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A B S T R A C T   

Bladder cancer is a complex disease with high morbidity and mortality rates. At least 430,000 
cases are diagnosed annually worldwide. Cancer pain is the most common and distressing 
symptom in cancer patients. Studies have reported depression, anxiety, and decreased quality of 
life in survivors of various cancers. The study of pain-related genes in cancer patients may provide 
a basis for developing targeted drugs for cancer therapy, which could reduce pain and improve 
quality of life of cancer patients. In this study, the mRNA expression and clinical data of bladder 
cancer patients were downloaded from public databases. A total of 103 pain-related genes were 
also downloaded from the public databases. Univariate Cox regression analysis identified 17 pain- 
related genes that were significantly associated with overall survival. We calculated a pain-related 
risk score for each patient, constructed a bladder cancer pain risk model, and categorized bladder 
cancer patients into two risk subtypes. Differences in prognosis, differential gene expression, 
immune cell signatures, hallmarks, metabolic pathways, and somatic mutations between the 
different risk subtypes were systematically investigated. Eight drugs associated with bladder 
cancer risk subtypes were identified. Their differences in the high- and low-risk subtypes of 
bladder cancer were examined. In addition, the response to immunotherapy was analyzed in 
patients with different pain-related subtypes. Results revealed significant differences in these 
characteristics. Finally, a predictive model for pain-related risk subtypes in patients with bladder 
cancer was established. The study findings provide a reference for prognostication and person
alized medical treatment of bladder cancer patients.   

1. Introduction 

Bladder cancer is the most common genitourinary malignancy and urothelial carcinoma is the most common pathological type. 
According to the GLOBOCAN 2018 statistics, approximately 549,000 new cases and 200,000 deaths from bladder cancer occurred in 
2018, ranking bladder cancer as tenth globally in terms of the number of new cases, with approximately six people per 100,000 
diagnosed with bladder cancer per year. The risk of developing bladder cancer is approximately four times higher in men than in 
women [1]. For early stage, non-muscle-invading bladder cancer, the 5-year rate of overall survival (OS) is as high as 95% after trans 
urethral resection of bladder tumor and subsequent bladder chemotherapy and/or Bacillus Calmette-Guerin therapy [2]. For 
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muscle-infiltrating bladder cancer treated with radical bladder cancer surgery in combination with radiation therapy, the 5-year OS 
rate is approximately 69%. For advanced bladder cancer treated with platinum-containing chemotherapy regimens, the 5-year OS rate 
is approximately 15% [3]. 

In recent years, the emergence of immune checkpoint inhibitors and novel targeted drugs has increased the expectation for long- 
term survival of bladder cancer patients. Although immunotherapy, targeted therapy, and other treatment modalities have emerged in 
the last few years, cisplatin-based chemotherapy continues to hold an unassailable position in treating advanced bladder cancer. 
However, the efficacy of the current chemotherapy for bladder cancer patients is only approximately 50%, and several patients 
continue to progress and die despite extensive treatment [4]. Therefore, improving the therapeutic efficacy in patients with inter
mediate and advanced bladder cancer is an urgent goal. A thorough study of the onset, development, and regression of this disease, 
with the goal of reducing the risk of death from bladder cancer, has significant clinical and scientific implications for its prevention and 
treatment. 

Pain is one of the most common complications of cancer. More than one-third of the treated oncology patients experience pain [5]. 
Pain suppresses the immune response and promotes tumor growth [6]. The association among pain, tumors, and immunity is complex 
and not completely understood [7]. Pain can trigger inflammation, activation of the hypothalamic-pituitary axis, and an overreaction 
of the sympathetic nervous system. These factors can interfere with the immune system of tumor patients, leading to immunosup
pression. Melanoma cells activate nociceptive neurons by releasing secretory leukocyte proteinase inhibitor, which triggers the release 
of neuropeptides, such as calcitonin gene-related peptide, resulting in the depletion of cytotoxic RAMP + CD8+ T cells. This limits the 
ability of these cells to eradicate melanoma. Moreover, inhibition may prevent immune evasion [8]. Cancer pain is a warning sign 
during the early stages of tumor development. However, as the tumor progresses, the pain becomes increasingly intense and difficult to 
control. Refractory cancer pain severely impairs the quality of life of tumor patients and is also strongly associated with the worsening 
of OS [9,10]. These clinical manifestations suggest that cancer pain may have a role in tumor development and that pain control should 
be a non-negligible part of tumor treatment. However, the biological mechanisms of pain are not yet clear. 

The objective of this study was to investigate novel biomarkers that have clinical relevance in the prognosis and treatment of 
bladder cancer patients and may contribute to managing cancer pain effectively. Utilizing bioinformatics data mining techniques, this 
study classified patients based on their pain-related risk scores. Furthermore, the study assessed the immunogenomic landscape and 
prognosis of different pain-related risk subtypes. The results indicated that patients with different risk subtypes exhibited marked 
variations in their sensitivity to chemotherapy drugs and clinical response to immunotherapy. These findings could facilitate future 
studies on the advancements in bladder cancer treatment. 

2. Materials and methods 

2.1. Data collection 

We downloaded RNA sequencing data from 408 patients with breast cancer, count data, somatic mutation data, and the corre
sponding clinical data from The Cancer Genome Atlas (TCGA; https://portal.gdc.cancer.gov/repository) [11]. The pain-related gene 
set GOBP_SENSORY_PERCEPTION_OF_PAIN (GO:0019,233) was downloaded from the Molecular Signatures Database (MSigDB) by 
searching for the keyword “Pain”. This entry contains 103 pain-related genes. To study immune infiltration in bladder cancer patients, 
this study also downloaded data from the ImmPort database, which contains 2449 immune genes and 17 immune cell types [12,13], 28 
immune cell signatures [14], and the MSigDB database of 50 Hallmarks [15]. 

In addition, we calculated the risk scores for IMvigor210 to further assess the relationship between pain-related risk subtypes and 
immunotherapy response in cancer patients. Expression data and clinical information of patients with advanced uroepithelial cancer 
treated with anti-programmed death-ligand 1 (PD-L1) agents were downloaded from the R package IMvigor210CoreBiologies (version 
1.0.0) [16]. Moreover, the mRNA expression profiles and clinical information of GSE13507 and GSE32894 were obtained from the 
GEO database and used as validated cohorts. 

2.2. Construction of the risk score model 

Using TCGA cohort, we performed univariate Cox regression analysis to assess the association between pain-related genes 
expression and OS in bladder cancer patients. A total of 17 pain-related genes were significantly associated with OS. The following risk 
score was constructed for the 17 identified pain-related genes: 

∑

i
(logHRi) ∗ expi  

where HRi is the hazard ratio (HR) of the ith pain-related gene and expi is the expression of the ith pain-related gene in each sample, 
where i = 1, 2, …, 17. The "surv_cutpoint" function in the survminer package (version 0.4.6) of the Bioconductor platform was used to 
determine the optimal cutoff value for the pain risk score. Finally, according to the optimal threshold, bladder cancer patients were 
divided into high- and low-risk subtypes. In this study, the prognosis of bladder cancer patients with high- and low-risk subtypes was 
compared using the R platform’s survival package. The significance of the difference in survival time was calculated using the Log-rank 
test and further demonstrated using the Kaplan-Meier survival curve. 
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2.3. Predicting response to immunotherapy in patients with bladder cancer 

T cell dysfunction and rejection are two important mechanisms of tumor immune escape. The Tumor Immune Dysfunction and 
Exclusion (TIDE) algorithm is a reliable algorithm that accurately predicts the effectiveness of immunotherapy based on the functional 
status of T cells [17]. The current study aimed to evaluate T cell dysfunction and rejection scores in bladder cancer patients from the 
TCGA dataset available on the TIDE website (http://tide.dfci.harvard.edu/). We statistically compared the scores between high- and 
low-risk subtypes of bladder cancer to predict the immunotherapeutic prognosis in patients with these subtypes. 

2.4. Potential drug sensitivity analysis 

We used the WGCNA package (version 1.71) [18] in R software to study the patterns associated with 269 drugs in the Genomics of 
Drug Sensitivity in Cancer (GDSC) database to obtain drug modules related to clinical information. The Pearson correlation coefficient 
of half maximal inhibitory concentration (IC50) between each drug was calculated. Then, the weighted adjacency matrix amn＝｜Cmn 
｜β was constructed, where amn represents the adjacency coefficient between drug m and drug n; and Cmn represents the Pearson 
correlation coefficient between drug m and drug n. The construction of a scale-free network was ensured by choosing a soft threshold β 
= 6, setting the Deepsplit value to 2, and the minimum module size to 30 drugs. Module identification was performed to generate a tree 
diagram. Highly similar modules were identified using clustering and similar modules were merged with a high shear threshold value 
of 0.25. The module eigengenes (ME) were then calculated, indicating the first principal component of each module. In addition, the 
correlation coefficients and P-values of the characteristic drugs of the drug modules with each external clinical information were 
calculated using Pearson correlation analysis and visualized in heat maps using the labeled heatmap function. The module with the 
highest correlation was studied with the relevant clinical features to search for biologically significant modules. Screening conditions 
for hub drugs with special modules were Gene Significance (GS, correlation of each gene with clinical traits) > 0.4, Module Mem
bership (MM, correlation of each gene with the module) > 0.5, and a scatterplot between MM and GS. Using the WGCNA package of R 
software, eight hub drugs associated with pain-related risk subtypes were obtained based on IC50 from the GDSC database. Univariate 
Cox regression analysis was performed to assess the relationship between these eight drugs and the OS. The results were visualized 
using forest plots. Finally, the Wilcoxon test was used to compare statistical differences in IC50 between different pain-related risk 
subtypes. 

2.5. Bioinformatics and statistical analysis 

We explored differentially expressed genes (DEGs) in high- and low-risk subtypes in the TCGA cohort. The edgeR package (version 
3.36.0) [19] of the Bioconductor platform was used to analyze DEGs based on the count data of gene expression in TCGA bladder 
cancer patients. The clusterProfiler (version 4.0.5) package [20] of the Bioconductor platform was used for Gene Ontology (GO) 
enrichment analysis. Kyoto Encyclopedia of genes and Genomes (KEGG) enrichment pathway analysis was performed using the same 
approach to identify KEGG pathways that were significantly enriched for DEGs. In this study, we used gene set enrichment analysis 
(GSEA) [21] to discern enrichment differences between different pain-related risk subtypes. In addition, single sample gene set 
enrichment analysis (ssGSEA) [15] was performed using the R package GSVA (version 1.40) [22]. To explore the differences in 
immune-related characteristics between the high- and low-risk subtypes, the ESTIMATE scores, tumor purity, stromal scores, and 
immune scores were evaluated using the ESTIMATE algorithm [23]. The cytolytic activity index (CYT) was determined using the 
geometric mean expression of granzyme A and perforin-1 secreted by effector T and natural killer cells [24]. 

Kaplan-Meier survival curves were used to compare the OS of different risk subtypes. A forest plot was generated using the R 
package forestplot (version 1.7). Somatic mutation data of different subtypes were analyzed using the R package maftools (version 
2.14.0) [25]. All analyses in this study were performed in R. All tests were two-tailed, and P-value<0.05 was considered statistically 
significant. 

3. Results 

3.1. Differential analysis of OS and clinical characteristics of patients with different bladder cancer pain-related risk subtypes 

In the TCGA cohort, the expression levels of 103 pain-related genes were subjected to univariate Cox regression analysis, which 
revealed significant associations between 17 pain genes and overall survival (OS) (P-value<0.05; Log-rank test). Due to the substantial 
HR value of OPRD1, it was excluded from the plot. The remaining 16 pain-related genes were depicted using a forest plot to visualize 
their risk ratios (Fig. 1A). The 17 pain-related genes were used to construct a risk score model to classify bladder cancer patients into 
high- and low-risk subtypes based on the best cutoff value determined using the “surv_cutpoint” function of the survminer R package 
(version 0.4.6). Kaplan-Meier curves were used to compare the differences in OS between the high- and low-risk subtypes. The survival 
curves showed that OS was significantly higher in patients with low-risk subtype than in those with high-risk subtype (P-value<0.05, 
Log-rank test; Fig. 1B). To further verify the universality of the risk score constructed in this study, the risk model was employed to 
validate the samples in the GSE13507 and GSE32894 cohorts. The results in the GSE13507 and GSE32894 cohorts demonstrated that 
the OS of the low-risk subtype was significantly higher than that of the high-risk subtype (P-value<0.05, Log-rank test; Supplementary 
Fig. 1). 

In addition, a heatmap revealed the expression of the 17 pain-related genes in high- and low-risk subtypes. As shown in Fig. 1C, 
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Fig. 1. Construction and analysis of the pain-related risk score model. (A) Forest plot of the associations between the expression levels of 17 pain- 
related genes and OS in the TCGA cohort. The hazard ratio (HR), 95% confidence interval (CI), and P-value were determined using univariate Cox 
regression analysis. (B) Kaplan–Meier estimate of the OS of TCGA cohort two risk subtypes. (C) Heatmap of the different expression levels of 17 pain- 
related genes horizontally clustered in TCGA cohort and clinical features ranked by risk scores. 
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excluding three genes NTSR1, OPRD1, and GPR171, the expression of the remaining 14 pain-related genes was significantly different in 
the high- and low-risk subtypes (P-value<0.05; Wilcoxon test). Furthermore, 12 of the 17 genes exhibited higher mean expression in 
the high-risk subtype than in the low-risk subtype. The remaining five genes had higher mean expression in the low-risk subtype than 
in the high-risk subtype. Overall, the expression levels of 17 pain-related genes in the high- and low-risk subtypes did not correlate with 
clinical characteristics such as age, sex, and tumor stage. 

3.2. Analysis of DEGs between high- and low-risk subtypes of patients with bladder cancer 

A total of 1126 upregulated and 2032 downregulated DEGs (|logFC|>1 and P-value<0.05) were identified between two pain- 
related risk subtypes in the TCGA cohort using the edgeR package in glmQLFTest (Fig. 2A). Fig. 2B shows the location on the chro
mosome of the top 322 significantly downregulated DEGs, top 70 significantly upregulated DEGs, and the correlation between gene 
expression and pain-related risk scores. GO enrichment analysis revealed (Fig. 2C) that the DEGs were mainly enriched in biological 
processes, such as collagen-containing extracellular matrix, synaptic membrane, neuronal cell body, and skin and epidermis devel
opment. KEGG enrichment analysis showed that the DEGs were mainly enriched in neuroactive ligand-receptor interactions, drug 
metabolism-cytochrome P450, retinol metabolism, cytochrome metabolism of xenobiotics, chemical carcinogenesis-DNA adducts, and 
other KEGG pathways (Fig. 2D). 

In addition, GSEA analysis of hallmarks, 17 ImmPort immune signatures, 28 immune cell signatures, and metabolic pathways were 
performed on TCGA cohort. Twenty-two hallmarks were significantly enriched in the high-risk subtype (Fig. 3A). Four ImmPort 
immune signatures were significantly enriched in the high-risk subtype (Fig. 3B). Two immune cell signatures were significantly 
enriched in the low-risk subtype, whereas three immune cell signatures were significantly enriched in the high-risk subtype (Sup
plementary Fig. 2A). Corresponding to the metabolic pathways, we observed that four metabolic pathways were significantly enriched 
in the high-risk subtype and thirteen metabolic pathways were significantly enriched in the low-risk subtype (Supplementary Fig. 2B). 
In addition, GSEA results for the eight most significantly enriched hallmarks, ImmPort immune signatures, immune cell signatures, and 

Fig. 2. Differential gene analysis in different risk subtypes. (A) Volcano plot of DEGs related to pain using |logFC|>1 and P-value <0.05 as screening 
criteria. The horizontal line is -log. The two vertical lines are − 1 and 1. (B) The chromosome locations of 392 DEGs. (C) Enrichment results of 
significantly DEGs in GO terms for biological process, cellular component, and molecular function. (D) Enrichment results of significant DEGs in 
KEGG pathways. 
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metabolic pathways are shown in Fig. 3C and D, and Supplementary Figs. 2C and D. In this study, ssGSEA was used to calculate the 
enrichment scores for 50 hallmarks in TCGA patients with high- and low-risk subtypes. The statistical differences between the 
enrichment scores for the 50 hallmarks in the two subtypes were also calculated. TCGA dataset analysis revealed that with the 
exception of five hallmarks (DNA_REPAIR, ADIPOGENESIS, MYC_TARGETS_V2, OXIDATIVE_PHOSPHORYLATION, and XEN
OBIOTIC_METABOLISM), the enrichment of the hallmark scores was significantly different between high- and low-risk subtypes 
(Fig. 4). In addition, the enrichment scores for majority of hallmark were significantly higher in the high-risk subtype than in the low- 
risk subtype (P-value<0.05; Wilcoxon test; Supplementary Fig. 3). 

3.3. Analysis of somatic mutation differences between high- and low-risk subtypes in bladder cancer patients 

Genetic mutations play an important role in tumor progression and patient prognosis. Accordingly, further mutational landscape 
analysis of bladder cancer pain-related risk subtypes was performed. The top five most frequently mutated genes in both subtypes were 
TP53, TTN, KMT2D, MUC16, ARIDIA, KDM6A, and PIK3CA (Fig. 5). TP53 and RB1 play key roles in regulating cell division. Inac
tivation, mutation, and deletion of TP53 and RB1 are among the major causes of bladder cancer. The mutation frequency of RB1 was 
much higher in the high-risk subtype than that in the low-risk subtype. STAG2 was one of the most commonly mutated genes in bladder 
cancer. The frequency of mutations was significantly higher in the high-risk subtype than in the low-risk subtype. 

3.4. Characterization of immune landscape in bladder cancer with high- and low-risk subtypes 

This part of the study focused on the differences in the immune system between the high- and low-risk subtypes. Stromal and 
immune scores are often used to predict the degree of mesenchymal and immune cell infiltration of the tumor and provide the basis for 

Fig. 3. GSEA results of different risk subtypes in TCGA cohort. (A) Volcano plot of the hallmark gene enrichment analysis in TCGA cohort. The X- 
axis is normalized enrichment score (NES), and the Y-axis is the -log of the P-value for significance in the enrichment result. (B) Volcano plot of the 
ImmPort immune signature gene enrichment analysis in TCGA cohort. (C) GSEA results of the top eight enriched hallmarks. (D) GSEA results of the 
top eight enriched ImmPort immune signatures. 

Fig. 4. GSVA analysis of 50 hallmarks with different risk subtypes. 
Heatmap of the hallmark enrichment scores of the different risk subtypes in TCGA cohort. 
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calculating the ESTIMATE score. This score can be used to infer tumor purity, defined as the proportion of tumor cells in solid tumor 
samples. The ESTIMATE method predicts immune-related scores of the tumor microenvironment, including stromal and immune cell 
scores, using the expression profiles of tumor patients. Therefore, stromal score, immune score, and ESTIMATE score and tumor purity 
were calculated based on this algorithm for high- and low-risk subtypes. Statistically significant differences in the scores for these four 
characteristics were evident between the high- and low-risk subtypes. Analysis of TCGA bladder cancer dataset revealed significantly 
lower tumor purity scores in the high-risk subtype compared to the low-risk subtype (P-value<3.5e-06; Wilcoxon test; Supplementary 
Fig. 4). In contrast, stromal scores, immune scores, and ESTIMATE scores were significantly higher than the corresponding scores in the 
low-risk subtype. In addition, the CYT reflected the cell killing function by the geometric mean of granzyme A and perforin-1 gene 
expression, with CYT expression levels significantly lower in the high-risk subtype than in the low-risk subtype. 

3.5. Analysis of drug sensitivity differences between high- and low-risk subtypes in bladder cancer patients 

We further performed WGCNA analysis to identify drugs associated with pain-related risk scores in the GDSC database. The optimal 
soft threshold power β was set to 6 to ensure the construction of a scale-free network (scale-free R2 = 0.9) (Fig. 6A). The constructed 
dendrogram revealed that drugs with similar drug sensitivity patterns clustered into four modules (Fig. 6B), with the minimum number 
of drugs per module set at 30. Of the four modules, the blue module was significantly positively correlated with the high-risk subtype 
(ME = 0.4 P-vvalue = 3e-17) and significantly negatively correlated with the low-risk subtype (Fig. 6C). Therefore, we selected the 
blue module as the hub module, from which eight hub drugs were screened with the screening criteria of MM > 0.5 and GS > 0.4 
(Fig. 6D). Univariate Cox regression analysis was performed to assess the relationship between IC50 and OS for these eight drugs. Of 
these, seven were significantly associated with OS (P-value<0.05; Log-rank test). Forest plots were constructed to visualize the HRs for 
the seven drugs. All seven had HR > 1 and were prognostically favorable (Fig. 6E). In addition, the IC50 values of these eight drugs were 
analyzed in the high- and low-risk subtypes. The IC50 values of all eight drugs were significantly different in the high- and low-risk 
subtypes. The IC50 values of each drug were significantly higher in the high-risk subtype than in the low-risk subtype, indicating 
that patients in the low-risk subtype were more sensitive to the drugs than those in the high-risk subtype (Fig. 6F). These results suggest 
that the pain-related risk score model may be a useful filter for the use of chemotherapeutic agents in the treatment of bladder cancer. 

3.6. Prediction of immunotherapy outcome in patients with high- and low-risk subtypes of bladder cancer 

To explore the response of the different pain-related risk subtypes to immunotherapy, immune signature scores of TCGA bladder 
cancer patients were downloaded from the TIDE website. Information included the myeloid-derived suppressor cell (MDSC), cancer- 
associated fibroblast (CAF), M2 subtype tumor-associated macrophage (M2), T cell rejection, and T cell dysfunction scores. Significant 
differences between the two subtypes in the CAF, M2, MDSC, and T cell rejection scores were evident (Fig. 7A). Three cell types limited 
T cell infiltration in tumors: CAF, MDSCs, and tumor-associated macrophages TAMM2. MDSC and CAF scores were higher in the high- 
risk subtype, whereas the TAMM2 score was higher in the low-risk subtype. The high-risk subtype had higher T cell rejection scores 
than the low-risk subtype. The findings indicate that high-risk subtype have less T cell infiltration into the tumor, poor immune 
competence, and poor survival prognosis. Analysis of variance revealed that the efficacy of immunotherapy differed between the high- 
risk and low-risk subtypes, with the proportion of immunotherapy responders in the low-risk subtype being >2.5 times that observed 
in the high-risk subtype (Fig. 7B). Data from the urothelial carcinoma dataset (IMvigor210) were used to compare the prognosis of the 
different pain-related risk subtypes after immunotherapy. The survival curves revealed that patients with low -risk subtype had 
significantly better survival than those with high-risk subtype (Fig. 7C). In addition, more patients in the low-risk subtype had a 

Fig. 5. Somatic mutations in high- and low-risk subtypes in TCGA cohort. 
Waterfall plot of the top 20 mutant genes in high- and low-risk subtypes in TCGA cohort. 
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complete response (CR) and a partial response (PR) after immunotherapy (Fig. 7E). In addition, patients in CR and PR with anti-PD-L1 
therapy had lower risk scores than patients with stable disease (SD) and progressive disease (PD) (P-value = 0.021; Wilcoxon test) 
(Fig. 7D, F). These results suggest that bladder cancer patients with low-risk scores may be more sensitive to immunotherapy and have 
a better prognosis. This may be because the high-risk subtype had fewer T cells infiltrating into the tumor tissue, resulting in poor 
survival. 

4. Discussion 

Bladder cancer remains the most common malignancy of the genitourinary system. In 2018, 549,393 patients were diagnosed with 
bladder cancer worldwide and 199,922 patients died from this disease [1]. The incidence of bladder cancer is expected to continue to 
increase over the next decade [26]. There is no widely accepted screening protocol for bladder cancer [27], probably because of the 
low prevalence of invasive disease and the lack of optimal screening tools. As a consequence, majority of patients have already 
advanced to the infiltrative stage of bladder cancer at the time of diagnosis. Clinical management of bladder cancer has changed little. 
For patients with muscle invasion, surgical resection remains the mainstay of treatment. Pain is a common complaint in cancer 

Fig. 6. Network construction, module detection in the GDSC database, and evaluation of chemotherapeutic reaction of different risk subtypes in 
TCGA cohort. (A) Analyses of network topologies for various soft threshold powers through scale-free fit index and mean connectivity. (B) Clustering 
dendrogram of genes based on topological overlapping. Different colors were assigned to corresponding modules. (C) Heat map of the correlation 
between drug modules and risk subtypes. (D) Scatter diagram on the coefficient of correlation between the MM and GS of the blue module. (E) 
Forest plot of the associations between the IC50 of seven hub drugs and OS in TCGA cohort. HR, 95% CI, and P-values were determined using 
univariate Cox regression analysis. (F) Comparison of the IC50 of the eight hub drugs between the two risk subtypes. (For interpretation of the 
references to color in this figure legend, the reader is referred to the Web version of this article.) 
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patients. In a systematic review of 19 studies conducted in 2014, the pooled prevalence of cancer-related pain was 59.2%, ranging from 
39.9% in outpatient settings to 80.5% in hospice care settings [28]. The presence and severity of pain are clinically important because 
pain, as a variable in health-related quality of life factors, provides prognostic information for survival [29,30]. Two decades ago, an 
effect of pain on the body’s immune function was proposed [31]. Solid tumors are innervated by nerve fibers from the autonomic and 
sensory peripheral nervous systems. Whether the reinnervation of tumors by pain-triggered sensory neurons affects cancer immu
nosurveillance remains unclear. To date, no studies have classified bladder cancer based on pain gene sets. Therefore, we used specific 
pain gene sets to identify and validate our new classification of bladder cancer. 

The series of events required for an organism to receive a painful stimulus, convert it to a molecular signal, and recognize and 
characterize the signal. Pain is medically defined as the physical sensation of discomfort or distress caused by injury or illness, so can 
hence be described as a harmful stimulus which signals current (or impending) tissue damage. Pain may come from extremes of 
temperature, mechanical damage, electricity or from noxious chemical substances. This is a neurological process. Cancer pain is an 
unpleasant feeling and emotional experience caused by the information that tissue damage needs to be repaired or adjusted trans
mitted to the nerve center. Therefore, we selected 103 pain-related genes as the background gene for analysis. 

Using TCGA data related to bladder cancer patients, 17 pain-related genes significantly associated with OS were identified using 
univariate Cox regression analysis. Recent research has discovered that the genetic composition and corresponding polymorphisms are 

Fig. 7. Differences in response of different risk subtypes to immunotherapy. (A) Comparison of TIDE scores between the different risk subtypes. (B) 
Distributions of responder and non-responder to immunotherapy in the distinct risk subtypes estimated by TIDE algorithm. (C) Kaplan-Meier curves 
of OS according to risk subtypes in the IMvigor210 cohort. (D) Bar chart of patients’ risk score in IMvigor210 dataset. The color of the column 
indicates the response to immunotherapy. Each bar represents a sample. CR/PR refers to complete response or partial response to the drug. SD/PD 
refers to stable disease or progressive disease. (E) Distribution ratio of anti-PD-L1 immunotherapy response of patients with high- and low-risk score 
subtypes in IMvigor210 cohort. The horizontal axis represents the different risk subtypes and the vertical axis represents the proportion of the 
different treatment responses. (F) Boxplot illustrating the distribution of risk score for patients with different immunotherapy responses in the 
IMvigor210 cohort. Significance was determined using the Wilcoxon test. (For interpretation of the references to color in this figure legend, the 
reader is referred to the Web version of this article.) 
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the fundamental determinants of an individual’s pain sensitivity. The bladder cancer prognosis model has implicated 17 pain-related 
genes that are intricately involved in pain perception via the mechanisms of ion channels, neurotransmitters, action receptors, and 
drug metabolism enzymes. Remarkably, the polymorphisms of these aforementioned genes at various levels are capable of affecting 
pain perception and the resultant individual performance. Bladder cancer patients were classified into high- and low-risk subtypes 
using the optimal pain risk score cutoff determined using the surv_cutpoint function in the survminer package of the Bioconductor 
platform (version 0.4.6). In recent years, considerable scientific investigation has been devoted to evaluating the correlation between 
pain and tumor progression. Patients experiencing pain symptoms are subject to a substantial decrease in survival rates, thereby 
underscoring the crucial necessity of effective pain management for optimal patient outcomes. Stressful conditions have the ability to 
activate both the hypothalamic-pituitary-adrenal (HPA) axis and the sympathetic nervous system (SNS), culminating in an elevated 
discharge of catecholamines and adrenal ketones from the adrenal glands. Consequently, this may potentially result in immunosup
pression due to reduced immune function of macrophages and lymphocytes, as well as the hindered development, transportation and 
activation of both central and peripheral immune cells. Moreover, prolonged cancer-related pain may lead to damage of the immune 
system and hastened cellular aging. Furthermore, the tumor-stimulating effects of stress could potentially be attributed to endocrine 
dysfunction. Studies have revealed that adrenalin signals may regulate tumor cells and vascular endothelial cells, thereby inducing 
tumor neovascularization and promoting metastasis. The immune system and endocrine system are both regulated by the nervous 
system. Thus, the aberrant nervous excitation associated with pain-induced stress can disrupt normal cellular homeostasis, leading to 
functional impairment of different cellular mechanisms. Intriguingly, some signaling pathways in tumor cells and nerve cells are 
jointly implicated, imparting a biological underpinning for pain-induced promotion of tumor progression. Our results imply that 
discrepant expression profiles of genes related to pain perception in the high- and low-risk subtypes may contribute to differences in 
their prognosis and survival durations. The correlation between pain-induced disruption of the endocrine and immune systems, as well 
as the direct influence of the nervous system on tumors, may explain these observations. 

Subsequently, we systematically investigated DEGs, immune cell signature enrichment, hallmarks enrichment, metabolic pathway 
enrichment, and somatic mutations among the different risk subtypes. These characteristics differed significantly. In addition, dif
ferences in immunotherapy response and drug sensitivity between the two risk subtypes were evaluated based on TIDE scores and drug 
response data from the GDSC database. Bladder cancer patients with lower risk scores were more sensitive to immunotherapy and 
drugs. Tumorigenesis is associated with mutations in oncogenes and defective immune surveillance [32]. Tumors have immunogenic 
properties similar to those of other pathogens while retaining several specific biological responses. Multiple immune cells are involved 
in antitumor immune processes. The survival of malignant cells in tissues and organs is usually determined by the state of the tumor 
microenvironment and the infiltration of immune cells [33–37]. In addition, individual or cellular heterogeneity, such as tumor 
mutational load, metabolic status, microbiome, and other specific characteristics, also have a critical impact on the outcomes of the 
tumor microenvironment and immunotherapy. In this study, we also analyzed the immune characteristic scores between high- and 
low-risk subtypes of bladder cancer and observed that these immune-related characteristics differed significantly between the two 
subtypes. Therapeutic prospects for patients with advanced disease are expanding as studies have attempted to link molecular sig
natures to response. Based on our analytical studies, we hypothesize that pain-related risk subtypes in bladder cancer patients could be 
used as patient screening indicators for immunotherapy and that patients in the low-risk subtype group for bladder cancer would be 
more suitable for immunotherapy. 

This study has some limitations. The limited literature on the direct relationship between the two and the role of pain-related genes 
in tumorigenesis and progression is unclear. Furthermore, there is a lack of detailed clinical and experimental data to accurately assess 
whether pain-related genes have the potential to alleviate bladder cancer-related pain and predict prognosis as biomarkers. The risk 
score model needs to be further validated in multicenter clinical trials and prospective studies. In addition, our study did not include all 
human pain-related genes for analysis, and the number of genes was relatively small. The regulatory mechanisms of pain-related genes 
in bladder cancer remain ambiguous, and which is exactly what future work arising from this study should continue to explore. 

Despite the above limitations, our study reveals associations between pain-related risk subtypes and prognosis, clinical informa
tion, and immune-related characteristics of bladder cancer patients. Staging of these patients based on pain-related genes may be an 
important prognostic marker. As an important part of subsequent research, we will continue to collect bladder cancer data and 
establish more accurate staging systems to provide the necessary basis for targeted treatment of bladder cancer. 

By identifying bladder cancer subtypes through pain-related genes, we systematically analyzed the relationship between these 
subtypes and immune cells, immunotherapy/chemotherapy responses, and the corresponding pathways in the tumor microenviron
ment. These results provide a basis and reference for the clinical diagnosis and treatment of bladder cancer. 
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