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Given a low-resolution image, there are many challenges to obtain a super-resolved, high-resolution image. Many of those
approaches try to simultaneously upsample and deblur an image in signal domain. However, the nature of the super-resolution is
to restore high-frequency components in frequency domain rather than upsampling in signal domain. In that sense, there is a close
relationship between super-resolution of an image and extrapolation of the spectrum. In this study, we propose a novel framework
for super-resolution, where the high-frequency components are theoretically restored with respect to the frequency fidelities. This
framework helps to introduce multiple simultaneous regularizers in both signal and frequency domains. Furthermore, we propose
a new super-resolutionmodel where frequency fidelity, low-rank (LR) prior, low total variation (TV) prior, and boundary prior are
considered at once. The proposed method is formulated as a convex optimization problem which can be solved by the alternating
directionmethod ofmultipliers.The proposedmethod is the generalized form of themultiple super-resolutionmethods such as TV
super-resolution, LR and TV super-resolution, and the Gerchberg method. Experimental results show the utility of the proposed
method comparing with some existing methods using both simulational and practical images.

1. Introduction

Magnetic resonance (MR) imaging is one of the most impor-
tant methods for observing three-dimensional (3D) soft
tissues with high contrast (e.g., [1–3]). However in order
to assure sufficiently high signal-to-noise ratio (SNR), MR
images often have anisotropic spatial resolution: The spatial
resolution along the through-slice direction is lower than the
resolution along the in-plane direction.The spatial resolution
along the through-slice direction is mainly determined by
the slice thickness, and there is a trade-off between the slice
thickness and the SNR of MR images. Increase of the slice
thickness would degrade the spatial resolution along the
through-slice direction, though the SNR of each slice image
would be improved by the increase of the slice thickness
because the quantity of hydrogen nuclei included in the
measured slice increases and the magnitude of the signals
emitted by the hydrogen nuclei also increases.This is a reason
why slice thickness is often set as thick as several times the

pixel size and the spatial resolution along the through-slice
direction is lower than that of slice images.

Super-resolution techniques (e.g., [1, 2, 4–6]) can restore
detailed patterns unobservable in given images and can be
used for improving spatial resolutions of MR images. In this
article we at first focus on a conventional super-resolution
algorithm, which was proposed by Gerchberg [7]. The algo-
rithm improves the spatial resolution of a given image by
using the prior knowledge of an outer boundary of the target
and of the measurable frequency range of a target spatial
pattern of the given image.The physical meaning of the prior
knowledge used in the algorithm is well understandable and
the algorithm can be applied toMR images straightforwardly.
The method iteratively improves the spatial resolution of
a given image and it is proved that the restored image
converges toward the true solution when the prior knowledge
and the reality are consistent [8]. In practice, the results
obtained by the Gerchberg algorithm may be affected by
ringing artifacts [9–11] and are degraded by measurement
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noises. Reference [12] formulated the algorithm in a signal-
extrapolation framework and the method is now called the
Papoulis-Gerchberg algorithm [9, 10, 12].

The Gerchberg algorithm is essentially the same with
the projection onto convex sets (POCS) method, which was
later defined by Youla [8, 13]. Many POCS methods have
been proposed where the super-resolution problem is solved
by iteratively projecting a given image onto two or more
convex sets, each of which represents each of the introduced
constraints on the reconstructed image (e.g., [14–18]). The
constraints to be introduced vary depending on the available
prior knowledge of images: The knowledge that can be
employed by the POCS method includes the range of pixel
values [15, 19], the fidelity of the data [15, 17, 20], and
nonnegativity [16, 17]. In our study, we assume that both the
measured frequency range and the outer boundary of a target
in a given MR image are known, which means the POCS
method can be applied for improving the spatial resolution
of the given MR image by representing the knowledge with
two convex sets in an image space.

Super-resolution of images is an ill-posed problem, and
regularized optimization techniques are widely used for solv-
ing the super-resolution problem. One of the most popular
regularizers is total variation (TV) of images (e.g., [21–23]),
which helps to reduce ringing artifacts and noises in images
while preserving the edges [21, 24]. In addition to TV, rank
regularization has also attracted much attention for solving
ill-posed problems such as an image completion problem
(e.g., [25–27]). It is reported that one can improve the
performance of image super-resolution by combining the TV
regularization with the low-rank one [23]: high-resolution
images are obtained by minimizing a cost function, in which
both a TV regularization term and a low-rank regularization
term are included.

Recently, there are more and more deep learning-based
super-resolution proposed. Learning-based approaches ex-
ploit internal or external database to super-resolve an image
[28–31]. For example, SRGAN [32] trains and generates high-
frequency patterns of input images. LAPGAN [33] exploits
the Laplacian pyramid of images, where the high-resolution
images can be well represented as straightforward hierarchy
summations of generated high-frequency patterns and a low-
resolution image.The resultant images of them are extremely
realistic.

Learning-based methods, however, can largely improve
spatial resolution of input images only when sufficient num-
ber and variation of training data are available and target
images can be regarded as drawn from the probability dis-
tribution the training data represent. For example, given a set
of sufficiently large number of training CT images of healthy
subjects, one can improve the spatial resolution of a CT image
of a new healthy subject well but it would be difficult to
improve the resolution if it is a CT image of a subject with
tumors. It should be noted that, in medical image processing,
collecting sufficient number and variety of medical images
for the training is challenging [34]. Compared with learning-
based approaches, mathematical model-based approaches,
which include POCS methods, can be applied to images
that are consistent with the employed mathematical models

and are not affected by the bias of the collected training
data.

In this study, we propose a framework for incorporating
the Gerchberg algorithm into a regularized optimization
based method of super-resolution. In this framework, we can
use the knowledge of the outer contour of a target and of the
measured frequency range with the conventional regulariz-
ers simultaneously for computing higher spatial resolution
images. Combining TV regularization with the Gerchberg
term, one can suppress ringing artifacts often generated by
the Gerchberg method. Here, it should be noted that the
incorporation of theGerchbergmethod into regularized opti-
mization based methods is not so straightforward because
the Gerchberg method obtains high-resolution images not by
explicitly minimizing some cost function but by iteratively
projecting an image onto convex sets.Themain contributions
of the present study are as follows: (1) we reformulate
the projections in the Gerchberg super-resolution algorithm
using linear matrix equations, (2) we formulate a convex
optimization problem, in which the reformulated projections
and the low-TV/low-rank regularization are represented in a
cost function and constraints, (3) we explicitly describe the
algorithm for solving the convex optimization problem with
the alternating direction method of multipliers (ADMM),
and (4) we present extensive experimental evaluations con-
ducted using the proposed method.

The proposed method has the following theoretical limi-
tations on the input MR images in order to solve an inverse
problem: (i) the boundary of an image object can be labeled
in a reasonable time and the backgrounds are composed of its
blur and noise, (ii) the blur kernel or PSF of the observation is
known in advance, and (iii) the image noise obeys the normal
distribution.

The remainder of this paper is organized as follows.
In Section 2.1, we explain the notations used in this study.
Next, we provide a problem statement regarding the present
study in Section 2.2. In Section 2.3, we review the Gerchberg
algorithm and recent regularization-based approaches. The
proposed method and the description of its explicit solvers
are explained in Section 2.4. Variational experimental results
are presented in Sections 3–3.5. In Section 3.6, we discuss the
behavior and various aspects of the proposedmethod. Finally,
we give our conclusions in Section 4.

2. Materials and Methods

2.1. Notations. In this study, a vector is denoted by a bold
small letter a and a matrix is denoted by a bold capital
letter A. A 3D tensor is denoted by a bold calligraphic
letter A. The (𝑠, 𝑡)-th entry of a matrix A is denoted by A𝑠𝑡
and the (𝑠, 𝑡, 𝑢)-th entry of a 3D tensor A is denoted by
A𝑠𝑡𝑢.

Given a vector a, the tensor folding operator is denoted
by fold(a) : a ∈ R𝐼1𝐼2𝐼3×1 󳨀→ A ∈ R𝐼1×𝐼2×𝐼3 , and its
adjoint operator is vec(A) : A ∈ R𝐼1×𝐼2×𝐼3 󳨀→ a ∈
R𝐼1𝐼2𝐼3×1. Given a vector a, its matricization is denoted by
mat(a) : a ∈ R𝐼𝐽×1 󳨀→ A ∈ R𝐼×𝐽. Given a tensor A, the𝑖-th mode unfolding operator is denoted by unfold𝑖(A) :
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Figure 1: Flow of MR image acquisition and super-resolution.The specimen is measured anisotropically from different directions. The blue
arrows denote the through-slice directions. MR images are obtained with a narrow bandwidth along the through-slice directions. In most
MR images, the spatial resolution along the through-slice direction is more than three times lower than that in the other two directions.
There are still unknown high-frequency components even when a number of measurements are available. These components are completed
by super-resolution.

A ∈ R𝐼1×𝐼2×𝐼3 󳨀→ A ∈ R𝐼𝑖×∏𝑙≠𝑖𝐼𝑙 , and its adjoint operator
is fold𝑖(A) : A ∈ R𝐼𝑖×∏𝑙≠𝑖𝐼𝑙 󳨀→A ∈ R𝐼1×𝐼2×𝐼3 .

Given that A = UΣVT is the singular value decom-
position for a matrix A, a singular value soft-thresholding
operator [25, 35] is defined as

SVT𝜏 (A) = UΣ𝜏VT, (1)

whereΣ𝜏 = diag([max(𝜎1−𝜏, 0),max(𝜎2−𝜏, 0), ⋅ ⋅ ⋅ ,max(𝜎𝐼−𝜏, 0)]T) and 𝜎𝜄 is the 𝜄-th singular value ofA. The operator ∘ is
the Hadamard (element-wise) product.

2.2. Problem Statement. Without loss of generality, we can
assume that a field of view (FOV) of an MR image is a cubic
space. Let the side length of the cubic FOV be denoted by 𝐿
and let the three mutually orthogonal directions correspond-
ing to the sides of the cubic FOV be denoted by a 𝑋-axis, a𝑌-axis, and a 𝑍-axis.

For simply describing the method, we assume that the
slice thickness and the slice spacing are equal and that an MR
image consists of 𝑛 slice images, each of which has 𝑁𝑐 × 𝑁𝑐
voxels. It follows that the voxel size along the through-slice
direction is given by𝑀 = 𝐿/𝑛 and that the voxel size in each
slice image is given by𝑚×𝑚, where𝑚 = 𝐿/𝑁𝑐.𝑀 > 𝑚 holds
in many MR images in order to assure high SNR. (Increase
of the slice thickness would degrade the spatial resolution
along the through-slice direction, though the SNR of each
slice image would be improved by the increase of the slice
thickness because the quantity of hydrogen nuclei included in
the measured slice increases and the magnitude of the signals
emitted by the hydrogen nuclei also increases.) Let the scaling
factor be denoted by 𝛽, where 𝛽 = 𝑀/𝑚 = 𝑁𝑐/𝑛. The spatial
resolution along the through-slice direction is 𝛽 times lower
than the resolution along the in-plane directions in an MR
image.

In the experiment here, we assume that two MR images
are given. When multiple MR images are given, it is assumed
that the MR images are obtained with mutually orthogonal
directions of slice-selective gradient. Let 3D tensors, X1 ∈
R𝑁𝑐×𝑁𝑐×𝑛, X2 ∈ R𝑁𝑐×𝑛×𝑁𝑐 , denote MR images of the
same FOV obtained with the slice-selective gradient parallel
to the 𝑍-axis and the 𝑌-axis, respectively. Let a tensor

I ∈ R𝑁𝑐×𝑁𝑐×𝑁𝑐 denote an 𝑁𝑐 × 𝑁𝑐 × 𝑁𝑐 isotropic noise-
free MR image of the FOV obtained by an ideal MR scanner.
It is assumed that any measured MR image of the FOV,X𝑑,
can be generated fromI by appropriately eliminating higher
frequency components in the corresponding direction of the
slice-selective gradient followed by downsampling by 𝛽 =𝑁𝑐/𝑛.

Let the Fourier transform of X𝑑 be denoted by F𝑑 and
let Ω𝑑 denote a frequency region only in which the Fourier
components of X𝑑 are measured: Outside of the region,Ω𝑑, in the frequency space, the frequency components are
zero. As shown in Figure 1, it should be noted that Ω flΩ1 ∪ Ω2 does not cover the whole spectrum space and that
diagonal high-frequency regions are not observed in any of
the images. The objective here is to estimate/complete the
unknown frequency components and reconstruct a high-
resolution MR image.

It should be noted that there is a fundamental difference
between the assumptions for our input image and that for
compressed sensing MRI. For compressed sensing, it is
assumed that the input is random from a sampled k-space,
which includes both high- and low-frequency components
in an incoherent manner [36–38]. By contrast, our input MR
images have been taken already and only the low-frequency
components are given; thus, the completion approaches used
for compressed sensing cannot be applied.

2.3. Existing Methods for Super-Resolution

2.3.1. POCS Algorithm. POCS is one of the frameworks for
the super-resolution [8, 15]. There are various constraints
which the ground truth image must satisfy. In the image
domain, some of those constraints are expressed as forms of
convex sets where the reconstructed imagemust be included.
A POCS algorithm projects an input image onto the convex
sets one by one repeatedly to obtain the unique solution. The
convex sets, which we refer to also asmodels, vary depending
on the various conventional POCS methods. For example,
there are methods which employ data fidelity and nonneg-
ativity as the models [15, 16]. We focus on the Gerchberg
algorithm, which is one of the earliest POCS algorithms. The
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Figure 2: Illustration of the Gerchberg algorithm. (a) The observed image (left) and its spectrum (right). (b) The interpretation of (a). The
observed image is the sum of the true signal/spectrum (blue line) and the error signal/spectrum (red line). (c)The procedure followed by the
algorithm. The error spectrum is reduced by iterating in both the signal and Fourier domains.

Gerchberg algorithm employs two models: the fidelity of the
spectrum and the boundary of the region where the object
exists.

In the remainder of this section, we introduce the Gerch-
berg algorithm [7, 39].TheGerchberg algorithm assumes that
an image signal is spatially finite and that the outer boundary
of the finite region, Γ, is known in advance. In the Gerchberg
algorithm, an image is super-resolved by iteratively repeating
two projections onto two convex sets: (I) setting the image
signal outside of Γ, denoted by Γ, to zero; (II) updating the
spectrum within the observed region, Ω, so as to remain as
the observed value. An example of the algorithm in the case of

a one-dimensional signal is shown in Figure 2.TheGerchberg
algorithm is summarized in Algorithm 1.

Let X ∈ R𝑁1×𝑁2×𝑁3 denote an image signal and let
F denote its Fourier transform. In the initial state, F =
F0, where F0 denotes the observed spectrum. Let PΓ ∈{0, 1}𝑁1×𝑁2×𝑁3 be a 3D binary label array such that 0 and 1
indicate the outside and inside voxels of the target object, Γ,
respectively. The first step of the algorithm is given byX←󳨀
PΓ ∘ IDFT(F), where IDFT(⋅) denotes a linear operator that
provides the inverse 3D discrete Fourier transform (DFT).
This operation sets the image signal outside Γ (inside Γ)
to zero. Let PΩ denote a 3D index array such that 0 and
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(1) input: An observed spectrumF0, a boundary index arrayPΓ, and a pass-band index arrayPΩ.(2) F =F0;(3) repeat(4) X←󳨀PΓ ∘ IDFT(F);(5) F←󳨀PΩ ∘F0 +PΩ ∘DFT(X);(6) untilF converges(7) output: F andX

Algorithm 1: Gerchberg algorithm [7, 39].

1 indicate Ω and Ω, respectively. The second step of the
algorithm is then given byF←󳨀PΩ ∘F0 +PΩ ∘DFT(X),
where DFT(⋅) is a linear operator that provides the 3D-DFT.
This operation replaces the calculated spectrum, F, in the
region Ω with the observed spectrum, F0. These two steps
are repeatedly conducted and the resultant F will converge
to the unique solution.

The converged unique solution should be the true spec-
trum under the ideal conditions. The observed spectrumF0
is interpreted as being the sum of two types of spectra: the
true spectrum to be restored and the error spectrum that
represents the difference between the true spectrum and the
observed spectrum (Figures 2(a) and 2(b)). It should be noted
that IDFT(F0) denotes a low-resolution image that is blurred
because the high-frequency components are not observed.
The blurred image is interpreted as being the sum of the true
high-resolution image to be restored and the error image that
is the IDFT of the error spectrum, as shown in Figure 2. In
step (I), the operatorPΓ reduces only the power of the error
image by removing the blur image components in Γ. In step
(II), the operatorPΓ has no effect on the true signal, which is
zero inPΓ. Here, one can remove only the energy of the error
spectrum by replacing only the spectrum components withinΩwith the observed values,F0, because the true spectrum is
observed in the lower frequency region,Ω. Repeating the two
projections (I) and (II) described above, the error spectrum
converges toward zero and the resulting spectrum converges
toward the true spectrum.

In practice, however, it is assumed in the Gerchberg algo-
rithm that the observed low-frequency spectrum is strictly
the same as that of the ground truth image.Thus the resultant
image reaches an invalid solution that deviates from the true
spectrum when the observed image is contaminated with
some noise. It is also assumed that the object exists in innerΓ in the image domain. This assumption means that Γ should
not invade the true region where the object of ground truth
exists. On the other hand, if Γ is redundant from the true
region, the reconstruction performance would more or less
degrade despite the algorithm attempt to reach the ground
truth. It is also known that the reconstructed image could
be contaminated by ringing artifacts even under the ideal
conditions [9–11]. In order to improve the performance, we
introduce regularization approaches. In the next subsection,
we describe the introduced regularizers.

2.3.2. Regularization-Based Methods. In this section, we
review conventional regularization-based super-resolution

approaches introduced in our method: TV regularization,
rank regularization, and their combination. TV is an eval-
uation measure for the smoothness of an image and its
minimization plays an important role in solving the inverse
problem in signal processing, such as denoising, interpola-
tion, deconvolution, and super-resolution [23, 24, 40–43].
Using simple notations, super-resolution problem with TV
regularization can be formulated as

minimize
X

𝐷S (X0,X) + 𝜆 ‖X‖TV , (2)

whereX0 is the observed signal, ‖ ⋅ ‖TV is the total variation,
and 𝐷S(⋅), which is some kind of distance measure between
X0 andX, evaluates the image fidelity. TV is defined as

‖X‖TV fl ∑
𝑠,𝑡,𝑢

√ 3∑
𝑑=1

[∇𝑑 (X) ∘ ∇𝑑 (X)]𝑠𝑡𝑢, (3)

where 𝑠, 𝑡, 𝑢 are voxel indices for an 3D tensor and ∇𝑑 is a
partial differential operator with respect to the 𝑑-th axis of
a 3D image.

In many cases,𝐷S(⋅) is a linear operator such as 𝐿2-norm
for the image fidelity considering the existence of Gaussian
noise. Thus the problem in (2) is often a convex optimization
problem. However, classical gradient-based and Newton-like
methods cannot be used since ‖X‖TV is not a differentiable
function. The primal-dual splitting (PDS) method [41, 43,
44], ADMM [45, 46], and the majorization-minimization
(MM) algorithm [47] can solve the TV regularization prob-
lem in an efficient manner.

For the regularization term, it is also possible to use
the low-rank property in the image restoration. For tensor
completion, regularization with rank is known to obtain
superior reconstructions [26]. The rank of a matrix is not
a convex function, but its approximation can be minimized
as convex optimization using the trace norm [48–50]. The
trace norm of a matrix is defined as the sum of all the
singular values.The rank of a tensor can also be approximated
effectively as the trace norm of a tensor, which is defined
as the weighted sum of all the matrix trace norms for the
individual mode-matricization of a tensor [25]:

‖X‖∗ = N∑
𝑖=1

𝛼𝑖 󵄩󵄩󵄩󵄩X(𝑖)󵄩󵄩󵄩󵄩∗ , (4)

whereN is the number of tensor dimensions and {𝛼𝑖}N𝑖=1 are
parameters that satisfy ∑𝑁𝑖=1 𝛼𝑖 = 1 and 𝛼𝑖 >. X(𝑖) ∈ R𝑁𝑖×𝑁𝑗𝑁𝑘 ,
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where 𝑖, 𝑗, 𝑘 ∈ {1, 2, 3} (𝑖 ̸= 𝑗 ̸= 𝑘) is the matrix obtained by
X(𝑖) = unfold𝑖(X). In the following, 𝛼𝑖 = 1/N and N = 3
are set because 3D MR images are 3D tensors. Then, the 3D
tensor completion problem regularized by rank is configured
as

minimize
X

𝐷S (X0,X) + 𝜆 ‖X‖∗ , (5)

where PΨ ∈ {0, 1}𝑁1×𝑁2×𝑁3 indicate the indices where the
elements are observed. The problem in (5) can be optimized
by ADMM using the singular value thresholding operator (1)
[25].

In an application of regularized-based super-resolution
for MR imaging, [23] also imposed rank regularization on
problem (2) and achieved a satisfactory improvement in
performance. They configured the optimization problem as

minimize
X

𝐷S (X0,X) + 𝜆TV ‖X‖TV + 𝜆LR ‖X‖∗ . (6)

In practice, the tensor trace norm can be minimized by using
slack variables for each dimension [23, 25].

2.4. Proposed Method. We have introduced two types of
super-resolution methods: the Gerchberg algorithm [7, 39]
and regularization-based approaches [21–23, 25].The Gerch-
berg algorithm can be characterized by the global boundary
prior and the observed spectrum maintenance. By con-
trast, regularization-based methods can be characterized as
performing super-resolution by signal fitting with a local
smoothness (low-TV) or global similarity (low-rank) prior,
which is generally satisfied in natural images. The proposed
super-resolution algorithm combines both strategies and
modifies them by including signal and spectral fitting with
smoothness (low-TV) and global (low-rank and the bound-
ary) priors.

2.4.1. Outline of the Proposed Method. The proposed method
is obtained by combining LRTV super-resolution [23] and
the Gerchberg algorithm. As mentioned in Section 2.3.1, the
Gerchberg algorithm is given in the form of an iterative
projection with PΓ, PΩ, and PΩ, and hence these two
methods cannot be combined straightforwardly. Thus, in
order to impose regularization technique on the Gerchberg
algorithm, we first give a reinterpretation of the Gerchberg
algorithm. The Gerchberg algorithm can be reinterpreted as
solving the following convex optimization problem for the
spectrumF:

minimize
F

󵄩󵄩󵄩󵄩PΩ ∘ (F0 −F)󵄩󵄩󵄩󵄩2𝐹 , +𝑖Γ (X) ,
s.t. X = IDFT (F) (7)

where F0 is the observed spectrum (see Section 2.4 for
details). In problem (7), 𝑖Γ(X) is the following indicator
function:

𝑖Γ (X) = {{{
0 if PΓ ∘X=O∞ otherwise

(8)

wherePΓ = 1 −PΓ andO ∈ {0}𝑁1×𝑁2×𝑁3 is a zero 3D array.
The first term in problem (7) represents fitting the spectrum
F with F0 for the pass-band, considering the existence of
Gaussiannoisewith the observation.The second term, 𝑖Γ (X),
implies that all the outside voxels of the image are zero. Each
linear term in (7) corresponds to the projection onto the
convex set in the signal or Fourier domains in the Gerchberg
algorithm.

Based on (7) and LRTV regularization, we propose to
solve the following convex optimization problem:

minimize
F

𝜆TV ‖X‖TV + 𝜆LR ‖X‖∗ + 𝑖Γ (X)
+ 12 󵄩󵄩󵄩󵄩PΩ ∘ (F0 −F)󵄩󵄩󵄩󵄩2𝐹 ,

s.t. X = IDFT (F) ,
(9)

where 𝜆TV, 𝜆LR > 0 are parameters that control the balance
between the respective terms. In contrast to the image-
fidelity-based problems in (2) and (6), the error terms in the
proposed method are for fitting the Fourier spectrum. The
image/frequency fidelities are regularized/constrained by TV,
rank, and the region Γ. The behavior of each term in (9) is
considered in Sections 3.1 and 3.6.

The following notice must be considered before the
optimization of problem (9). First, the Gerchberg algorithm
assumes that the spectrum profile is a rectangular function.
However, in clinical MR imaging, the spectrum of the slice
profile forms a Gaussian or windowed-sinc function (e.g.,
[51–53]). With this notice, we use F󸀠0 = F0 ⊘PΞ instead
of F0, where PΞ is the spectrum of the slice profile along
through-slice directions and ⊘ is the element-wise division
operator. Next, a slack variable is used for each dimension,
M𝑖 ∈ R𝑁1×𝑁2×𝑁3 , for the optimization process. Considering
(4) and setting 𝑖Γ(X) into the constraints, (9) is rewritten as

minimize
F

𝜆TV ‖X‖TV + 𝜆LR
N

N∑
𝑖=1

󵄩󵄩󵄩󵄩M𝑖(𝑖)󵄩󵄩󵄩󵄩∗
+ 12 󵄩󵄩󵄩󵄩󵄩F󸀠0 −PΩ ∘F󵄩󵄩󵄩󵄩󵄩2𝐹 ,

s.t. X = IDFT (F) ,
O =PΓ ∘X,
X(𝑖) = M𝑖(𝑖), 𝑖 = 1, . . . ,N

(10)

whereM𝑖(𝑖) = unfold𝑖(M𝑖).The constraints can be simplified
by introducing a variable V𝑖 with respect to the third
constraint. Then, the vector form of the proposed problem
(10) with relaxation is given by

minimize
f

𝜆TV ‖x‖TV + 𝜆LR
N

N∑
𝑖=1

󵄩󵄩󵄩󵄩𝑀𝑖(𝑖)󵄩󵄩󵄩󵄩∗
+ 12 󵄩󵄩󵄩󵄩󵄩f󸀠0 − RΩf󵄩󵄩󵄩󵄩󵄩22
+ 𝜖2

N∑
𝑖=1

(󵄩󵄩󵄩󵄩x −m𝑖 + k𝑖󵄩󵄩󵄩󵄩22 − 󵄩󵄩󵄩󵄩k𝑖󵄩󵄩󵄩󵄩22) ,
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s.t. x = Gf,
0 = RΓx,

(11)

where x = vec(X), x0 = vec(X0), f = vec(F), f󸀠0 = vec(F󸀠0),
RΩ = diag(vec(PΩ)), m𝑖 = vec(M𝑖), RΓ = diag(vec(PΓ)),
and 0 = vec(O). G is a linear operator (matrix) that gives
the inverse 3D DFT. 𝜖 > 0 is an additional parameter for
the fitting term of the slack variables. Note that all of the
terms and constraints in (11) are convex or linear; thus, (11) is
a convex optimization problem that can be solved using the
PDS, ADMM, and MM algorithms.

2.4.2. An Optimization Algorithm. Several algorithms can be
used to solve (11). In this section, we introduce a convex
optimization algorithm that uses ADMM [45] as an example.

To hold proximity, we reformulate (11) as

minimize
f

𝜆TV ‖Y‖1,2 + 𝜆LR
N

N∑
𝑖=1

󵄩󵄩󵄩󵄩M𝑖(𝑖)󵄩󵄩󵄩󵄩∗
+ 12 󵄩󵄩󵄩󵄩󵄩f󸀠0 − RΩf󵄩󵄩󵄩󵄩󵄩22
+ 𝜖2

N∑
𝑖=1

(󵄩󵄩󵄩󵄩x −m𝑖 + k𝑖󵄩󵄩󵄩󵄩22 − 󵄩󵄩󵄩󵄩k𝑖󵄩󵄩󵄩󵄩22) ,
s.t. Y = [L1x,L2x,L3x] ,

x = Gf,
0 = RΓx,

(12)

where ‖[z1, z2, . . . , z𝑁]T‖1,2 fl ∑𝑁𝑛=1 ‖z𝑛‖2 is an 𝑙1,2-norm and
L𝑑 is a partial differential operator with respect to the 𝑑-th
axis. The first constraint can be rewritten as y fl vec(Y) =[L𝑇1 ,L𝑇2 ,L𝑇3 ]𝑇x š Lx.

The augmented Lagrangian of (12) is given by

L (f, x, y, z,𝛼, 𝛾) = 𝜆TV ‖Y‖1,2 + 𝜆LR
N

N∑
𝑖=1

󵄩󵄩󵄩󵄩M𝑖(𝑖)󵄩󵄩󵄩󵄩∗
+ 12 󵄩󵄩󵄩󵄩󵄩f󸀠0 − RΩf󵄩󵄩󵄩󵄩󵄩2
+ 𝜖2

N∑
𝑖=1

(󵄩󵄩󵄩󵄩x −m𝑖 + k𝑖󵄩󵄩󵄩󵄩22 − 󵄩󵄩󵄩󵄩k𝑖󵄩󵄩󵄩󵄩22)
+ ⟨z, y − Lx⟩ + ⟨𝛼, x − Gf⟩
+ ⟨𝛾,RΓx⟩ + 𝜌2 󵄩󵄩󵄩󵄩y − Lx󵄩󵄩󵄩󵄩22
+ 𝜌2 ‖x − Gf‖22 + 𝜌2 󵄩󵄩󵄩󵄩RΓx󵄩󵄩󵄩󵄩22 ,

(13)

where z, 𝛼, and 𝛾 are the Lagrange coefficients and 𝜌 >0 is the penalty weight. By minimizing (13) with respect

to f, x, y, and m𝑗, the following update rules can be ob-
tained:

f𝑘+1 = (RΩ + 𝜌I)−1 [RΩf󸀠0 + G𝑇 (𝛼𝑘 + 𝜌x𝑘)] , (14)

x𝑘+1 = (𝜌 (I + RΓ + LTL) + 𝑁𝜖I)−1 [𝜖 𝑁∑
𝑖=1

(m𝑖 − k𝑖)
− LTz𝑘 + 𝛼 + RΓ𝛾 + 𝜌 (Gf − LTy𝑘)] ,

(15)

[Y𝑘+1]
𝑠𝑡
= max (1 − 𝜆𝑇𝑉 ⋅ (𝜌 󵄩󵄩󵄩󵄩󵄩w𝑘𝑠 󵄩󵄩󵄩󵄩󵄩2)−1 , 0)𝑤𝑘𝑠𝑡, (16)

m𝑘+1𝑖 = vec (M𝑘+1𝑖 )
= vec (fold𝑖 [SVT𝜆𝐿𝑅/𝑁𝜖 (unfold𝑗 (X𝑘+1 + V𝑘𝑖 ))]) , (17)

k𝑘+1𝑖 = k𝑘𝑖 + x −m𝑖 (18)

where I is an identity matrix, w𝑘𝑠 = [𝑤𝑘𝑠1, 𝑤𝑘𝑠2, 𝑤𝑘𝑠3]𝑇, and𝑤𝑘𝑠𝑡 =[mat(Lx𝑘+1 − 𝜌−1z𝑘)]𝑠𝑡. The derivations of the update rules
given above are described in the Appendix. The Lagrange
multipliers are updated by

z𝑘+1 = z𝑘 + 𝜌 (y𝑘+1 − Lx𝑘+1) , (19)

𝛼
𝑘+1 = 𝛼𝑘 + 𝜌 (x𝑘+1 − Gf𝑘+1) , (20)

𝛾
𝑘+1 = 𝛾𝑘 + 𝜌 (RΓx𝑘+1) . (21)

For (15), the conjugate gradient method can be used instead
of the inverse matrix, which requires a large amount of calcu-
lations. The parameters are updated by repeatedly applying
(14)–(21) alternatively until the convergence of the original
cost function in (11). The proposed method with the above
notations is summarized in Algorithm 2.

3. Results and Discussion

We examined the characteristics of the proposed method
usingMR images of a brain phantom and of human head por-
tions. The experiments were performed with brain phantom
images [54] and with clinical MR images.

For the phantom images, different four images, which
vary together in the modality (T1 or T2 weighted) and in
the pathological status (with or without lesion), were used.
Each phantom image had a spatial resolution of 1 × 1 ×1mm3. After setting an original phantom image as the ground
truth, we simulated two anisotropic observed images by
downsampling toward different orthogonal directions. The
blurring kernel for downsampling was rectangular (average)
toward the downsampling direction and we assumed that the
slice profile in the signal domain was rectangular along the
through-slice direction. Thus, the two observed images had
spatial resolutions of 1/𝛽 × 1 × 1mm3 and 1 × 1/𝛽 × 1mm3,
where𝛽 is the scaling factor.Thevariational settings of scaling
factors and noise levels are simulated for the observations. 16
settings of the observations in total, which vary together in
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(1) input: Observed images along multiple dimensionsX𝑗, 𝑗 = 1, ⋅ ⋅ ⋅ , 𝐷, and their combined spectrumF0.(2) f󸀠0 = vec(F0 ⊘PΞ), f = f󸀠0, and x = Gf ;(3) repeat(4) Update f based on (14);(5) Update x based on (15);(6) Update Y based on (16);(7) Updatem𝑖 based on (17);(8) Update k𝑖 based on (18);(9) Update z based on (19);(10) Update 𝛼 based on (20);(11) Update 𝛾 based on (21);(12) untilThe cost (13) converges(13) output: F = fold(f) andX = fold(x)
Algorithm 2: LRTVG algorithm.

Table 1: Correspondences of simulational settings and image indices. N/L of the Status rowmeans the normal/lesional brain. Data ID is used
to index in Figures 6-7 and in Supplementary Material S7.

Data ID (a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m) (n) (o) (p)
Modality T1 T1 T1 T1 T1 T1 T1 T1 T2 T2 T2 T2 T2 T2 T2 T2
Status N N N N L L L L N N N N L L L L𝛽 4 4 8 8 4 4 8 8 4 4 8 8 4 4 8 8
Noise level [%] 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5

modalities, in pathological status, in scaling factors, and in
noise levels, were simulated and are shown in Table 1.

As for the clinical images, 37MR images from the OASIS
[55] were used for the experiment. MR images of different
subjects were randomly chosen from disc1 inOASIS-1 dataset.
For each session (subject) of OASIS, the first scanned image
was chosen for the evaluation. Each image had a spatial
resolution of 1 × 1 × 1.25mm3. We employed the same
observation procedure described above.

Using the MR images of a brain phantom, we at first
examined the sensitivity of the accuracy of the image recon-
struction against the hyperparameters in Section 3.1 and
the computational time in Section 3.2. Then we compared
the accuracy of the images reconstructed by the proposed
methods and other conventional super-resolution methods
and evaluated the reconstruction stability against the change
of the noise level and scaling factor in Sections 3.3 and 3.4. As
described, our method requires labeling the outer boundary
of the target in a given image.We also evaluated the sensitivity
of the reconstruction accuracy with respect to the accuracy of
the labeled outer boundary in Section 3.4. Each performance
was evaluated based on the peak signal-to-noise ratio (PSNR)
in the target region of the restored images.

The performance of the proposed method is compared
with the following existing methods: nearest neighbor inter-
polation (NN), bicubic interpolation, zero-padding in the
Fourier space (ZP) [56], the Gerchberg algorithm [7], TV
regularized super-resolution [22], and LRTV [23]. In the
remainder of this paper, the proposed method is denoted
as LRTVG and the proposed method without the rank
regularization term (𝜆LR = 𝜖 = 0) is denoted as
TVG.
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Figure 3: An example of PSNR results obtained using the proposed
method in terms of the parameters𝜆TV , 𝜆LR , 𝑎𝑛𝑑 𝜖.The input image
was image (a) in Table 1.

3.1. Sensitivity with respect to Hyperparameters. First, we
show behaviors of the parameters in the proposed model.
Figure 3 shows an example of changes in the PSNR with
respect to 𝜆TV, 𝜆LR, and 𝜖 in (11). The changes in the PSNR
with respect to 𝜆TV are more steeper than those with respect
to 𝜆LR. We can say that TV regularization must be more
carefully tuned than LR regularization. 𝜖 should be set small
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Table 2: The average processing times for one iteration.The image size was 220 × 220 × 220.
Methods LRTVG TVG LRTV TV Gerchberg
Avg. Process. Time (sec.) 5.73 4.81 5.24 4.54 4.86

(Modality, Status, , Noise-Level) = (T1, normal, 4, 0.01)

(Modality, Status, , Noise-Level) = (T2, lesion, 4, 0.01)
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Figure 4: Examples of PSNR results of the proposed method when𝜆TV and 𝜆LR are simultaneously changed. The input images were
images (a) and (m) in Table 1.

enough so that the data fidelity term is retained well, as
it is shown in Figure 3 that larger 𝜖 rapidly degrades the
performance.

The proposed method as well as TV and LRTV needs to
tune the hyperparameters by the input image. Figure 4 shows
two examples of the different input images when 𝜆TV and 𝜆LR
are simultaneously changed. As shown in Figure 4, 𝜆TV and𝜆LR, which actually control the regularizationweights, should
be varied by the image so as to exert the best performance
for each image.The parametric behaviors for all the phantom
images in Table 1 are also shown in Supplementary Material
S7. Although the balance of the twoparameters is case by case,
it can be said at least that 𝜆TV and 𝜆LR would be larger when

the noise level gets higher and that 𝜆TV and 𝜆LR would be
smaller when the scale factor gets larger.

With those considerations, 𝜆TV and 𝜆LR were manually
tuned by the input image while fixing 𝜖 = 0.01 in the
following experiments.

3.2. Computational Time. Next, we show the number of itera-
tions eachmethod took until the convergence in Figure 5, and
the average processing times for one iteration in Table 2. The
number of iterations until the convergence of the proposed
method was larger than that of LRTV and TV. We suppose
that this is because the additional two Lagrange multipliers,
𝛼 and 𝛾, are necessary for the optimization. The Gerchberg
model, which also needs 𝛼 and 𝛾 when solved with ADMM,
took much more iterations than the other methods. It can be
said that regularization accelerates the convergence speeds of
the POCS methods.

Theoretically speaking, the computational orders of
LRTVG/TVG for each iteration are equal to those of LRTV/
TV. The experimental results in Table 2 show that computa-
tional times of LRTVG/TVG are a little longer than those of
LRTV/TV, which is because several times of FFT are neces-
sary for the proposed method compared with LRTV/TV. We
discuss the computational complexity in detail in Section 3.6.

3.3. Comparison of Accuracy of Reconstruction. In this sec-
tion, we show the reconstruction accuracy of the proposed
method compared to the existing methods: NN, bicubic
interpolation, ZP, the Gerchberg algorithm, TV regularized
super-resolution, and LRTV super-resolution. The restored
images and PSNR results of the simulational observations
in Table 1 are shown in Figures 6 and 7. All of the PSNR
results were calculated in the region Γ. The parameters of TV,
LRTV, and the proposed method are set by manual tuning as
mentioned in Section 3.1

The simple interpolation methods, i.e., NN, bicubic, and
ZP, generated blurred images. The Gerchberg algorithm was
affected severely by ringing artifacts and noises, although
sharp edges and high-frequency components can be observed
in the results. Although the TV-based approaches preserved
their edges clearly, the results of TV and LRTV lack high-
frequency components in the Fourier space. The proposed
method restored the high-frequency components as well
as clear edges and had the best performance for all the
input images in Table 1. All the PSNR results of T2-weighted
images are clearly degraded compared toT1-weighted images.
This would be because the image gradients in T2-weighted
imagesmore steeply change than those of T1 weighted images
because of their modality characteristics.

We also show the reconstruction accuracy of the 37
subjects from OASIS [55]. Box-plots of the results when𝛽 = 6 and when 𝛽 = 12 are shown in Figure 8. The
proposed method performed better than the others in terms
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Figure 6: PSNR results of the variational simulations in Table 1.

of the PSNR. We examined the statistical significance of the
performance difference of the proposed methods (LRTVG
and TVG) and others. In case 𝛽 = 6, the proposed LRTVG
significantly outperformed all the other methods according
to the t-test. In case 𝛽 = 12, both of LRTVG and TVG
significantly outperformed all the other methods.

3.4. Stability against Noise Level and Scaling Factor. We eval-
uated the change of the performance with respect to (i) noise
level and (ii) scale factor. Figure 9 demonstrates some exam-
ples of the experimental results. Figure 9(a) shows PSNR for
all noise levels when 𝛽 = 12. Figure 9(b) shows PSNR for
all scaling factors when the observations are free of noise.
The proposedmethod outperformed the other methods in all
cases. With high noise level, the performance of the proposed

method converges next to that of LRTV/TV. With the larger
scaling factor, the proposed method performed significantly
better compared with the other methods. These behaviors of
the proposed method can also be observed in the results in
Section 3.1, where the larger regularization weights work with
high noise levels, and the smaller regularization weights work
with large scaling factors.

3.5. Stability against Boundary Label. Finally, we focus on the
boundary constraint of the proposed method. The boundary
contour will differ depending on the boundary detection pro-
cedure (e.g., manual, simple thresholding, or contour detec-
tion methods), so we examined the performance with respect
to the boundary by dilating/shrinking the true boundary.
The true boundary was dilated/shrunk by thresholding the
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Figure 7: Reconstructed images of the brain phantom. Top three rows show illustrations of axial cross-sections, zoomed sagittal cross-
sections, and the Fourier spectra of the T1-weighted brain without lesion (data (c)).The next three rows show those of the T2-weighted brain
without lesion (data (k)), and the bottom rows show those of the T2-weighted brain with lesion (data (o)). 𝛽 = 8 and the noise level was 1%
for the observation settings.
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Figure 8: Box-plots of the PSNR results obtained using different methods with 37 images from OASIS. The proposed method (LRTVG and
TVG) performed better than the other methods. (a) 𝛽 = 6, (b) 𝛽 = 12.
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Figure 9: Experimental results obtained for an image fromOASIS. (a) PSNR in terms of the Gaussian noise level (upper) and enlarged views
(lower). (b) PSNR in terms of the scaling factor 𝛽 (upper) and enlarged views (lower). (c) Reconstructed images and spectra obtained with𝛽 = 12.
distance map created from the level-set function. Figure 10
shows the PSNR results as the distance from the true bound-
ary changed. This distance corresponds to the difference in
radius between the true boundary and the referred boundary.
When the distance was positive (the referred boundary was
redundant), the performance increased slightly toward a
distance of zero where the boundary was perfectly accurate.
The performance decreased steeply when the distance gets
negative (the referred boundary was insufficient). This is
obviously because not only the background but also the true
signal is regarded as noise and the constraint is broken.
Thus the target region must not be underestimated so that
the proposed method works. When the boundary was more
accurate, the proposedmethod performed better, butweneed
to be careful when setting the boundary not to encroach into
the true target region.

3.6. Discussion. We consider the aspects of the proposed
method and its other features. In terms of POCS approaches
[8, 13, 15], the proposed method can be regarded as handling
two convex sets: fidelity of the spectrum and signal boundary.
In the proposed method, the projections onto these convex
sets can be controlled by TV and rank regularization.

Actually, general regularization-based super-resolution
methods simply assume that the resultant image will be
smoother or spatially more similar than a noisy input image;
there is no assumption for the restoration of fine struc-
tures themselves. On the other hand, POCS approaches
can retrieve fine structures theoretically as described in
Section 2.3.1. However, POCS approaches strictly obey their
convex sets, and sometimes they will not be able to compete
with images which are out of their model. For example,
the Gerchberg model cannot compete with noisy inputs
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Figure 10: Differences in PSNR performance of the proposed method when the boundary became redundant (positive values) or insufficient
(negative values) compared with the true boundary (the value is zero). The input image of the left figure was T1-weighted image of normal
brain phantom, and that of the right one was T2-weighted image of lesional brain phantom.

theoretically and with ringing artifacts, which is caused by
the discrete Fourier transform. Unlike those methods, the
proposed method can allow both the restoration of fine
structures and the existence of noise or artifacts. Funda-
mental behaviors of those methods can also be observed in
Supplementary Materials S1-S5.

The same as the general regularization-based super-
resolution methods, influence of noise is controlled by reg-
ularization terms. The weights for regularization are decided
by 𝜆TV and 𝜆LR. As 𝜆TV becomes larger, image gradients
will get sparse and the restored image becomes smoother.
When 𝜆LR becomes larger, the reconstructed image becomes
low rank. Results in Section 3.1 showed that the behaviors of
the two parameters vary by the image. Note that the super-
resolution model of the proposed method actually includes
the Gerchberg model and equals it when 𝜆TV = 𝜆LR = 0 and
PΞ denotes rectangular profile.

In addition to the regional constraint limitation described
in Section 3.5, there are some implicit limitations of the
proposedmethod considered: (i) the PSF is known in advance
(the problem to be solved is not the blind deconvolution), (ii)
the outer boundary of the target can be labeled in a reasonable
time, and (iii) image noises can be well represented by the
normal distribution. The limitations (i) and (iii) are derived
from the data fidelity term of the proposed model. TV
and LRTV also have limitations (i) and (iii). Without (i),
when the PSF is unknown, the problem to be solved is the
nonconvex optimization and cannot be solved easily. When
the image noises do not obey the normal distribution, the
error function must be corrected by the noise distribution,
or some preprocessing is necessary for denoising. Limitation
(ii) would be necessary for the clinical applications andwould
rarely be broken. When limitation (ii) is broken, the observed
image would be contaminated severely with noises, and
the target region/background cannot be determined easily.
However, in the case when the super-resolution is necessary
for an inputMR image, the slice thickness is large enough and

the noise level of the observed image would be small enough
so that the labeling could be easily conducted.

We also discuss the computational complexity of the
proposed method. In the followings, a tensor of the size𝑁𝑐 ×𝑁𝑐 ×𝑁𝑐 is assumed, and the total number of the voxels is𝑁3𝑐 .
First of all, (16) and (18)–(21) cost 𝑂(𝑁3𝑐 ) obviously. Equation
(14) costs 𝑂(𝑁3𝑐 log𝑁𝑐) for the FFT when it is calculated by
each fiber of a 3D tensor. When the multiplication of the
convolution-matrix and its inversion in (15) are calculated
in the Fourier space, the cost of the inverse multiplication
itself can be reduced to 𝑂(𝑁3𝑐 ). Thus (15) also costs only𝑂(𝑁3𝑐 log𝑁𝑐) for the FFT. For (17), the size of a matrix,
unfold𝑗(X𝑘+1 + V𝑘𝑖 ), is 𝑁𝑐 × 𝑁2𝑐 and its SVD costs 𝑂(𝑁4𝑐 ).
Therefore 𝑂(𝑁4𝑐 ) for the proximal operator of rank is the
worst computational cost for each iteration, which is the same
as that of LRTV.

The convergence speed/number of iterations of the pro-
posed method are slower/larger than that of LRTV. As men-
tioned in Section 3.2, this would be because the additional
two Lagrange multipliers, 𝛼 and 𝛾, are necessary for the
optimization. The convergence speed also depends on the
optimization frameworks and total variation minimization
algorithms employed.

There are several future works considered in this study.
We proposed the super-resolution model itself and the
parameters of the proposed method are hand-tuned so far
as discussed above. Actually, there are several methods pro-
posed for automatically tuning the parameters of the TV
optimization (e.g., [57]), and the proposed model also would
be able to apply these autotuning methods. For the clinical
application, this would be necessary in order to process
in shorter time. In order to achieve more accurate results,
processing the segmentation of the target region and the
super-resolution of the image at the same time can be
considered. This can be performed by optimizing X, F, and
PΓ at the same time. The fact that the fidelity term would
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explode when the target region is underestimated could be
exploited for the simultaneous optimization. However this
would lead the model to be an nonconvex optimization
problem, which is much more difficult for initialization
and for the selection of the solvers. The other work to
enforce the performance is introducing the regularization
based on deep neural networks like [58, 59], for example.
Reference [58] uses trained DCNN and its population as
the regularization of the signal fidelity term. Reference [59]
exploits the structure itself of deep neural networks for
the regularization. The combination of POCS optimization
and deep neural networks would lead to higher perform-
ance.

4. Conclusions

In this study, we proposed a new super-resolution model
where the Gerchberg algorithm is regularized by rank and
TV. In order to configure the optimization problem, we
first reformulated the Gerchberg algorithm as a convex
optimization problem.We applied our method toMR images
in order to obtain high resolution with a high SNR by using
anisotropic measurements from the axial, coronal, or sagittal
directions. The experimental results showed that our super-
resolution technique dramatically reduced noise and ringing
caused by the Gerchberg method and it also performed
better than LRTV super-resolution and the other methods
considered.

Appendix

ADMM Optimization for Solving

In this appendix, we explain the procedure to derive the
update rules (14)–(17) for (12). Each update rule can be
obtained byminimizing (12)with respect to each variable one
by one.

First, (14) can be obtained by the following partial deriva-
tive:

𝜕L𝜕f = RT
ΩRΩf − RΩf󸀠0 − GT

𝛼 + 𝜌GTGf − 𝜌GTx

= RΩf − f󸀠0 − GT
𝛼 + 𝜌If − 𝜌GTx 󳨀→ 0. (A.1)

Thus, by solving (A.1) with respect to f, we obtain

(RΩ + 𝜌I) f = f󸀠0 − GT
𝛼 + 𝜌GTx,

f = (RΩ + 𝜌I)−1 [RΩf󸀠0 + G𝑇 (𝛼 + 𝜌x)] . (A.2)

Similar to the case with f, the update rule (15) for x can be
obtained from

𝜕L𝜕x = 𝜖
N∑
𝑖=1

(x −m𝑖 + k𝑖) − LTz + 𝛼 + RT
Γ
𝛾

+ 𝜌 (LTLx − LTy) + 𝜌 (x − Gf) + 𝜌RΓx
󳨀→ 0.

(A.3)

For (16), the following problem with respect to Y =
mat(y) is solved:
minimize

Y
𝜆TV ‖Y‖1,2 + 𝜌2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩Y − Lx + 1𝜌mat (z)󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2

𝐹

. (A.4)

The update rules of y and z for solving (A.4) are given by
ADMM as

y𝑘+1 = prox𝜌−1𝜆TV‖⋅‖1,2 (Lx𝑘+1 − 𝜌−1z𝑘)
z𝑘+1 = z𝑘 + 𝜌 (y𝑘+1 − Lx𝑘+1) . (A.5)

The proximal function for the 𝑙1,2-norm is defined as

[prox]‖⋅‖1,2 (a)]𝜄 = a𝜄 ∘max(1 − ]󵄩󵄩󵄩󵄩a𝜄󵄩󵄩󵄩󵄩2 , 0) , (A.6)

where a = [a1, a2, ⋅ ⋅ ⋅ , a𝐼]T. By applying w𝑘 = Lx𝑘+1 − 𝜌−1z𝑘
to the notations above, the update rule(16) can be obtained by

[y𝑘+1]
𝑠
= prox𝜌−1𝜆TV‖⋅‖1,2 (w𝑘𝑠 )
= max (1 − 𝜆TV (𝜌 󵄩󵄩󵄩󵄩󵄩w𝑘𝑠 󵄩󵄩󵄩󵄩󵄩2)−1 , 0)w𝑘𝑠 , (A.7)

where w𝑘𝑠 = [𝑤𝑘𝑠1, 𝑤𝑘𝑠2, 𝑤𝑘𝑠3]T.
Finally, the subproblem with respect to m𝑖 = vec(M𝑖),

denoted by

minimize
m𝑖

𝜆LR
N

󵄩󵄩󵄩󵄩M𝑖(𝑖)󵄩󵄩󵄩󵄩∗ + 𝜖2 󵄩󵄩󵄩󵄩x −m𝑖 + k𝑖󵄩󵄩󵄩󵄩22 , (A.8)

is solved to obtain (17). The optimal solution is given by
singular value thresholding [25, 35]:

M
𝑘+1
𝑖 = fold𝑖 [SVT𝜆LR/N𝜖 (unfold𝑗 (X𝑘+1 + V𝑘𝑖 ))] . (A.9)
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Supplementary Materials

There are results of the preliminary experiments using 2D
simple synthetic images. We simulated 16 images of varia-
tional patterns to be restored. Experimental settings:Wecom-
pared the performance of the proposed method (LRTVG)
with the Gerchberg algorithm [7], TV regularized super-
resolution [22], and LRTV [23]. The ground truth synthetic
image is first blurred toward the row-direction with a rect-
angular profile spectrum. Two blurred images were obtained
for each ground truth by cutting off 65% and 85% of the
spectrum toward row-direction. Each blurred image was
also contaminated with Gaussian noise (3%-noise level) or
free of noise (0%-noise level). Accordingly, four patterns of
the observations are obtained from two blur kernels and
two noise levels. The images are then reconstructed from
four patterns of the observations using each method, and
the reconstructed images are evaluated with both PSNR
and SSIM [60]. We also evaluated the performances of
Gerchberg method and the proposed method with respect to
the accuracy of the region Γ. The experiment was conducted
bymaking Γ redundant from the true boundary.The distance
from the true boundary is changed from 0 to 10. About files:
there are six PDF files in the Supplementary Materials S1–S6.
The four files named S1-S4 include the illustrations of results
of 16 synthetic images ((A)-(P)). Each of the four files includes
results of four of the 16 images. The file named S5 includes
the PSNR and SSIM results of the respective 16 images, (A)-
(P).The file named S6 includes the PSNR and SSIM results of
each image when the contour of Γ is redundant from the true
boundary. The results of the cases when distances from the
true boundary, dist., equal 0, 4, and 8 are additionally plotted
on the figures. Also, the folder named S7 includes the PSNR
results with respect to 𝜆TV and 𝜆LR for variational images
in Table 1. Yellow/blue colors mean high/low PSNR values.
(Supplementary Materials)

References

[1] I. Bankman, Handbook of Medical Image Processing and Analy-
sis, Academic Press, 2008.

[2] H. Greenspan, “Super-resolution in medical imaging,” The
Computer Journal, vol. 52, no. 1, pp. 43–63, 2009.

[3] J. L. Prince and J.M. Links,Medical Imaging Signals and Systems,
Pearson Prentice Hall Upper Saddle River, New Jersey, USA,
2006.

[4] J. V. Manjn, P. Coup, A. Buades, V. Fonov, D. Louis Collins,
and M. Robles, “Non-local MRI upsampling,” Medical Image
Analysis, vol. 14, no. 6, pp. 784–792, 2010.

[5] S. C. Park,M.K. Park, andM.G. Kang, “Super-resolution image
reconstruction: a technical overview,” IEEE Signal Processing
Magazine, vol. 20, no. 3, pp. 21–36, 2003.

[6] B. Scherrer, A. Gholipour, and S. K.Warfield, “Super-resolution
reconstruction to increase the spatial resolution of diffusion
weighted images from orthogonal anisotropic acquisitions,”
Medical Image Analysis, vol. 16, no. 7, pp. 1465–1476, 2012.

[7] R. W. Gerchberg and W. O. Saxton, “A practical algorithm for
the determination of the phase from image anddiffractionplane
pictures,” Optik - International Journal for Light and Electron
Optics, vol. 35, no. 2, pp. 237–250, 1972.

[8] D. C. Youla, “Generalized image restoration by the method of
alternating orthogonal projections,” Institute of Electrical and
Electronics Engineers Transactions on Circuits and Systems, vol.
25, no. 9, pp. 694–702, 1978.

[9] P. Chatterjee, S. Mukherjee, S. Chaudhuri, and G. Seetharaman,
“Application of Papoulis–Gerchberg method in image super-
resolution and inpainting,” The Computer Journal, vol. 52, no.
1, pp. 80–89, 2009.

[10] C.-Y. Hsu and T.-M. Lo, “Improved Papoulis-Gerchberg algo-
rithm for restoring lost samples,” inProceedings of the Fifth IEEE
International Symposium on Signal Processing and Information
Technology, pp. 717–721, IEEE, 2005.

[11] L. M. Kani and J. C. Dainty, “Super-resolution using the Gerch-
berg algorithm,”Optics Communications, vol. 68, no. 1, pp. 11–17,
1988.

[12] A. Papoulis, “A new algorithm in spectral analysis and band-
limited extrapolation,” Institute of Electrical and Electronics
Engineers Transactions on Circuits and Systems, vol. 22, no. 9,
pp. 735–742, 1975.

[13] D. C. Youla and H. Webb, “Image Restoration by the Method
of Convex Projections: Part 1-Theory,” IEEE Transactions on
Medical Imaging, vol. 1, no. 2, pp. 81–94, 1982.

[14] A. A. Samsonov, J. Velikina, Y. Jung, E. G. Kholmovski, C.
R. Johnson, and W. F. Block, “POCS-enhanced correction of
motion artifacts in parallel MRI,” Magnetic Resonance in
Medicine, vol. 63, no. 4, pp. 1104–1110, 2010.

[15] M. I. Sezan and H. Stark, “Image Restoration by the Method
of Convex Projections: Part 2-Applications and Numerical
Results,” IEEE Transactions on Medical Imaging, vol. 1, no. 2, pp.
95–101, 1982.

[16] E. Y. Sidky, C. Kao, and X. Pan, “Accurate image reconstruction
from few-views and limited-angle data in divergent-beam CT,”
Journal of X-Ray Science and Technology, vol. 14, no. 2, pp. 119–
139, 2006.

[17] E. Y. Sidky and X. Pan, “Image reconstruction in circular cone-
beam computed tomography by constrained, total-variation
minimization,” Physics in Medicine and Biology, vol. 53, no. 17,
pp. 4777–4807, 2008.

[18] H. Stark, Image Recovery:Theory and Application, Elsevier, 1987.
[19] A. Hirani and T. Totsuka, “Dual domain interactive image

restoration: basic algorithm,” in Proceedings of the 3rd IEEE
International Conference on Image Processing, pp. 797–800,
IEEE, 1996.

[20] A. J. Patti andY.Altunbasak, “Artifact reduction for set theoretic
super resolution image reconstruction with edge adaptive
constraints and higher-order interpolants,” IEEE Transactions
on Image Processing, vol. 10, no. 1, pp. 179–186, 2001.

[21] F. Guichard and F. Malgouyres, “Total variation based inter-
polation,” in Proceedings of the 9th European Signal Processing
Conference, EUSIPCO 1998, Greece, September 1998.

[22] A. Marquina and S. J. Osher, “Image super-resolution by TV-
regularization and Bregman iteration,” Journal of Scientific
Computing, vol. 37, no. 3, pp. 367–382, 2008.

[23] F. Shi, J. Cheng, L. Wang, P.-T. Yap, and D. Shen, “LRTV: MR
Image Super-Resolution with Low-Rank and Total Variation
Regularizations,” IEEETransactions onMedical Imaging, vol. 34,
no. 12, pp. 2459–2466, 2015.

[24] L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation
based noise removal algorithms,” Physica D: Nonlinear Phenom-
ena, vol. 60, no. 1–4, pp. 259–268, 1992.

http://downloads.hindawi.com/journals/ijbi/2018/9262847.f1.zip


16 International Journal of Biomedical Imaging

[25] J. Liu, P. Musialski, P. Wonka, and J. Ye, “Tensor completion for
estimating missing values in visual data,” IEEE Transactions on
Pattern Analysis andMachine Intelligence, vol. 35, no. 1, pp. 208–
220, 2013.

[26] T. Yokota, Q. Zhao, and A. Cichocki, “Smooth PARAFAC
decomposition for tensor completion,” IEEE Transactions on
Signal Processing, vol. 64, no. 20, pp. 5423–5436, 2016.

[27] T. Yokota and H. Hontani, “Simultaneous visual data comple-
tion and denoising based on tensor rank and total variation
minimization and its primal-dual splitting algorithm,” in Pro-
ceedings of the 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 3732–3740, 2017.

[28] J. Huang, A. Singh, and N. Ahuja, “Single image super-
resolution from transformed self-exemplars,” in Proceedings of
the 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 5197–5206, 2015.

[29] C. Dong, C. C. Loy, K. He, andX. Tang, “Image super-resolution
using deep convolutional networks,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 38, pp. 295–307,
2016.

[30] J. Yang, J. Wright, T. S. Huang, and Y. Ma, “Image super-
resolution via sparse representation,” IEEE Transactions on
Image Processing, vol. 19, no. 11, pp. 2861–2873, 2010.

[31] W. Dong, L. Zhang, G. Shi, and X. Wu, “Image deblurring
and super-resolution by adaptive sparse domain selection and
adaptive regularization,” IEEE Transactions on Image Processing,
vol. 20, no. 7, pp. 1838–1857, 2011.

[32] C. Ledig, L. Theis, F. Huszar et al., “Photo-realistic single image
super-resolution using a generative adversarial network,” in
Proceedings of the 2017 IEEEConference onComputerVision and
Pattern Recognition (CVPR), 2017.

[33] E. Denton, S. Chintala, A. Szlam, and R. Fergus, “Deep genera-
tive image models using a laplacian pyramid of adversarial net-
works,” in Advances in Neural Information Processing Systems,
pp. 1486–1494, 2015.

[34] H. Greenspan, B. Van Ginneken, and R. M. Summers, “Guest
Editorial Deep Learning in Medical Imaging: Overview and
Future Promise of an Exciting New Technique,” IEEE Transac-
tions on Medical Imaging, vol. 35, no. 5, pp. 1153–1159, 2016.

[35] J. Cai, E. J. Candès, and Z. Shen, “A singular value thresholding
algorithm for matrix completion,” SIAM Journal on Optimiza-
tion, vol. 20, no. 4, pp. 1956–1982, 2010.

[36] M. Lustig, D. Donoho, and J. M. Pauly, “Sparse MRI: the
application of compressed sensing for rapid MR imaging,”
Magnetic Resonance in Medicine, vol. 58, no. 6, pp. 1182–1195,
2007.

[37] M. Lustig, D. L. Donoho, J. M. Santos, and J. M. Pauly, “Com-
pressed sensing MRI,” IEEE Signal Processing Magazine, vol. 25,
no. 2, pp. 72–82, 2008.

[38] A. Hirabayashi, N. Inamuro, K. Mimura, T. Kurihara, and T.
Homma, “Compressed sensing MRI using sparsity induced
from adjacent slice similarity,” in Proceedings of the 2015
International Conference on Sampling Theory and Applications
(SampTA), pp. 287–291, IEEE, 2015.

[39] R. W. Gerchberg, “Super-resolution through error energy
reduction,” Journal of Modern Optics, vol. 21, no. 9, pp. 709–720,
1974.

[40] S. D. Babacan, R. Molina, and A. Katsaggelos, “Total variation
super resolution using a variational approach,” in Proceedings of
the 15th IEEE International Conference on Image Processing, pp.
641–644, 2008.

[41] A. Chambolle and T. Pock, “A first-order primal-dual algorithm
for convex problems with applications to imaging,” Journal of
Mathematical Imaging and Vision, vol. 40, no. 1, pp. 120–145,
2011.

[42] M. K. Ng, H. Shen, E. Y. Lam, and L. Zhang, “A total variation
regularization based super-resolution reconstruction algorithm
for digital video,” EURASIP Journal on Advances in Signal
Processing, vol. 2007, Article ID 74585, 2007.

[43] T. Yokota and H. Hontani, “An efficient method for adapting
step-size parameters of primal-dual hybrid gradient method in
application to total variation regularization,” in Proceedings of
the Asia-Pacific Signal and Information Processing Association
Annual Summit and Conference (APSIPA ASC), pp. 973–979,
IEEE, 2017.

[44] M. Zhu and T. Chan, “An efficient primal-dual hybrid gradient
algorithm for total variation image restoration,” UCLA CAM
Report, pp. 8–34, 2008.

[45] D. Gabay and B. Mercier, “A dual algorithm for the solution of
nonlinear variational problems via finite element approxima-
tion,” Computers & Mathematics with Applications, vol. 2, pp.
17–40, 1976.

[46] S. Yang, J. Wang, W. Fan, X. Zhang, P. Wonka, and J. Ye, “An
efficient ADMM algorithm for multidimensional anisotropic
total variation regularization problems,” in Proceedings of the
19th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 641–649, ACM, 2013.

[47] M. A. T. Figueiredo, J. B. Dias, J. P. Oliveira, and R. D.
Nowak, “On total variation denoising: a new majorization-
minimization algorithm and an experimental comparisonwith
wavalet denoising,” in Proceedings of the 2006 IEEE Interna-
tional Conference on Image Processing, pp. 2633–2636, IEEE,
2006.

[48] E. Candès and B. Recht, “Exact matrix completion via convex
optimization,” Communications of the ACM, vol. 55, no. 6, pp.
111–119, 2012.

[49] E. J. Candès and T. Tao, “The power of convex relaxation: near-
optimal matrix completion,” IEEE Transactions on Information
Theory, vol. 56, no. 5, pp. 2053–2080, 2010.

[50] B. Recht, M. Fazel, and P. A. Parrilo, “Guaranteed minimum-
rank solutions of linear matrix equations via nuclear norm
minimization,” SIAM Review, vol. 52, no. 3, pp. 471–501, 2010.

[51] H. Greenspan, G. Oz, N. Kiryati, and S. Peled, “MRI inter-slice
reconstruction using super-resolution,” Magnetic Resonance
Imaging, vol. 20, no. 5, pp. 437–446, 2002.

[52] S. Jiang, H. Xue, A. Glover, M. Rutherford, D. Rueckert, and J.
V. Hajnal, “MRI of moving subjects using multislice Snapshot
images with volume reconstruction (SVR): application to fetal,
neonatal, and adult brain studies,” IEEETransactions onMedical
Imaging, vol. 26, no. 7, pp. 967–980, 2007.

[53] V. S. Lee, Cardiovascular MRI: Physical Principles to Practical
Protocols, Lippincott Williams &Wilkins, 2006.

[54] C. A. Cocosco, V. Kollokian, R. K.-S. Kwan, G. B. Pike, andA. C.
Evans, “Brainweb: Online interface to a 3dMRI simulated brain
database,” in NeuroImage, Citeseer, 1997.

[55] D. S. Marcus, T. H. Wang, J. Parker, J. G. Csernansky, J. C.
Morris, and R. L. Buckner, “Open access series of imaging stud-
ies (OASIS): cross-sectional mri data in young, middle aged,
nondemented, and demented older adults,” Journal of Cognitive
Neuroscience, vol. 19, no. 9, pp. 1498–1507, 2007.

[56] T. M. Lehmann, C. Gönner, and K. Spitzer, “Survey: interpola-
tion methods in medical image processing,” IEEE Transactions
on Medical Imaging, vol. 18, no. 11, pp. 1049–1075, 1999.



International Journal of Biomedical Imaging 17

[57] C. He, C. Hu, W. Zhang, and B. Shi, “A fast adaptive parameter
estimation for total variation image restoration,” IEEE Transac-
tions on Image Processing, vol. 23, no. 12, pp. 4954–4967, 2014.

[58] D. Ayyagari, N. Ramesh, D. Yatsenko, T. Tasdizen, and C. Atria,
“Image reconstruction using priors from deep learning,” in
Medical Imaging 2018: Image Processing, vol. 10574, Interna-
tional Society for Optics and Photonics, 2018.

[59] D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Deep image prior,”
inProceedings of the IEEE International Conference onComputer
Vision and Pattern Recognition, 2018.

[60] Z.Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: from error visibility to structural similarity,”
IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600–
612, 2004.


