A), R2

and the linear range needed to be considered, too. While combining

slope with R2 could be more effective, but simple multiplication did

not offer better result than using slope or R2 alone (Fig. 2B).

Furthermore, the lower limit of the linear range needed to be consid-

ered so that low abundant peptides could be quantified. We opera-

tionally defined the linear range as the longest concentration range

that yields R2>0.9025 (0.95�0.95) in the linear regression. We

found that superior linear responders could be found based on a

Quantification Factors (Fquan) score (Fig. 2C) using the formula (1):

Fquan ¼ slope� R2

1� R2
� 2maxðlinear rangeÞ � 2�ðfirst detection pointÞ (1)

The quantification factors for peptides and transitions were desig-

nated as Fquan�peptide and Fquan�transition, respectively. We then man-

ually evaluated over 1000 peptides and transitions for the

effectiveness of the scoring formula. A set of comparison figures were

listed in Figure 2D and E, as well as in Supplementary Figure S1.

For a better understanding of how physicochemical properties of

the peptides may make them as best responder peptides, we analyzed

the distribution of the Fquan�peptide with respect to parameters such

as peptide length, retention time (RT), modification, m/z and

charge, and analyzed the distribution of the Fquan�transition with

respect to parameters such as ion type and amino acid type at the

CID fragment site. As shown in Supplementary Figure S2, the fea-

tures for best responder peptides include: (a) a moderate hydropho-

bicity (elution at 15–25 min during a 40-min gradient); (b) 8–12

amino acids in length; (c) m/z in the range of 500–750 Da; and (d)

doubly charged. For transitions, fragment ions from y4 to y10 made

up over 50% of the best-transition responders.

We hosted the data on an in-house MySQL-based relational

database SCRIPT-MAP (http://www.firmiana.org/responders/). This

database provides experimental linear MS response curves of pepti-

des and fragment ions (transitions) at a proteome-wide scale.

It includes over 19 815 proteins, 121 318 unique peptides and

2 647 773 fragment ions with 1% FDR at protein level, representing

a dataset with quantitative linear information with the deepest pro-

teome coverage. In the database, the linear curve of each identified

peptide and its transitions are plotted against the actual amount of

protein-loading. For selected proteins and peptides, an overview

plot or check-selection plot of the corresponding peptides and tran-

sitions are also available. A 5-level hierarchy, including pathway,

gene, protein, peptide and transition, is integrated and presented.

Users can either browse peptide/transition response curves in the

‘View’ panel, or search for interested Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathways or genes using the search panel.

Searching for pathways or genes in a batch is supported. There is

also a filter for further selection, and result can also be downloaded

(Supplementary Fig. S3).

3.3 Evaluation of quantification accuracy and versatility
In order to evaluate the quantification accuracy based on the BR

method, we compared proteome quantification by the BR method and

the iBAQ method. We performed MS analyses of whole cell extracts of

HeLa in triplicate, then employing iBAQ or BR method to quantify

proteins. In the BR approach, protein abundances were calculated by

BR peptides indexed in the SCRIPT-MAP database. Correlation coeffi-

cients for the repeated triplicates were compared between these two

Table 1. Overview of dataset/database content

WCE TFRE TFRE exclusively WCEþTFRE NCBI KEGG KEGG coverage

Transition 2 502 909 264 036 144 864 2 647 773

Peptide 95 658 41 490 25 660 121 318

Protein (GI) 18 373 7870 1442 19 815 36 229

Gene Symbol 10 249 5049 791 11 040 19 982 6816 4151/6816

KEGG Pathway 322 301 0 322 481 481 322/481

Note: NCBI GI version: human 2013.07, KEGG version: 2017.12.
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quantification approaches. The R2 values based on the top 1 to top 3

best-responder peptides were significantly higher than those obtained

using the iBAQ, top peptides only based on the slope, or slope*R2

(Fig. 3B). Significantly lower CV values were also observed using the

BR approach (Fig. 3A), demonstrating that quantification using BRs

indexed in SCRIPT-MAP database resulted in the best reproducibility

and accuracy among these methods. We calculated CV values for pep-

tides and proteins and ranked them in the order of their Fquan scores

indexed in SCRIPT-MAP. Higher-ranked responders displayed lower

CV (Supplementary Fig. S4).

We then evaluated the accuracy of quantification using SCRIPT-

MAP by measuring the abundance of Universal Proteome Standard

(UPS2)—a proteomics dynamic range standard set (obtained from

SIGMAVR ) containing 48 proteins covering 6 orders of magnitude in

abundance. We chose the first ranked BR of the UPS2 proteins for

quantification. If there were cleavages or modifications for the first

ranked BR, then the second ranked BR without cleavages or

modifications was chosen. We also chose the first ranked peptide cal-

culated from the method PREGO (Searle et al., 2015) for comparison

of quantification. The result showed that the correlation between the

calculated amount and the actual amount based on SCRIPT-MAP

(R2¼0.908) was higher than those calculated by the MaxQuant

iBAQ (R2¼0.886), or the PREGO (R2¼0.857) (Supplementary Fig.

S5), demonstrating that the BR method is more accurate.

As the BRs were obtained by measuring HeLa proteins, we tested

whether the method can be used to quantify 293T proteins. Better

quantification results were obtained using the BR method than the

iBAQ method when quantifying the 293T proteome using BR pepti-

des generated from the HeLa proteins (Fig. 4A). For low abundant

proteins, the BR method was also superior to the iBAQ (Fig. 4B).

As we obtained the BR peptides using the QTOF type of instru-

ment, we tested whether BR peptides are instrument dependent. We

carried out a set of 293T dilution experiments using the Velos

Orbitrap instrument and scored the peptides by the Fquan_293T equa-

tion. Then we matched the identified peptides with the SCRIPT-

MAP database and tracked back Fquan scores indexed in the

SCRIPT-MAP database to evaluate the consistency of SCRIPT-MAP

database and 293T dilution experiments. The result showed that

76.6% of the highest ranked peptides by Fquan score based on the

SCRIPT-MAP database in 293T dilution experiments were ranked

as top three peptides based on calculated Fquan293T (level 1); 6.8%

were ranked as top 50% but not in top 3 (level 2). The rest of pepti-

des (16.6%) have relatively poor rank (level 3). And the 2nd and

3rd ranked peptides by Fquan scores of 293T dilution experiments

have a total of 75 and 69% good ranked peptides (level 1þ2) based

on calculated Fquan293T (Supplementary Fig. S6A). According to the

0.82

0.84

0.86

0.88

0.90

0.92

0.94

iB
AQ

   
  

La
st
 1

   

Ran
do

m
 1

 

To
p 
1 

   

To
p 

2 
   

To
p 

3 
   

Slo
pe

   
 

R
2

Slo
pe

*R
2

R
2  o

f 
3
 r

e
p
e

a
ts

0.00

0.25

0.50

0.75

1.00

iB
AQ

La
st
 1

R
an

do
m

 1

To
p 

1

To
p 

2

To
p 

3

Slo
pe

Methods

C
V

 o
f 

3
 r

e
p

e
a

ts

Methods

R
2

Slo
pe

*R
2

*p=3E-9 *p=6E-5 p=0.02*p=2E-16
*p=8E-20 *p=3E-16 *p=3E-18

A

B

*p=2E-16

Fig. 3. Comparison of the best-responder peptide approach with iBAQ. (A)

Relatively lower CVs were obtained using the BR peptide approach. Peptides

were scored and ranked, then the CV was calculated for the top one, top two,

top three and lowest ranked peptides. Random1 indicates a random selection

of one of the ranked peptides. Furthermore, CV of top ranked peptides by

slope, R2, as well as slope*R2 were also calculated. The box plot combined

with the violin plot depicts the density distribution of CVs of three repeat

experiments. (B) R2 values for proteome quantification based on top one to

three peptides by the BR approach in three repeats were significantly higher

than those obtained using the iBAQ algorithm, and better than the results by

the top peptides only based on slope, R2, or slope*R2
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Fig. 4. Comparison of quantification consistency of best-responder peptides

with iBAQ using 293T proteins. (A) Heatmap illustrates the pairwise correla-

tion coefficient (R2) of quantifications of all proteins between each pair of

experiments. The upper triangular part of heatmap is the coefficient by iBAQ,

and the lower triangular part is the coefficient by best responder peptides

method. Darker colours reflect higher coefficient of experiments. Box plot

illustrates the distribution between the two groups. (B) Heatmap illustrate the

pairwise correlation coefficient (R2) of quantifications of lowest-abundance

proteins between each pair of experiments. Box plot illustrates the distribu-

tion between the two groups
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Fquanscores, �84% of the top ranked peptides have excellent linear-

ity (R�0.9) in the 293T dilution experiments; and over 90% of the

top ranked peptides have good linearity (R�0.8) (Supplementary

Fig. S6B). The evaluations suggested that the BR approach indexed

in the SCRIPT-MAP is independent of protein source and mass spec-

trometer type, and has higher reliability, repeatability and accuracy

in proteome-scale quantification than the iBAQ method.

3.4 An example of quantification of selected metabolic

pathway proteins
We used proteins in metabolic pathways as a proof-of-principle

experiment for protein quantification using the BR method. We

selected BR peptides and synthesized a QconCAT protein covering

32 metabolic proteins (Supplementary Table S1), including proteins

from the TCA cycle, lipid metabolism and glucose metabolism. The

QconCAT protein was expressed and labelled in SILAC medium.

Comparison of the QconCAT protein with a purified recombinant

protein ZSCAN21 showed that AUCs of the QconCAT peptides dis-

played a 3-fold variation at most, while peptides from ZSCAN21

were dispersed over 4 orders of magnitude (Supplementary Table

S2, Supplementary Fig. S7), demonstrating BR peptides from differ-

ent proteins displayed similar MS response.

As the QconCAT proteins were isotope labelled, we used them

to determine the stoichiometry of enzymes in metabolic pathways

and to compare protein abundances in human heart, liver, lung and

stomach (Fig. 5 and Supplementary Table S3). Interestingly, pro-

found difference in abundance was observed in these organs, with

18 out of the 32 proteins exhibiting significant differences between

organs (P<0.05, n¼3). Even in the highly conserved TCA cycle,

five out of the seven proteins varied considerably across the four

organs. As a major organ for lipid metabolism, lipid catalysis

enzymes such as FASN, CPT1A, ACSS2 and ACAT2 were more

abundant in liver than in other organs, while in the heart, proteins

in the glycolysis pathway (PFKP, ALDOA) and TCA (DLST,

OGDH and CS) were more abundant, reflecting the requirement for

intensive glucose consumption and energy usage in the heart.

Despite of being generally considered as abundant proteins, several

key enzymes were expressed at low levels in some tissues. For

instance, FASN was expressed at very low level in the heart; pyru-

vate kinase (PKM) was much less abundant in the liver than in other

tissues. Interestingly, the abundance of the TCA cycle enzymes were

different: MDH2, CS, FH and ACO1 were more abundant than

others (IDH3A, OGDH and DLST) (Fig. 5). For comparison, we

also obtained protein expression levels of the 32 metabolic proteins

from The Human Protein Atlas (Uhlen et al., 2015) (https://www.

proteinatlas.org/), and marked them in the colourmap in Figure 5.

In general, the quantitative results obtained by the QconCAT

method were consistent with those of the Human Protein Atlas data-

base. Low-expression proteins detected by QconCAT method, such

as PFKFB2 and BPGM, were generally marked as low or not

detected in Human Protein Atlas database. Both methods showed

GPAM was relatively higher in liver, ENO1 was relatively lower in

heart and PFKP was relatively lower in liver. Our stoichiometric

measurement revealed selective enhancement of different metabolic

pathways in each of the organs.

4 Discussion

As the specific mass spectrometry signal response of different tryptic

peptides from the same protein can differ by as much as 100-fold in

intensity (Picotti et al., 2007) and a similar situation also exists in the

signal response of transitions from the same peptide in MRM measure-

ments, the consensus in the field of proteome quantification has been

that the selection of suitable quantification peptides strongly influences

or even entirely determines the accuracy of the quantification (Picotti

and Aebersold, 2012), In our previous study (Ding et al., 2013a,b), we

reported that the errors in quantification came from at least two major

sources: (i) a false discovery rate (FDR) in identification that cannot be

avoided, and (ii) inaccuracy in quantification that may be reduced by

selecting suitable quantification peptides and transitions. We therefore
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constructed an experimental database entitled SCRIPT-MAP to facili-

tate accurate MS1 and MS2 based quantification. SCRIPT-MAP

(http://www.firmiana.org/responders) enables the exploration of MS

response curves for precursor and fragment ion. Comprehensive quanti-

fication scores for precursor and fragment ions have been compiled,

which provides a reference library of BR peptides/transitions in pro-

teome measurement. We ranked the peptides of proteins using our algo-

rithm and calculated the CV of the responders. The order of the CV is

consistent with the ranking score of the peptides, demonstrating the

practicality of our procedure. This method empirically identify the pep-

tides that response well in MS as well as show linear response as a func-

tion of peptide concentration to achieve more accurate proteome

quantification than the commonly used iBAQ method.

We show that BR peptides in the SCRIPT-MAP database are pro-

tein source independent and largely MS instrument independent, this

will allow the widest use of the method independent of MS platforms.

Using the BR peptides will achieve better relative quantification than

the iBAQ method. Combining with the QconCAT approach may

allow for absolute quantification and even protein stoichiometry meas-

urement as we demonstrated in the paper, in which we shown that

enzymes in the major metabolic pathways in heart, liver, lung and

stomach have extensive variations in stoichiometry in the four organs,

which may reflect the differences in functions. Furthermore, the hard

choice how to pick peptides in the QconCAT design has been solved

by our BR peptides in the SCRIPT-MAP database. The BR peptides

tend to be excellent choice for the QconCAT design.

While the current version of SCRIPT-MAP database covers quan-

tification peptides and transitions of over 10 000 gene products, it is

still a work in progress. Linear MS response curves for global pepti-

des and transitions from more cell lines and species are being incor-

porated. As additional data are generated, the dataset will undergo

the same quality control procedures as described in this study and the

SCRIPT-MAP database will receive continuous original data support

and updates. Our goal is to expand the repertoire of SCRIPT-MAP

database to the limit of the proteome coverage, and eventually

develop an accurate proteome quantification method.
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