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Space flight-induced physiological deconditioning resulting from decreased gravitational
input, decreased plasma volume, and disruption of regulatory mechanisms is a
significant problem in returning astronauts as well as in normal aging. Here we review
effects of a promising countermeasure on cardiovascular systems of healthy men
and women undergoing Earth-based models of space-flight. This countermeasure is
produced by a centrifuge and called artificial gravity (AG). Numerous studies have
determined that AG improves orthostatic tolerance (as assessed by various protocols)
of healthy ambulatory men, of men deconditioned by bed rest or by immersion (both
wet and dry) and, in one case, following spaceflight. Although a few studies of healthy,
ambulatory women and one study of women deconditioned by furosemide, have
reported improvement of orthostatic tolerance following exposure to AG, studies of
bed-rested women exposed to AG have not been conducted. However, in ambulatory,
normovolemic subjects, AG training was more effective in men than women and more
effective in subjects who exercised during AG than in those who passively rode the
centrifuge. Acute exposure to an AG protocol, individualized to provide a common
stimulus to each person, also improved orthostatic tolerance of normovolemic men and
women and of furosemide-deconditioned men and women. Again, men’s tolerance was
more improved than women’s. In both men and women, exposure to AG increased
stroke volume, so greater improvement in men vs. women was due in part to their
different vascular responses to AG. Following AG exposure, resting blood pressure
(via decreased vascular resistance) decreased in men but not women, indicating an
increase in men’s vascular reserve. Finally, in addition to counteracting space flight
deconditioning, improved orthostatic tolerance through AG-induced improvement of
stroke volume could benefit aging men and women on Earth.
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CARDIOVASCULAR RESPONSES TO
SPACE FLIGHT AND SIMILARITIES TO
AGING

A myriad of cardiovascular effects develop during space flight,
including an immediate shift of fluid headward and a decrease
in central venous pressure (even though transmural central
venous pressure increases and therefore venous return of blood
to the heart is enhanced) (Buckey et al., 1996a; Levine et al.,
2002; Kaderka, 2010; Norsk, 2014). On a longer time scale,
astronauts develop a loss of ventricular mass (cardiac atrophy)
(Perhonen et al., 2001; Dorfman et al., 2007, 2008), decreased
sensitivity of the carotid-cardiac (vagal) baroreflex (Convertino,
2002; Norsk, 2014) and a greater responsiveness of sympathetic
neural activity to inflight simulations of standing (Ertl et al.,
2002). Overall, the net effect of time spent in space is manifested
by decreasing blood pressure and elevation of cardiac output
throughout flight implicating peripheral vasodilation as a major
body response that may drive the reduction of plasma volume
and associated cardiovascular effects. Conundrums exist in the
elevation of cardiac output in the face of cardiac atrophy and in
the fact that muscle sympathetic nerve activity (MSNA) increases
during spaceflight despite, or perhaps to counteract, peripheral
vasodilation (Ertl et al., 2002; Levine et al., 2002; Norsk, 2014;
Norsk et al., 2015).

Upon return from space missions, cardiovascular effects
have been a concern from the time of early Mercury flights
when two astronauts were found to have lost tolerance for
standing even after a short time spent in weightlessness (Kaderka,
2010). To date, the most persistent post-flight problem has
been orthostatic intolerance (OI), as demonstrated in up to
64% of returning astronauts (Buckey et al., 1996b; Platts
et al., 2014). Major cardiovascular conditions that present
upon return from space flight include increased hematocrit,
decreased plasma volume, decreased aerobic capacity, cardiac
atrophy, decreased norepinephrine, and decreased vascular
responsiveness in response to standing, (even though directly
measured MSNA is increased during space flight) (Perhonen
et al., 2001; Levine et al., 2002; Kaderka, 2010; Norsk, 2014).

Spaceflight and aging are associated with similar kinds of
physiological deconditioning. For example, microgravity during
spaceflight has been shown to influence cardiovascular function,
cerebral autoregulation, and musculoskeletal function, in a
manner that leads to OI upon return to Earth (Blaber et al.,
2013; Goswami et al., 2013). Similarly, aging is associated with
deterioration of cardiovascular and musculoskeletal systems,
which predisposes older persons to dizziness upon standing
and/or OI, which can lead to falls and falls-related injuries, and
often hospitalization (Blain et al., 2016; Bousquet et al., 2017).
Specifically, current scientific knowledge regarding OI and how
it comes about provides a framework for understanding (patho-)
physiological concepts of cardiovascular (in-) stability in bed
rest-confined senior citizens or those on multiple medications
(polypharmacy) (Goswami et al., 2017).

Furthermore, since bed rest is used as a model to study
effects of spaceflight de-conditioning (Cvirn et al., 2015; Goswami
et al., 2015a; O’Shea et al., 2015; Waha et al., 2015) and

hospitalized older persons spend a large part of their time
in bed, the de-conditioning effects of bed rest confinement
on physiological functions and its parallels with spaceflight
deconditioning can be exploited to understand and combat both
variations of de-conditioning. This knowledge is important as de-
conditioning due to bed confinement in older persons can lead to
a (downward) spiral of increasing frailty, OI, falls, and fall-related
injury.

Integration of knowledge regarding deconditioning due to
reduced gravitational stress in space, and bed rest-induced
deconditioning promotes a comprehensive approach that can
incorporate nutritional aspects, muscle strength, and function
(Gao et al., 2018), cardiovascular (de-) conditioning, and cardio-
postural interactions (Goswami et al., 2013). The impact of
such integration can provide new insights and lead to methods
of value for both space medicine and geriatrics (Geriatrics
meets Spaceflight!) (Goswami, 2017). Finally, as astronauts
in space spend substantial amounts of time carrying out
exercise training to counteract the microgravity-induced de-
conditioning – and to counteract OI on return to Earth-, it is
logical to suggest some of these interventions for bed-confined
older persons.

Gender Differences
Cardiovascular gender/sex differences noted upon return to
Earth, indicate that women are more susceptible to post-flight OI
(Fritsch-Yelle et al., 1994; Harm et al., 2001; Waters et al., 2002;
Platts et al., 2014) while visual impairment intracranial pressure
syndrome appears to be more severe in men (Mark et al., 2014;
Platts et al., 2014). In searching for mechanisms responsible for
reduced orthostatic tolerance following spaceflight, studies have
determined that women demonstrate a greater loss of plasma
volume (Waters et al., 2002; Platts et al., 2014), a greater decrease
in baroreflex control of heart rate (Fritsch-Yelle et al., 1994;
Waters et al., 2002) and an hypoadrenergic responsiveness to
orthostatic stress (Waters et al., 2002). Several reports also note
that, on Earth, women typically respond to stress with increased
heart rate, while men respond with increased vascular resistance
(Ludwig et al., 1987; Evans et al., 2001; Arzeno et al., 2013; Mark
et al., 2014). The lower vasoconstrictive reserve of women in the
Convertino study came in spite of steeper increases in peripheral
vascular resistance accompanied by enhanced epinephrine and
diminished norepinephrine responses at presyncope, leading
the authors to conclude that women clearly demonstrated less
effective responsiveness of mechanisms that contribute to blood
pressure regulation during orthostatic stress (Convertino, 1998).
These results are reinforced by those seen in women’s response
to both standing (Waters et al., 2002; Meck et al., 2004) and
lower body negative pressure (LBNP) stresses (White et al., 1996;
Frey and Hoffler, 1998). Finally, coherence between diastolic
blood pressure and MSNA is lower in women compared to
men at rest and in response to increasing LBNP (Yang et al.,
2012).

Recently, a study of post-flight carotid artery stiffness and
associated blood biomarkers indicated that, after 6 months
in space, carotid artery stiffness and insulin resistance were
increased in that group of astronauts with sex differences
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noted in pulse transit time, insulin resistance, plasma renin,
and aldosterone (Hughson et al., 2016). Overall, the latter
study indicated that the significant gender differences from this
small group of astronauts who had spent 6 months on the
International Space Station, would require additional research
to firmly establish gender-specific differences in these important
metabolic and vascular remodeling variables (Hughson et al.,
2016). Autoregulatory differences in cerebral blood flow may also
contribute to greater Ol in women compared to men. Cerebral
flow regulation in astronauts who failed a post-flight 10 min
stand test was characterized by higher cerebral vasodilation with
a significant sex interaction in response to standing: five of eight
non-finishers were female while 17 of 19 finishers were male
(Blaber et al., 2011). Harm et al. (2001) carried out a compilation
of statistics from 140 males and 25 females with respect to
occurrence of Ol following 5–16 days of spaceflight and reported
that 7% of males and 28% of females developed Ol, similar to that
reported by Blaber et al. (2011).

One study established foundations for basic gender differences
by using ganglionic blockade to examine reflex responses to
vasoactive drugs (Christou et al., 2005). In that study the
authors determined that, in the presence of ganglionic blockade,
men and women displayed equal increases in blood pressure
in response to an alpha 1 agonist. However, before blockade,
the women’s response was significantly greater than the men’s
response, clearly establishing that baroreflex buffering of blood
pressure by reflex lowering of heart rate was not as robust in
reflexive women as it was in reflexive men. The same study also
established that women’s vasopressin response to the ganglionic
blocker was significantly smaller than that of men’s, thereby
indicating that women’s secretion of that hormone to support
blood pressure was not as strong as men’s (Christou et al.,
2005).

CARDIOVASCULAR RESPONSES TO
GROUND BASED SIMULATIONS OF
SPACE FLIGHT

Simulations of Spaceflight
Certain criteria from spaceflight (headward shift of fluid) and
return from spaceflight (increased hematocrit and Ol) led to the
choice of head down bed rest (HDBR) and immersion (both
wet and dry) as the Earth-based protocols that best simulate
cardiovascular responses to actual spaceflight. As a general rule,
HDBR and dry immersion are used to model long term effects of
spaceflight while neck-high immersion in thermo-neutral water
is used to model short term effects (Norsk, 2014).

Questions arise concerning the suitability of different models
of spaceflight to provoke responses comparable to those seen
post-flight. Accompanying this concern are: questions of the
appropriate amount of time over which to apply such models in
order to induce certain deconditioning effects; the appropriate
testing of countermeasures to combat this cardiovascular
deconditioning; and the most appropriate model to produce the
gender effects seen in actual spaceflight.

Similarities and Differences Between
Spaceflight Simulations
At rest, similarities between HDBR and wet and dry immersion
include headward fluid shift, decreased plasma volume, increased
venous distensibility, decreased heart muscle strength, and
muscle volume (cardiac atrophy) as well as impaired carotid-
cardiac control of heart rate that occurs on a quicker time scale
in response to wet or dry immersion than to HDBR (Fortney,
1991; Levine et al., 1997; Perhonen et al., 2001; Norsk, 2014).
Differences between water immersion and HDBR include a larger
shift of fluid to the chest accompanied by a greater increase in
heart size with immersion and a larger shift of fluid to the head
with HDBR. In addition, blood pressure decreases acutely in
response to HDBR but not to water immersion (Norsk, 2014).

Similarities and Differences Between
Spaceflight Simulations and Spaceflight
Similarities between immersion to the neck in thermo-neutral
water (WI) and spaceflight are the immediate shifting of fluid
to the thorax resulting in the acute increase in cardiac preload
accompanied by intravascular absorption of interstitial fluid,
two mechanisms that seem to dominate the early response to
spaceflight (Norsk, 2014).

Similarities of HDBR to spaceflight include a 10–15%
decrease in plasma volume accompanied by diminished cardiac
performance and baroreflex sensitivity that mirror those of
spaceflight (Levine et al., 1997; Dorfman et al., 2007; Pavy-Le
Traon et al., 2007). In addition, HDBR subjects experience a rapid
decline in aerobic capacity followed by a further decline at a
slower rate, impaired vascular reflexes, and altered myocardial
mechanics, similar to those observed during spaceflight (Levine
et al., 1997; Dorfman et al., 2007; Hargens et al., 2013). In terms of
autonomic behavior, HDBR has been shown to result in decreased
baroreflex sensitivity in control of heart rate and augmented
sensitivity in control of MSNA, also similar to that of spaceflight
(Arzeno et al., 2013). Finally, again similar to spaceflight, both
cardiac atrophy and MSNA increase across the course of HDBR
while the decrease in plasma volume plateaus (Levine et al., 1997;
Kamiya et al., 2000; Perhonen et al., 2001; Dorfman et al., 2007;
Arzeno et al., 2013; Norsk, 2014).

One critically important difference between HDBR and space
flight, is the effect of gravity acting on the intra thoracic pressure
of HDBR subjects when compared to the dramatic release of
thoracic compression (due to lifting of the weight of the chest
walls) in space. Another important difference is MSNA, which,
although increasing across both space flight and HDBR, is at
higher levels during spaceflight (Norsk, 2014). The effects of
MSNA on vascular resistance and thoracic compression on
venous return are important and need to be considered when
interpreting results of HDBR studies (Norsk, 2014).

Gender Similarities and Differences in
Simulations of Space Flight
Similarities
Cardiac atrophy, observed with both echocardiography and
magnetic resonance (MR), indicated a loss of left and right
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ventricular mass that increased similarly in men and women
during 60 days of sedentary, HDBR (Dorfman et al., 2007).
Studies have also determined that exercise during HDBR
attenuated the loss of cardiac mass or left ventricular compliance
to approximately the same degree in both men and women
(Arbab-Zadeh et al., 2004; Dorfman et al., 2007). Similarly, a
60 day HDBR study found that some differences in autonomic
control (men’s tendency toward sympathetic activation and
women’s parasympathetic dominance in terms of heart rate
effect on blood pressure regulation) were preserved even though
both parasympathetic modulation and baroreflex sensitivity
decreased across bed rest (Arzeno et al., 2013). Greater
parasympathetic dominance in healthy, ambulatory women,
and greater sympathetic dominance in ambulatory men were
previously reported by Frey and Hoffler (1998) and also by
our laboratory (Evans et al., 2001). Even short term (4 h)
HDBR indicates that both men and women demonstrate similar
lowering of blood volume, central venous pressure, forearm
vascular resistance, and norepinephrine and higher heart rate and
greater loss of stroke volume during LBNP compared to 4 h of
seated rest (Edgell et al., 2012).

Differences
A study comparing orthostatic tolerance before and after 6 h of
water immersion with that determined before and after 6 h of
HDBR, found that men’s orthostatic tolerance limit (OTL) was
greater than women’s in all cases, and the decrease in tolerance
was greater in women than in men after HDBR but not after water
immersion (Hordinsky et al., 1981). Two important measures of
autonomic function, determined in the Arzeno study, indicated
that women’s baroreflex sensitivity decreased more than men’s
in response to HDBR and the group’s decrease in systolic and
diastolic blood pressure over 60 days of HDBR was due to men,
while women maintained blood pressure over the course of the
study (Arzeno et al., 2013). Although HDBR-induced decrease in
parasympathetic modulation would lead to decreased baroreflex
sensitivity, it is unclear what role these changes play in the greater
susceptibility to OI and greater loss of plasma volume in female,
compared to male, astronauts upon return to Earth (Mark et al.,
2014).

A bed rest study by Pavy-Le Trao et al. (2002) showed
that, even though there was a slower vasodilatory response to
sudden reductions in blood pressure in orthostatically intolerant
women, cerebrovascular autoregulation was not impaired in
females. However, the large variability in cerebral blood flow
responses during HDBR studies, seriously limits the use of
HDBR-derived cerebral blood flow data in understanding how
cerebral vasculature adapts to microgravity exposure (Blaber
et al., 2013).

CARDIOVASCULAR RESPONSES TO
ARTIFICIAL GRAVITY

Artificial gravity (AG) as a countermeasure to physiologic
deconditioning of multiple organ systems has long been
discussed and proposed (National Research Council, 2011,

Chapter 7 of Recapturing a Future for Space Exploration;
Shulzhenko, 1992; Vernikos et al., 1996; Vernikos, 1997;
Greenleaf et al., 1998; Clement and Pavy-Le Traon, 2004; Evans
et al., 2004, 2015; Clement et al., 2016). To date, however,
cardiovascular responses to AG applied in the long body axis
(to simulate standing on Earth) have come almost exclusively
from Earth-based studies in a variety of situations: (1) healthy,
ambulatory subjects acutely exposed to hypergravity, (2) healthy,
ambulatory subjects before and after a period of AG training, and
(3) deconditioned subjects before and after bed rest, HDBR, water
immersion, dry immersion, and furosemide-induced simulations
of spaceflight. Below, we review what has been learned about the
human response to AG in the above environments and seek to
determine if gender differences in cardiovascular responses might
affect the future of AG as a countermeasure to cardiovascular
deconditioning. There are two studies where AG was actually
applied to astronauts several times in-flight in order to gather
their perception of AG while in space (Benson et al., 1997;
Clément et al., 2001). Although those studies did not report actual
post-flight cardiovascular responses to gravitational stimulus,
later reports (Clement and Pavy-Le Traon, 2004; Clement et al.,
2016) stated that none of the four astronauts who underwent
AG during that flight exhibited post-flight OI while the three
who did not receive AG, did exhibit OI. Although there are a
plethora of ground based studies, the need for actual space-based
studies focusing on cardiovascular and other system effects of AG
is glaring, and has been called out by NASA administrators as
a goal for closing critical gaps in the areas of post-flight human
performance (National Research Council, 2011, Chapter 7 of
Recapturing a Future for Space Exploration; Kaderka, 2010; Mark
et al., 2014; Norsk, 2014; Clement et al., 2016).

As glaring as the lack of space-based information from
humans who have experienced in-flight AG, is the lack of data
from women undergoing AG during bed rest or immersion (wet
or dry) studies. Acute responses to AG have been determined
from healthy, normovolemic women (Stenger et al., 2007) and
from healthy women deconditioned by furosemide (Evans et al.,
2015; Zhang et al., 2017). However, there are no AG studies
in women deconditioned by HDBR or immersion (wet or dry);
the three simulations of space flight considered closest to actual
space missions. Therefore, results below will summarize what
has been learned from numerous AG studies conducted in
healthy men studied in ambulatory conditions and following
simulations of space flight, and from the few studies conducted in
healthy ambulatory women and the only study of deconditioned
(furosemide infusion) women.

Healthy Ambulatory Subjects
Acute Exposure to AG
Normovolemic men
Exposure of healthy, ambulatory men and women to AG is a
mainstay of pilot testing and training and such testing has also
been used in the general population to collect baseline data for
commercial spaceflight (Blue et al., 2012). In that study, data
were collected from 65 men and 12 women, 22–88 years old,
as they were taken to gray-out with the principal finding being
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that gray-out and peak heart rate were inversely related to age.
Another study of 22 men and 25 women determined that risk
factors for OI to G stress (on NASA Ames’ centrifuge) included
increased height and reduced plasma volume (Ludwig et al.,
1987).

In the last 12 years, centrifugation in the long body axis
has been used to select subjects for subsequent bed rest studies
where AG was to be tested as a countermeasure to subsequent
HDBR (Fong et al., 2007). In that study, 5/6 men were tolerant
of a +1 Gz load at the heart (+2.5 Gz at the feet) applied
for an hour. A similar study designed to evaluate the role of
anthropometric factors in determining cardiovascular stability
during two bouts of AG found that tolerance correlated positively
with body volume and fat free mass. In that study, 8 of the men
were classified as high tolerance and two were classified as low
tolerance (Opatz et al., 2014).

Normovolemic women
In the above studies, women were also tested for their tolerance
to AG. Being female was a significant risk factor for OI in the
Ludwig study (Ludwig et al., 1987). In the Fong study, only 1/5
women were able to withstand a constant +1 Gz load at the heart
for an hour, while in the Opatz study, 6/10 women were tolerant
of the two bouts of +2 Gz (Fong et al., 2007; Opatz et al., 2014).

Taken together, results of the latter two studies indicate
a higher tolerance in men (13/16) than in women (7/15)
for matching AG stresses applied at heart level. Further, the
intolerance of women for the constant 1 h, +1G protocol of the
Fong study was one of the factors that led to the exclusion of
women from a subsequent HDBR/AG study (Stenger et al., 2012).

Chronic Exposure to AG
In examining effects of high G training on orthostatic tolerance
of men and women, Convertino et al determined that 4 weeks of
AG training (three times a week) at ever increasing orthostatic
load, increased calf compliance of both men and women but did
not remove the lower orthostatic tolerance of women compared
to men (Convertino et al., 1998). A study of effects of chronic AG
exposure on subjects deconditioned by dry immersion found that
intermittent exposure to 0.8–1 Gz during 7 days of immersion
prevented the 28% decrease in orthostatic tolerance seen with
immersion alone (Vil-Viliams, 1994).

Due to the sparseness of women’s AG studies, the majority
of available data in the following section will come from
investigations conducted by the authors. Since 1999 we
conducted studies of effects of AG training on: ambulatory,
acutely deconditioned (furosemide) and bed rest deconditioned
men, (Greenleaf et al., 1998; Evans et al., 2004; Stenger et al., 2012;
Blaber et al., 2013), and on ambulatory and acutely deconditioned
men and women (Greenleaf et al., 1998; Stenger et al., 2007, 2012;
Evans et al., 2015; Goswami et al., 2015b; Zhang et al., 2017).
In studies conducted before 2007, we looked at effects of AG
training (45 min a day, 5 days a week, over a period of 3 weeks)
with respect to the ability of short bouts of AG to improve
orthostatic tolerance over ambulatory, pretraining tolerance. We
found the significant increase in tolerance after AG training to
be associated with decreased resting blood pressure and vascular

resistance and increased stroke volume (Greenleaf et al., 1998;
Evans et al., 2004; Stenger et al., 2007). The improvement in
vascular responsiveness was demonstrated through increased low
frequency spectral power of blood pressure and heart rate as
well as a doubling of the norepinephrine response during tilt
(Greenleaf et al., 1998; Evans et al., 2004; Stenger et al., 2007).

Gender Differences in Ambulatory Responses to
Chronic AG Exposure
Similar to tolerance for Earth gravity or matched levels of LBNP,
women clearly demonstrate a lower tolerance for orthostatic
stress than do men (Ludwig et al., 1987; Frey and Hoffler, 1998;
Evans et al., 2004; Fong et al., 2007; Stenger et al., 2007; Opatz
et al., 2014). In our studies, 3 weeks of AG training (45 min/day,
5 days a week) improved ambulatory men’s orthostatic tolerance
more than it improved ambulatory women’s tolerance and
exercise during AG improved tolerance more than did passive
AG. An improvement in orthostatic tolerance was not seen
for these ambulatory women unless exercise accompanied the
AG sessions (Evans et al., 2004; Stenger et al., 2007). Other
investigators determined that a primary source of the increased
protection against OI provided by AG training, resulted from an
increased ability to mobilize stroke volume and cardiac output
during orthostatic stress that was more evident in men than
women (Convertino et al., 1998).

In a test of brain cortical activation during stepped increases in
G load (to presyncope), beta wave (12.5–35 Hz) activity increased
in both men and women, while alpha wave (7.5–12.5 Hz)
activity increased only in men (Schneider et al., 2014). This sex
difference in cortical activation in response to increasing levels
of AG may have implications in the observed sex differences in
cardiovascular responses to AG (Stenger et al., 2012).

Deconditioned Subjects
Recently, Clement and Pavy-Le Traon (2004) and Clement et al.
(2016), reviewed studies that explored AG as a countermeasure
to deconditioning evoked by bed rest and dry immersion.
Results from the 18 studies reviewed, all males, indicated that
AG, applied over as little as 30 min twice a day (Sasaki
et al., 1999) was successful at mitigating OI in men who
were deconditioned by these protocols. Other results included
reductions in exaggerated responses to orthostasis, maintenance
of autonomic cardiovascular function and attenuation of plasma
volume loss. One review also indicated that AG applied
intermittently rather than being held at a constant value, was
better tolerated by men (Clement et al., 2016). However, the
spectrum of AG effects on deconditioned men and women will
not be definitive until AG has been tested in deconditioned
women.

Acute Exposure to AG
Hypovolemic men
Recently, we observed that 90 min of AG exposure in a
protocol individualized to provide a common stimulus to each
person, improved the orthostatic tolerance limit of hypovolemic
men compared to a day in which the same men had been
mildly deconditioned by hypovolemia plus 90 min of 6 degree
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HDBR (Evans et al., 2015). On both study days, subjects had
undergone a diet and furosemide protocol to reduce their plasma
volume to match the reduction observed during spaceflight.
In a companion study, we found that applying a similar,
individualized, AG protocol to a separate group of normovolemic
men significantly improved the OTL of that group compared to
a day in which the same subjects had rested supine for 90 min
(Goswami et al., 2015b). Both studies determined that a 90 min
exposure to increasing levels of AG (to presyncope) improved a
subsequent test of their OTL by up to 30% (hypovolemic men)
compared to their OTL on the supine/HDBR day. Mechanisms
for improvement in men’s orthostatic tolerance appeared to be
a result of decreased resting blood pressure accompanied by
increased cardiac output at rest and during orthostatic testing
following AG exposure (Evans et al., 2015). The Goswami et al.
(2015b) study similarly found decreased blood pressure but
did not find increased cardiac output in men following their
exposure to AG.

In the Clement review of AG as a countermeasure to
deconditioning, 18 studies of men undergoing HDBR or dry
immersion reported that acute AG applied intermittently was
effective to improve orthostatic tolerance, increase MSNA,
maintain exercise capacity, and reduce exaggerated responses to
orthostatic testing, but was not effective to return plasma volume
to normal (Clement et al., 2016).

Hypovolemic women
The hypovolemic study above included women. These women’s
OTL was improved by the 90 min exposure to AG compared to
the day on which they were exposed to 90 min of 6 degree HDBR
(Evans et al., 2015). As with normovolemic women and men
and hypovolemic men, the mechanism of OTL improvement
in hypovolemic women was primarily through increased resting
cardiac output (Evans et al., 2015; Goswami et al., 2015b).

An additional report of autonomic responses to the AG
exposure of hypovolemic men and women of the Evans study
(above) indicated that mechanisms of improved OTL following
AG exposure, also included increased responsiveness of the
cardiac baroreflex to orthostatic stress (both men and women)
(Zhang et al., 2017).

Gender perspectives in deconditioned subjects’ responses to
acute AG
In addition to the effects of AG to improve baroreflex
responsiveness in men and women noted above (Zhang et al.,
2017), we determined that AG exposure increased men’s low
frequency spectral power of systolic blood pressure during the
subsequent test of their OTL but did not change women’s. In
that study we also determined that men’s resting blood pressure
declined after exposure to AG, but women’s blood pressure was
not different on the 2 days either at rest or during orthostatic
tolerance testing (Evans et al., 2015). Different between the Evans
et al. (2015) and Goswami et al. (2015b) studies was the increase
in women’s cardiac output which was significantly greater on the
AG day for women separately in the Goswami study but only as
part of the whole group in the Evans study. Similarities between
men and women in this study included increased orthostatic

tolerance (Evans et al., 2015)and improved baroreflex activity
(Zhang et al., 2017) on the day subjects had previously been
exposed to AG. Major differences between men and women
consisted of decreased blood pressure (Evans et al., 2015) and
increased low frequency spectral power of blood pressure in
men but not women following exposure to AG (Zhang et al.,
2017).

Chronic Exposure to AG
Studies have been performed to determine effects of AG applied
periodically to men during bed rest deconditioning (White et al.,
1966; Iwasaki et al., 2001; Pavy-Le Traon et al., 2007; Stenger
et al., 2012; Linnarsson et al., 2015). White et al. (1966) used
1.75 Gz (heart level) applied in four, 20 min daily sessions,
to prevent the development of OI in men during 10 days of
bed rest. Pavy-Le Traon et al.’s (2007) review of 20 years of
bed rest studies, included studies in which gravity was used
as a countermeasure; it was apparent from early days, that as
little as standing 2 h a day would lessen the incidence of OI
in men bed rested for 4 days (Vernikos et al., 1996). Iwasaki
et al. (2001) study determined that two, 30 min bouts of 2 Gz
applied daily, could prevent the development of OI as well
as shifts in autonomic balance toward sympathetic dominance
during 4 days of HDBR. In 2006, we participated in the first
NASA study to survey a comprehensive physiologic response
to 3 weeks of HDBR in a group of men who received an
hour of AG per day (+1 Gz at the heart) and compared those
results to a control group of men who did not undergo the AG
exposure (Stenger et al., 2012). In the group of men who received
AG, the HDBR-induced decreases in orthostatic tolerance and
maximum oxygen consumption were significantly smaller and
the profiles of vasoactive hormones in response to head up tilt
were improved in the AG group compared to the control group.
The recent study by Linnarsson et al. (2015) was able to establish
that an intermittent (6 each, 5 min exposures to AG) protocol
applied daily to men undergoing 5 days of HDBR resulted in
orthostatic tolerance nearer to that of pre-HDBR than did a
protocol that delivered 30 min of continuous AG to the same
men.

Gender perspectives in deconditioned subject’s responses to
chronic AG
We could not find any studies that determined women’s
cardiovascular responses to chronic AG exposure during bed
rest, HDBR, or immersion deconditioning. Our group’s study of
acute exposure to AG following furosemide infusion to induce
plasma volume loss similar to that of spaceflight is the only
study from which we are able to compare deconditioned men’s
and women’s responses before and after AG (Evans et al.,
2015). Similarities between these deconditioned men and women
included improved orthostatic tolerance (Evans et al., 2015) and
baroreflex function (Zhang et al., 2017) on the day subjects had
been exposed to AG. Major differences between men and women
consisted of decreased blood pressure (Evans et al., 2015) and
increased low frequency spectral power of blood pressure in
men but not women following exposure to AG (Zhang et al.,
2017).
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CONCLUSION AND PERSPECTIVES

There is emerging evidence that an individual-specific AG
training protocol may be a useful tool to assess orthostatic
tolerance in both males and females. This has been verified in
both normovolemic and hypovolemic men and women. Future
studies should consider the usage of individual-specific AG
training as highlighted in the Evans et al. (2015) and Goswami
et al. (2015b) studies.

Data from the above studies as well as directions from
NASA and ESA administrators, indicate that cardiovascular
deconditioning as a result of space flight may not be overcome
by current countermeasures [Chapter 7 of Recapturing a Future
for Space Exploration (National Research Council, 2011)].
Gaps in knowledge include whether AG applied to astronauts
will preserve physiologic systems’ (including the cardiovascular
system) integrity so that astronauts can return safely to live
on Earth. There is a cascade of basic studies that will follow
the addition of an AG facility to other space-based facilities
in order that future investigators be able to ask and answer
basic questions as to the protocols that will render space fight
safe and will introduce new hardware for future study. For
those reasons, the “Crosscutting Issues for Humans in the Space
Environment” document recommended that “NASA should

reinitiate a vigorous program to. . .develop a simple short-radius
human centrifuge for eventual evaluation experiments aboard
the ISS.”
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