
Research Article
The Application of an Adaptive Genetic Algorithm Based on
Collision Detection in Path Planning of Mobile Robots

Kun Hao ,1 Jiale Zhao ,1 Beibei Wang ,2 Yonglei Liu,1 and Chuanqi Wang3

1School of Computer and Information Engineering, Tianjin Chengjian University, Tianjin 300384, China
2School of Control and Mechanical Engineering, Tianjin Chengjian University, Tianjin 300384, China
3Tianjin Keyvia Electric Co., Ltd., Tianjin 300384, China

Correspondence should be addressed to Beibei Wang; wbbking@163.com

Received 25 January 2021; Revised 6 April 2021; Accepted 13 April 2021; Published 8 May 2021

Academic Editor: Rodolfo E. Haber

Copyright © 2021 Kun Hao et al. +is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

An adaptive genetic algorithm based on collision detection (AGACD) is proposed to solve the problems of the basic genetic
algorithm in the field of path planning, such as low convergence path quality, many iterations required for convergence, and easily
falling into the local optimal solution. First, this paper introduces the Delphi weight method to evaluate the weight of path length,
path smoothness, and path safety in the fitness function, and a collision detection method is proposed to detect whether the
planned path collides with obstacles. +en, the population initialization process is improved to reduce the program running time.
After comprehensively considering the population diversity and the number of algorithm iterations, the traditional crossover
operator and mutation operator are improved, and the adaptive crossover operator and adaptive mutation operator are proposed
to avoid the local optimal solution. Finally, an optimization operator is proposed to improve the quality of convergent individuals
through the second optimization of convergent individuals. +e simulation results show that the adaptive genetic algorithm based
on collision detection is not only suitable for simulation maps with various sizes and obstacle distributions but also has excellent
performance, such as greatly reducing the running time of the algorithm program, and the adaptive genetic algorithm based on
collision detection can effectively solve the problems of the basic genetic algorithm.

1. Introduction

With the development of the modern society, mobile robots
have been widely used in shoppingmalls, factories, hospitals,
and other public places [1, 2]. Mobile robots have already
changed from the original simplification and mechanization
to the direction of intelligence and humanization [3, 4]. Path
planning technology is one of the key technologies to realize
the intelligentization of mobile robots, and it is also a
popular research topic in the field of mobile robots. Path
planning means that the mobile robot searches for an op-
timal or suboptimal collision-free path from the starting
point to the target point according to a certain performance
index [5].

In the past few decades, path planning technology has
been well developed. +ere are two kinds of path planning
algorithms: traditional search algorithms and intelligent
evolution algorithms. Traditional search algorithms include

the Floyd algorithm [6], Dijkstra algorithm [7], artificial
potential field method [8], and A∗ algorithm [9]. Floyd
algorithm [6] is easy to understand and simple to design, but
Floyd algorithm is not suitable for a large amount of data
because of its high time complexity. Dijkstra algorithm [7] is
fast, but it cannot deal with the edge with negative weight.
+erefore, the application of Dijkstra algorithm will be
limited. +e artificial potential field method [8] has a simple
structure and has been widely used in real-time obstacle
avoidance and smooth trajectory control, but the artificial
potential field method has the problem of unreachable target
near the obstacle and local minimum. A∗ algorithm [9] is
suitable for simple maps. In complex maps, the program
running time of A∗ algorithm will increase rapidly. Intel-
ligent evolutionary algorithms include the neural network
algorithm [10], immune clone algorithm [11], genetic al-
gorithm [12], and ant colony algorithm [13]. Neural network
algorithm [10] has strong fault tolerance and adaptability,
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but it needs a lot of computing resources and is not easy to
use on mobile robots. Immune clonal algorithm [11] has fast
convergence speed, but it is easy to fall into the local optimal
solution. Moreover, the population diversity of immune
clone algorithm is poor. Genetic algorithm [12] has the
advantages of strong parallelism and robustness. However,
genetic algorithm also has the problems of many iterations
and easy to fall into the local optimum. Ant colony algorithm
[13] adopts the pheromone positive feedback mechanism to
make algorithm fast convergence. However, the ant colony
algorithm has the deadlock problem. Deadlocks can kill large
numbers of ants. In summary, the traditional search algo-
rithm is suitable for small-scale maps with few obstacles. For
large-scale and multiobstacle maps, the performance of
traditional search algorithms is poor. +e traditional search
algorithm not only takes a long time to search but also easily
falls into the local optimal solution. Compared with the
traditional search algorithm, the intelligent evolutionary
algorithm is applicable to both small-scale maps with few
obstacles and large-scale maps with many obstacles. How-
ever, intelligent evolutionary algorithms are also prone to fall
into local optimal solutions.

+e genetic algorithm is an intelligent evolutionary al-
gorithm. It is designed according to the theory of natural
selection and the mechanism of genetic evolution. In [14],
Holland et al. proposed the mathematical model of genetic
algorithm. +e model takes into account the nonlinearity of
the complex interaction. +ey proved the universality of the
model by applying it to economics, physiological psychol-
ogy, game theory, and artificial intelligence. On the basis of
this mathematical model, Holland et al. systematically in-
troduced the principle of genetic algorithm and demon-
strated the feasibility and scientificity of the genetic
algorithm framework. In [15], Radu Emil Precup and Radu
Codrut David introduced the technical progress and novelty
of existing natural heuristic algorithms. +ey also demon-
strated the optimization framework and basic principles of
natural heuristic algorithms. On this basis, they systemati-
cally introduced the optimization algorithm of the fuzzy
servo system and took it as an example. Genetic algorithm is
widely used in the field of path planning because of its
advantages, such as parallelism, strong robustness, and easy
embedding into other algorithms. However, the basic ge-
netic algorithm (BGA) also has some problems, such as low
efficiency, low quality of convergent individuals, many it-
erations of convergence, and easily falling into the local
optimal solution. To solve these problems, many scholars
have performed much research on genetic algorithm. Viana
et al. [16] improved the local search strategy in the tradi-
tional mutation operator and proposed a new multicross-
over operator.+is method can solve the premature problem
of genetic algorithm. However, the performance of the al-
gorithm is constrained by the fixed crossover probability and
mutation probability. Choi et al. [17] proposed a hybrid
algorithm based on a genetic algorithm and evolutionary
strategy.+e hybrid algorithm combines a genetic algorithm
and evolutionary strategy. +e genetic algorithm is used to
approach the optimal solution, and the evolutionary strategy
is used to solve the exact optimal solution. However, the

hybrid algorithm is highly dependent on the algorithm
parameters. When the parameter design is poor, the quality
of the convergent individual obtained by this method is
unstable. +e nondominant sorting genetic algorithm
(NSGA-III) has good diversity but poor convergence.
Qingguo Liu et al. [18] added the K-means clustering al-
gorithm on the basis of NSGA-III and proposed an im-
proved genetic K-means clustering algorithm of NSGA-III.
+e improved algorithm is also known as NSGA-III-GKM.
+is algorithm can not only improve the convergence and
diversity but also automatically provide the number and
direction vectors of subspaces. However, the efficiency of
this algorithm is low when solving MaOPs with complex
constraints. Hao et al. [19] proposed a multipopulation
migration genetic algorithm (MPMGA). In this algorithm, a
large population is randomly divided into several small
populations with the same population number, and the
selection mechanism of the selection operator is replaced by
the migration mechanism among the populations. +e
crossover operator and mutation operator are also im-
proved. +is algorithm can solve the problems of the
standard genetic algorithm. However, the program running
time of this algorithm is long, which limits its application in
real life.

+rough the above analysis, this paper presents an
adaptive genetic algorithm based on collision detection
(AGACD) for mobile robot path planning.+is paper makes
the following innovations and contributions: (1) this paper
proposes a collision detection method to detect whether the
planned path collides with the obstacle grid. +e collision
detection method is suitable for all static grid maps.
Compared with other methods, the proposed method
considers collision detection mathematically. +erefore, the
applicability is very strong. (2) +is paper introduces the
Delphi weight method to evaluate the weight of path length,
path smoothness, and path safety in the fitness function.
Compared with the traditional fuzzy weight method, the
Delphi weight method in this paper improves the practical
application ability and flexibility of the algorithm. (3)
Compared with other population initialization methods, the
population initialization method proposed in this paper can
greatly reduce the proportion of the initial population
generation time to the total time, thus reducing the running
time of the algorithm program. +erefore, the population
initializationmethod proposed in this paper can enhance the
real-time performance and practicability of the algorithm.
(4) Compared with the traditional crossover operator and
mutation operator, the adaptive crossover operator and
adaptive mutation operator proposed in this paper can ef-
fectively reduce the numbers of invalid crossover and invalid
mutation and improve the efficiency of the algorithm. (5) In
simulation maps with different sizes and obstacle distri-
butions, AGACD can always generate feasible and effective
high-quality paths.

+e remainder of this paper is organized as follows: in
Section 2, we introduce the method of environment mod-
eling. In Section 3, we introduce the collision detection
algorithm suitable for grid maps in detail. In Section 4, we
describe various aspects of AGACD in detail. In Section 5,
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we compare the performance of each algorithm and the path
quality of each algorithm in two simulation environments of
different sizes and different obstacle distributions. We also
analyze the performance of each algorithm in detail. In
Section 6, we summarize the paper. In Section 7, we sum-
marize the shortcomings of AGACD. In light of these
shortcomings, we discuss areas for future work.

2. Environment Modeling

+e commonmethods of environment modeling include the
visual graph method, free-space method, and grid method.
Because the grid method is easy to operate and understand,
this paper uses the grid method to establish an environ-
mental model. As shown in Figure 1, the whole two-di-
mensional workspace is divided into a 30∗ 30 grid map by
the grid method. In the grid map, the serial numbers are 0, 1,
2, 3, 4, ..., 899 from left to right and from bottom to top. +e
white grid represents a feasible area, and the black grid
represents an obstacle. +e coordinates of the grid center
point represent the grid coordinates. +e correspondence
between the grid serial number and grid coordinates is as
follows:

x � mod(p, N) + 1,

y � fix(p/N) + 1.
􏼨 (1)

p � (x − 1) +(y − 1)∗N. (2)

Equations (1) and (2) represent the conversion between
the grid serial number and the grid coordinates. In the two
equations, P represents the grid serial number, (x, y) rep-
resents the coordinate point corresponding to the grid, N
represents the grid number per row, mod represents the
residual operation, and fix represents the integer operation.

To improve the security of the grid map, we need to
preprocess it. Preprocessing includes expanding the obsta-
cles and equating the mobile robot to the mass point. +e
expansion size is the sum of the radius of the mobile robot
and the reserved safe distance.

3. Collision Detection Algorithm

Collision detection technology is the technology that detects
whether the generated path collides with obstacles. Litera-
ture studies [20–22] propose several collision detection al-
gorithms, but these algorithms are not applicable to the grid
map shown in Figure 1. +e literature [23, 24] has made
outstanding contributions to the recognition and detection
of obstacles under complex weather conditions. +erefore,
on the premise of the accurate identification of obstacles, this
paper proposes a collision detection algorithm that is
suitable for grid maps. It is called the linear trial method.

Suppose a path consists of several path points. To detect
whether a path collides with an obstacle grid, we only need to
detect whether the connections of adjacent path points in the
path collide with the obstacle grid. As shown in Figure 2, a
path consists of five path points (1,1), (9,3), (3,5), (2,9), and
(8,12). We only need to detect whether the (1,1), (9,3) path

point connections, the (9,3), (3,5) path point connections,
the (3,5), (2,9) path point connections, and the (2,9), (8,12)
path point connections collide with the obstacle grid. If all
adjacent path point connections do not collide with the
obstacle grid, then the path is considered to have not collided
with the obstacle grid. If any adjacent path point connections
collide with the obstacle grid, then the path is considered to
have collided with the obstacle grid. As shown in Figure 2,
the (1,1), (9,3) path point connections, the (9,3), (3,5) path
point connections, and the (3,5), (2,9) path point connec-
tions do not collide with the obstacle grid. However, the
(2,9), (8,12) path point connections collide with the obstacle
grid. +erefore, it can be concluded that the path collides
with the obstacle grid.
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Figure 1: Grid map.
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Figure 2: Schematic diagram of path collision detection.
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Assuming that the coordinates of the two path points are
Pi(xi,yi) and Pi+1(xi+1,yi+1), the linear equation of the line
between the two points is

k �

yi+1 − yi( 􏼁

xi+1 − xi( 􏼁
, xi+1 ≠ xi,

∞, xi+1 � xi,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(3)

b � yi − k∗xi, k≠∞, (4)

y � k∗x + b, k≠∞
x � xi, k �∞.

􏼨 (5)

Equations (3)–(5) are the linear equation computations.
Let dy� |yi+1 - yi| and dx� |xi+1 - xi|. If dy is greater than

dx, the y coordinate is used for detection; otherwise, the x
coordinate is used for detection.

Assuming that dx is greater than dy, that is, the x co-
ordinate is adopted for detection, then the following pro-
cedure can be followed:

(1) Let x1�min{xi+1, xi}, x2�max{xi+1, xi}.
(2) If x1< x2, x1� x1 + 0.1; proceed to Step (3). Other-

wise, the process ends, and we determine that the
connection between the two path points does not go
through the obstacle grid.

(3) We need to use equation (5) to solve y1 corre-
sponding to x1, and then we can obtain the corre-
sponding coordinate (x1, y1). Since the environment
model established by the grid method can only
identify whether the grid corresponding to the in-
herent coordinate points is an obstacle grid, the data
processing flowchart shown in Figure 3 is used to
process x1 and y1, and x_new and y_new can be
obtained. (x_new, y_new) is a new coordinate that
can be recognized. Go to Step (4).

(4) We use equation (2) to convert the coordinates
(x_new, y_new) into the grid number p_new and
determine whether p_new is an obstacle grid. If
p_new is not an obstacle grid, then proceed to Step
(2). If p_new is the obstacle grid, the process ends,
and we determine that the connection between the
two path points goes through the obstacle grid.

Equation (6) is as follows:

new �
floor(u), u − floor(u)≤ 0.5,

floor(u) + 1, u − floor(u)> 0.5.
􏼨 (6)

In equation (6), u is the data to be processed, new is the
processed data, and floor() is a downward rounding
function.

+e above procedure uses x-coordinates for detection.
+e process of detection using y-coordinates is the same as
the process of detection using x-coordinates. We just need to
replace x and y with each other.

From the detection process, we can see that the essence
of the linear trial method is to gradually probe from the

starting coordinate point to the target coordinate point by
increasing the coordinate value by 0.1 each time. Since the
environment model established by the grid method can only
identify whether the grid corresponding to the inherent
coordinate points is an obstacle grid, the tested coordinate
values need to be processed. We need to check whether the
grid corresponding to the processed coordinate value is the
obstacle grid to judge whether the connecting line between
the two path points passes through an obstacle grid.

4. Algorithm Design

4.1. Algorithm Framework. Based on the basic genetic al-
gorithm, an adaptive genetic algorithm based on collision
detection is proposed in this paper. In Figure 4, the initial
population with several individuals is generated randomly.
Compared with the traditional population initialization
method, this paper adopts prior knowledge and random
disturbance method. +is population initialization method
can effectively reduce the running time of the algorithm
program and ensure the diversity of the initial population.
Because of the new method of population initialization,
these path individuals are collision-free paths. +us, they do
not require collision detection. +en, the fitness function is
used to calculate the fitness of each individual in the pop-
ulation. In terms of fitness, this paper uses the Delphi weight
method to evaluate the weight of each optimization objective

Start

dx1 = x1 – floor (x1)
dy1 = y1 – floor (y1)

dx1 = 0.5 and
dy1 = 0.5

x1 = min {xi+1, xi}
 y1 = k∗x1 + b

New coordinate points x_new
and y_new can be obtained by

using equation (6) to process the
coordinate points x1 and y1,

respectively.

Yes

No

End

Figure 3: Data processing flowchart.
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to obtain a set of weights close to the actual situation. +is
fitness calculation method enhances the application ability
of the algorithm in real life. Next, based on the fitness of each
individual in the population, individuals are selected,
crossed, and mutated. Compared with the traditional se-
lection operator, this paper adopts the method of combining
the roulette selection strategy with the elite selection
strategy. On the one hand, this selection strategy can ac-
celerate the convergence speed of the algorithm. On the
other hand, this selection strategy can prevent the algorithm
from data fallback phenomena. In terms of the crossover
operator and mutation operator, an adaptive crossover
operator and adaptive mutation operator are proposed in

this paper.+ese two adaptive operators can not only protect
high-quality individuals to speed up the convergence rate of
the algorithm but also enhance the evolutionary potential of
low-quality individuals to increase the searching ability of
the algorithm. Since both crossover andmutation operations
generate infeasible path individuals, it is necessary to use a
collision detection algorithm to remove these infeasible path
individuals and then proceed to the next operation. We
obtain the best individuals after the end of evolution. In this
paper, the point deletion method and collision detection
algorithm are fused to design an optimization operator. +e
optimization operator is used to optimize the optimal in-
dividual, and the quadratic optimization individual is
obtained.

4.2. Coding Mode. +e common encoding methods include
binary encoding, floating point encoding, and real encoding.
+e disadvantages of binary coding are the large amount of
data, low computing efficiency, and high memory overhead.
In addition, binary coding is not easy to operate. Floating
point encoding is suitable for continuous environments, but
the encoding accuracy is low in discrete environments. Real
number coding is easy to operate and easy to understand.
Real number coding has high efficiency and low memory
overhead. +erefore, real number coding is adopted in this
paper.

4.3. Initial Population. Hao et al. [19] pointed out that, with
the increase in the map scale, the proportion of the time
taken to generate the initial population relative to the whole
algorithm program time will gradually increase. In a 50 ∗ 50
grid map, the time taken to generate the initial population
accounts for 81.32% of the time taken by the whole algo-
rithm. +erefore, the time to generate the initial population
will directly affect the time of the whole algorithm program.
In this paper, we will reduce the time and improve the
quality of the initial population by improving the method of
initial population generation.

In this paper, prior knowledge and random perturbation
are used to initialize the population. Assuming that the list
table is empty and the starting node is added to the list table,
the specific steps to generate an individual are as follows:

(1) In the grid map, we choose the end point as the target
point with a 50% probability and any free grid as the
target point with the remaining 50% probability. Go
to Step (2).

(2) We need to calculate the Euclidean distance of the
neighbor grid around the current grid node to the
target grid. If the neighbor grid is an obstacle grid,
the Euclidean distance between the neighbor grid
and the target grid is denoted as infinite. Go to Step
(3).

(3) +rough Euclidean distance, we select the nearest
neighbor grid to the target grid as the current grid
node and add it to the list table. If the neighbor grid is
an end point, the individual generation ends, and the
grid serial numbers in the list table are the generated

Code

Initial population

Individual fitness

Selection operator

Adaptive crossover
operator

Adaptive mutation
operator

Stop evolution?

Optimal individual

Optimization operator
(the optimization
operator is mainly

composed of the collision
detection algorithm

and deletion method)

Quadratic optimization
individual

Yes

No

Collision detection
algorithm

Figure 4: Frame diagram of the adaptive genetic algorithm based
on collision detection.
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path individual. If the neighbor grid is not an end
point, go to Step (1).

+rough the above steps, we can generate an individual.
If the number of initial populations is m, we only need to
execute the above steps m times.

4.4. Fitness Function. Fitness is usually used to evaluate the
quality of an individual. In this paper, path length, path
smoothness, and path safety are considered comprehen-
sively. Haber et al. and Guerra et al. [25, 26] introduced two
kinds of multiobjective optimization strategies and methods
and achieved very good optimization results. On the basis of
these two literature studies, we transform the multiobjective
optimization problem into a single-objective optimization
problem by the form of a weighted sum and use the Delphi
weight method to evaluate the weight of multiple objectives.
+e total fitness function in this paper is defined as follows:

fitness � w1∗f1 + w2∗f2 + w3∗f3. (7)

In equation (7), f1 represents the fitness function of path
length, f2 represents the fitness function of path smoothness,
and f3 represents the fitness function of path safety. w1, w2,
and w3 are the weights of the three fitnesses, and the sum is
1.

f1, f2, and f3 are defined as follows:

f1 �
1

path
,

f2 �
1

smoothness
,

f3 �
1

safety
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(8)

In equation (8), path represents the path length,
smoothness represents the path smoothness, and safety
represents the path safety.

+e path length is generally calculated by Euclidean
distance. If a path is composed of n path points, the co-
ordinate of the ith path point is pi(xi, yi), and the coordinate
of the i+ 1 path point is pi+1(xi+1, yi+1), then the path length
can be expressed as

path � 􏽘
n−1

i�1

���������������������

xi+1 − xi( 􏼁
2

+ yi+1 − yi( 􏼁
2

􏽱

. (9)

Path smoothness refers to the cumulative sum of rota-
tion angles of a mobile robot in a path. Path smoothness is
generally used to measure the smoothness of the entire path.
A large path smoothness value indicates that the path is not
smooth. +e path smoothness is usually calculated by the
rotation angle. Suppose a path is composed of n path points.
+e coordinate of the i− 1 path point is pi−1(xi−1, yi−1), the

coordinate of the ith path point is pi(xi, yi), and the coor-
dinate of the i+ 1 path point is pi+1(xi+1, yi+1). +ree con-
tinuous path points can form two path segments pi−1pi and
pipi+1. Assuming θi is the rotation angle between pi−1pi and
pipi+1, the smoothness of the path can be expressed as

smoothness � 􏽘
n−1

i�2
θi. (10)

+e calculation equation of θi is as follows:

k1 �

yi − yi−1( 􏼁

xi − xi−1( 􏼁
, xi ≠ xi−1,

∞, xi � xi−1,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(11)

k2 �

yi+1 − yi( 􏼁

xi+1 − xi( 􏼁
, xi+1 ≠xi,

∞, xi+1 � xi,

⎧⎪⎪⎨

⎪⎪⎩
(12)

θi �

0, k1 �∞, k2 �∞,

0, k1 � k2k1, k2≠∞,

π − αi, else,

⎧⎪⎪⎨

⎪⎪⎩
(13)

a1 � xi− 1 − xi( 􏼁
2

+ yi− 1 − yi( 􏼁
2
,

b1 � xi+1 − xi( 􏼁
2

+ yi+1 − yi( 􏼁
2
,

c1 � xi− 1 − xi+1( 􏼁
2

+ yi− 1 − yi+1( 􏼁
2
,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(14)

a �
��
a1

√
,

b �
��
b1

√
,

c �
��
c1

√
,

⎧⎪⎪⎨

⎪⎪⎩
(15)

di �
(a1 + b1 − c1)

(2∗ a∗ b)
, (16)

αi � cos− 1
di. (17)

Equations (11) and (12) calculate the slopes of pi−1pi and
pipi+1 in the two path segments, respectively. Equation (13)
discusses the value of θi according to the relationship be-
tween the slope of two path segments. In equation (13), αi
represents the included angle between the two path seg-
ments pi−1pi and pipi+1. Equations (14)–(17) are the calcu-
lation process of αi. In equation (17), cos−1 represents the
arccosine function.

Path safety is usually used to measure the safety of a path.
A large path safety degree indicates that the path is not safe.
+e path safety degree is generally calculated by the sum of
the safety penalty degree obtained by each path point in a
path. Assuming that a path is composed of n path points and
the coordinate of the ith path point is pi(xi, yi), the path safety
degree can be expressed as
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satefy � 1 + 􏽘
n

i�1
Si, (18)

Si � 􏽘
8

j�1
punishment ωj, (19)

punishment_ωj �

0.1 if ωj is an obstacle grid and does not provide a security penalty for other path points,
0 if ωj is not an obstacle grid,

0 if ωj is an obstacle grid but has provided a security penalty for other path points.

⎧⎪⎪⎨

⎪⎪⎩
(20)

In equation (18), Si represents the degree of safety
penalty obtained by the ith path point. In equation (19),
punishment_ωj represents the degree of security penalty
provided by the jth grid around the ith path point. ωj

represents the jth grid around the ith path point. In equation
(20), if ωj is an obstacle grid and does not provide the safety
penalty degree for other path points, ωj will provide a 0.1
safety penalty degree for the ith path point. If ωj is not an
obstacle grid, ωj does not provide a safety penalty to the ith
path point (i.e., the safety penalty provided byωj is 0). Ifωj is
an obstacle grid but already provides a safety penalty for
other path points, ωj will not provide a safety penalty for the
ith path point.

In the calculation of the total fitness, determining the
weight coefficients is a key issue. In this paper, the Delphi
weight method is used to evaluate each weight, and a set of
good weight coefficients is obtained.

First, we need to specify the order of importance of
indicators according to actual needs. In this paper, the order
of the importance of the three indicators is path length, path
smoothness, and path security. +us, we obtain
w1≥w2≥w3.

+e importance ratio is defined as follows:

Ik �
wk

w(k + 1)
. (21)

Hence, we have Ik>�1.
+e importance ratio table constructed in this paper is

shown in Table 1.
According to the ratio Ik, w3 is calculated as follows:

􏽘

2

k�1
􏽑
2

i�k

Ik􏼠 􏼡 �
􏽐

2
k�1 wk

w3
, (22)

1 + 􏽘
2

k�1
􏽙

2

i�k

Ik
⎛⎝ ⎞⎠ � w3−1

, (23)

w3 � 1 + 􏽘
2

k�1
􏽙

2

i�k

Ik
⎛⎝ ⎞⎠⎛⎝ ⎞⎠

−1

. (24)

+is article specifies I1 � 1.2 and I2 �1.4, that is, path
length is slightly more important than path smoothness, and
path smoothness is more important than path security.

+en, we can calculate w1, w2, and w3:

w1 � 0.4118,

w2 � 0.3431,

w3 � 0.2451,

⎧⎪⎪⎨

⎪⎪⎩
(25)

that is, the weight coefficients of path length, path
smoothness, and path security are 0.4118, 0.3431, and 0.2451,
respectively.

4.5. Selection Operator. Common selection strategies in-
clude roulette selection, elite selection, tournament selec-
tion, and truncation selection. However, there are a variety
of problems with these selection strategies. For example,
roulette selection calculates the probability of each indi-
vidual appearing in offspring based on the fitness value of the
individual and randomly selects individuals according to
this probability.+e intention of roulette selection is that the
greater the fitness, the greater the probability that an in-
dividual will be selected. However, roulette selection in-
cludes the possibility that the best individual is not selected.
Elite selection will lead the genetic algorithm to converge to a
local optimum. Truncation selection is a standard method in
animal and plant breeding, but it is not suitable for path
planning. Tournament selection lacks random noise, that is,
the poor individual will never survive, and the good indi-
vidual will always win the tournament. +is will lead to a
rapid decrease in the population diversity of the genetic
algorithm.

Based on the above problems, this paper improves the
roulette selection strategy and integrates roulette selection
with elite selection. +e roulette selection strategy can en-
hance the diversity of the population and enlarge the search
range of the solution space. Roulette selection can also solve
the defect that elite selection converges to a local optimal
solution. +e elite selection strategy is beneficial to the
preservation of the best individuals in the population. Elite
selection solves the problem that the best individuals may
not be selected in roulette selection. +e two strategies can
complement each other so that the algorithm can quickly
converge to a high-quality solution.

4.6. Adaptive Crossover Operator. +e crossover operator is
mainly used in the global search of the algorithm. Common
crossover operators include single-point crossover, multi-
point crossover, and uniform crossover. Because the single-
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point crossover operation is simple, efficient, and conve-
nient, this paper adopts the single-point crossover method.

Regarding cross-probability, the traditional cross-
probability is a fixed constant value. Obviously, the tradi-
tional crossover probability cannot meet the needs of dif-
ferent individuals for different crossover probabilities. In
fact, in the early stage of evolution, the algorithm needs a
strong global search ability; at this time, the algorithm needs
a large crossover probability. In the later stage of evolution,
the algorithm needs a weak global search ability; at this time,
the algorithm needs a small crossover probability. For dif-
ferent individuals in the population, the high-quality indi-
viduals need to be protected, so the high-quality individuals
need to be given a small probability of crossover. Inferior
individuals need to evolve, so inferior individuals need to be
given a greater probability of crossover. Liu Jianwen et al.
[27] proposed an adaptive crossover probability based on the
individual similarity. However, this adaptive crossover
probability only considers the relationship among individ-
uals in the population and does not consider the relationship
between individuals and the number of iterations.+erefore,
a new adaptive crossover probability is proposed in this
paper. +e new adaptive crossover probability not only
considers the relationship among individuals in the pop-
ulation but also considers the relationship between indi-
viduals and the number of iterations.

+e new adaptive crossover probability equation is as
follows:

pc_temp �

pc_low, f_max � f_avg,

pc_high∗ (f max − f)

f max − f avg
􏼡, f≥f avg andf max ≠f avg,

pc_high, f<f avg andf max ≠f avg,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(26)

pc � pc_temp∗ e
−t/T

. (27)

In equation (26), pc_temp is a parameter in equation
(27). f is the larger fitness value in the corresponding fitness
value of the two selected individuals. f_max is the maximum
fitness value in the whole population. f_avg is the average
fitness of the entire population. pc_high is a fixed constant. It
is greater than pc_low and is between 0 and 1. pc_low is a
fixed constant. It is less than pc_high, and it is between 0 and
1. When f_max is equal to f_avg, it means that the pop-
ulation has converged or is close to converging. pc_temp will
be given a very small value pc_low. When f_max is not equal
to f_avg and f is less than f_avg, it means that the individual
is inferior and requires more evolution. pc_temp is given a

value pc_high. When f_max is not equal to f_avg and f is
greater than or equal to f_avg, it means that the individual is
better. pc_temp is assigned a value according to a specific
probability equation. In equation (27), e is the base of the
natural logarithm function. T is the total number of itera-
tions, and t is the current number of iterations.

4.7. Adaptive Mutation Operator. +e mutation operator is
mainly used in the local search of the algorithm. Common
mutation methods include single-gene point mutation and
multigene point mutation. Because the location and number of
mutation points are uncertain, the operation of the multigene
point mutation is complicated. Moreover, multigene point
mutation also easily affects the efficiency of the algorithm.
+erefore, single-gene point mutation is selected in this paper.

Similar to the traditional crossover probability, the
traditional mutation probability is also a fixed constant
value. Obviously, the traditional mutation probability can-
not meet the needs of different individuals for different
mutation probabilities. In fact, in the early stage of evolution,
the algorithm needs a weak local search ability; at this time,
the algorithm needs a small mutation probability. In the later
stage of evolution, the algorithm needs a strong local search
ability; at this time, the algorithm needs a larger mutation
probability. For different individuals in the population,
high-quality individuals need to be protected, so high-
quality individuals need to be given a small probability of
mutation. Inferior individuals need to evolve, so inferior
individuals need to be given a greater probability of mu-
tation. Based on the above analysis, an adaptive mutation
probability is proposed in this paper. +e adaptive mutation
probability not only considers the relationship among in-
dividuals in the population but also considers the rela-
tionship between individuals and the number of iterations.

+e adaptive mutation probability equation is as follows:

pm_temp �

pm_high, f_max � f_avg,

pm_low(f_max − f)
(f_max − f_avg)

, f_avg andf max≠f_avg,

pm_high, f<f_avg andf_max≠ f_avg,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(28)

pm � pm temp∗ e
t/T

. (29)

In equation (28), pm_temp is a parameter in equation
(29). f is the fitness value of the selected individual. f_max is
the maximum fitness value in the whole population. f_avg is
the average fitness of the entire population. pm_high is a
fixed constant. It is greater than pm_low and is between 0
and 1. pm_low is a fixed constant. It is less than pm_high and
is between 0 and 1. When f_max is equal to f_avg, it means
that the population has converged or is close to converging.
pm_temp will be given a value pm_high to try to break the
current optimal solution. When f_max is not equal to f_avg
and f is less than f_avg, it means that the individual is inferior
and requires more evolution. pm_temp is given a value

Table 1: Importance ratio table.

Ratio Ik Description
1.0 +e former is as important as the latter
1.2 +e former is slightly more important than the latter
1.4 +e former is more important than the latter
1.6 +e former is much more important than the latter
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pm_high. When f_max is not equal to f_avg and f is greater
than or equal to f_avg, it means that the individual is better.
pm_temp is assigned a value according to a specific prob-
ability equation. In equation (29), e is the base of the natural
logarithm function. T is the total number of iterations, and t
is the current number of iterations.

4.8. Optimization Operator. +e optimization operator is an
operator that performs a second optimization on a high-quality
individual which has converged. +e basic idea of the opti-
mization operator is to simplify the path by removing the
redundant points in the path. For example, a path consists of
five path points A, B, C, D, and E.+ese five path points are in
turn the adjacent path points. +us, they can form four path
segments AB, BC, CD, and DE. Suppose none of these four
path segments go through obstacles. We try to remove path
point B, directly connect path point A and path point C, and
determine whether path segment AC passes through obstacles.
If path segment AC does not pass through obstacles, path point
B is the redundant path point. +en, we delete path point B
from the path. +e collision detection algorithm provided in
Section 3 is used to determine whether a path segment passes
through obstacles. After deleting path point B from the path,
there are still four path points A, C, D, and E in this path. We
try to remove path point C; then, we directly connect path
point A and path point D and determinewhether path segment
AD passes through obstacles. If path segment AD passes
through obstacles, then path point C is not a redundant path
point.We try to remove path pointD; then, we directly connect
path point C and path point E and determine whether path
segment CE passes through obstacles. If path segment CE does
not pass through obstacles, path point D is the redundant path
point.+en, we delete path point D from the path.+e process
of optimizing the path ends.

+us, a collision-free path with five path points can be
optimized to a collision-free path with three path points.

5. Simulation Results and Analysis

5.1. Simulation Environment. To verify the performance of
the adaptive genetic algorithm based on collision detection
in the field of path planning, this paper compares and an-
alyzes the path generation, optimal individual fitness, and
algorithm running time of the adaptive genetic algorithm
based on collision detection (AGACD) and the basic genetic
algorithm (BGA) under the 20 ∗ 20 grid map environment.
In the environment of a 50 ∗ 50 grid map, performance
measures such as path generation, optimal individual fitness,
and running time are compared and analyzed for the
adaptive genetic algorithm based on collision detection,
basic genetic algorithm, and multipopulation migration
genetic algorithm (MPMGA) proposed in [19].

+e hardware and software configuration of the simu-
lation experiment are shown in Table 2.

5.2. Simulation Experiment Based on the 20 ∗ 20 Grid Map.
In the 20 ∗ 20 grid map of Figure 5, the black obstacles
represent infeasible areas, and the white grids represent

feasible areas. +e mobile robot enters at grid 0 and leaves
from grid 399 (as shown in Figure 5).

5.2.1. Algorithm Parameter Setting. For genetic algorithm,
parameter setting is very important. It will directly affect the
efficiency of the algorithm and the quality of path planning.
+e methods of selecting parameters usually include the
empirical method, reference method, and exhaustive
method. +e empirical method means that we need to es-
timate a set of parameters based on our own experience.
Obviously, this method is very unscientific. +e reference
method means that we need to refer to other literature
studies on parameter setting. +is method has certain ra-
tionality because the parameter setting in other literature
studies has been verified and judged by the literature ex-
periment, but this method has some limitations because each
experimental environment has different requirements for
parameters. Parameters that might have performed well in
the previous experimental environment did not perform
well in this experiment.+e exhaustive method needs a large
number of parameter combinations and experiments. +is
means that the exhaustive method needs a lot of time and
computing resources to get a set of theoretically optimal
parameters. +erefore, the exhaustive method is not
practical.

In many literature studies, the control variable method is
used to design the experimental parameters. +ey keep one
variable changed and control the others unchanged. +en,
the optimal value of this variable is obtained by experiment.
+ey combined the optimal values of all the variables into a
set of experimental parameters. +is seems like a reasonable
approach, but they ignore the fact that the relationship
between variables is not independent, but interrelated.
Taking the optimal value of each variable may lead to poor
experimental results because variables are interrelated.

In [28], Chico Hermanu Brillianto Apribowo et al. used
the DOE method to optimize the parameters of the genetic
algorithm and achieved good experimental results. In [29],
Mohsen Mosayebi and Sodhi not only optimized the pa-
rameters of the genetic algorithm using the DOEmethod but
also guided the selection of genetic operators. In [30], Aldy
Gunawan et al. presented a framework based on DOE to find
a good initial range of parameter values for automated
tuning. In [31], the correlation between the parameters and
the sensitivity of the input parameters were revealed by
Bettemir. Ö.H.

Based on [28–31], we consider using the DOEmethod to
obtain a set of high-quality algorithmic parameters. Next, we
will take AGACD algorithm as an example to introduce
(experimental environment is a 20 ∗ 20 grid simulation
map).

First, we need to determine which variables are sensitive
to the algorithm.+en, the range of each sensitive variable is
determined by the empirical method and reference method.
We mark the lower limit of each variable as −1, the middle
value as 0, and the upper limit as 1.+e next step is to use the
five-factor three-level combination table to represent the
Taguchi table (Table 3).

Computational Intelligence and Neuroscience 9



+e advantage of using the DOE method is that it is able
to reduce the load of trying all possibilities’ available so-
lutions. It can also be used to find combinations of pa-
rameters for good results. +e prediction equation can be
approximated as follows:

result � X0 + X1∗F1 + X2∗F2 + X3∗F3 + X4∗F4 + X5∗F5.

(30)

Based on Table 3, we can use the DOE method to de-
termine the fixed variables of AGACD (Table 4).

Based on the algorithm parameters in Table 4, we per-
formed 5 experiments for each group of parameters and then
took the average value. +e resulting data are shown in
Table 5.

Based on Table 5, we can get the prediction equation.+e
prediction equation is as follows:

result � 0.24416 + X1∗ 0.00673 + X2∗ 0.00847

− X3∗ 0.00841 + X4∗ 0.00594 + X5∗ 0.01624.

(31)

Equation (31) will be maximal with X1� 1, X2�1,
X3� −1, X4�1, and X5�1. +e predicted value is 0.28995.
+erefore, the high-quality parameter combination of
AGACD is population� 60, pc_low� 0.65, pc_high� 0.7,
pm_low� 0.15, and pm_high� 0.3. We used this combi-
nation of parameters to carry out 5 experiments. +e data
obtained are 0.3077, 0.2398, 0.2398, 0.4392, and 0.3077,
respectively. +e average value of the 5 data is 0.30684. +e

experimental results show that the actual value is better than
the predicted value. So, we use the above parameter com-
bination as the algorithm parameter of AGACD.

Similarly, we use the DOE method to obtain a high-
quality parameter combination of BGA algorithm. +is
process is no longer described in detail. +e high-quality
parameter combination of BGA is population� 60, cross-
over probability� 0.8, and mutation probability� 0.3.

+e design parameters for the two algorithms are shown
in Table 6.

5.2.2. Path Generation. +e experimental paths of the two
algorithms are shown in Figure 6. Figure 6(a) shows the path
generated by AGACD that does not use an optimization
operator, and Figure 6(b) shows the path generated by
AGACD that uses an optimization operator. By comparing
the two figures, we can find that the path shown in
Figure 6(a) can form the path shown in Figure 6(b) after
optimization. +e optimization operator is composed of the
deleting point method and collision detection algorithm,
and the use of the deleting point method is inseparable from
the collision detection algorithm. +erefore, by comparing
the path shown in Figure 6(a) with the path shown in
Figure 6(b), the function and practicability of the collision
detection algorithm can be fully demonstrated. Figure 6(c)
shows the path generated by BGA.

It can also be seen from Figure 6 that both algorithms can
generate effective paths in the simulated map. From the
quality of the generated path, the path generated by AGACD
is superior to the path generated by BGA in path length and
path smoothness. However, in terms of path safety, AGACD
is slightly worse than BGA.

5.2.3. Optimal Individual Fitness Analysis. +e evolution
process of the optimal individual fitness of the two algo-
rithms is shown in Figure 7. In terms of the number of
convergence iterations, AGACD is better than BGA. +is is
because AGACD uses an adaptive crossover mutation op-
erator and improves the traditional roulette selection
strategy. +ese improvements can further accelerate the
convergence speed of the algorithm. From the quality of
convergent individuals, AGACD is better than BGA. +is is
because the optimization operator proposed by AGACD can
make the second optimization of the convergent individuals
and thus can improve the quality of the convergent
individuals.

5.2.4. Time Analysis. Table 7 details the program running
time of each stage of AGACD and BGA during a program
running process. Table 7 shows that the program running

Table 2: +e hardware and software configuration.

Hardware Processor AMD Ryzen 5 4500U with Radeon Graphics 2.38GHz
RAM 8.00GB (7.37GB available)

Software Operating system Windows 10 (64 bit operating system)
Simulation tool MATLAB r2018a
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Figure 5: A 20 ∗ 20 grid simulation map.
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time of AGACD is less than the program running time of the
BGA. +e main reason is that the initial population gen-
eration time of AGACD is relatively short, and the pro-
portion of the initial population generation time to the total
time is relatively low. +is shows that the improvement of
the population initialization process in this paper is feasible
and effective. By improving the population initialization

process, the program running time of the algorithm is
obviously reduced.

5.2.5. Comprehensive Comparison. In the simulation envi-
ronment of the 20 ∗ 20 grid map, each algorithm is sim-
ulated 20 times, and the average value is taken. We obtain
the data shown in Table 8. Table 8 shows that AGACD is
better than BGA in average fitness, average convergence
iteration number, and average program running time.

+e standard deviation is a measure of the dispersion of
the mean of a set of data. A larger standard deviation in-
dicates a larger difference between most values and their
mean, and a smaller standard deviation indicates that these
values are closer to the mean. So, we use the standard de-
viation to measure the average in Table 8. +e standard
deviation is shown in Table 9. As can be seen from Table 9,
the value of AGACD is slightly larger than that of BGA in
terms of standard deviation of average fitness. As a result, the
data of BGA are closer to the average. +e data of AGACD
are relatively discrete. In the standard deviation of average
convergence iteration number, the value of AGACD is much
less than the value of BGA. So, the data of AGACD are much

Table 5: Test data.

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Average fitness
Factor (X)

X1 X2 X3 X4 X5
0.1386 0.2398 0.2551 0.2132 0.2398 0.2173 −0.2173 −0.2173 −0.2173 −0.2173 0
0.2398 0.2398 0.2336 0.2286 0.2169 0.2317 −0.2317 0 0 0 0.2317
0.2582 0.2337 0.2378 0.2337 0.2132 0.2353 −0.2353 0.2353 0.2353 0.2353 −0.2353
0.2398 0.2398 0.2336 0.2804 0.4392 0.2866 0 −0.2866 0 0.2866 0.2866
0.2398 0.2398 0.1364 0.2398 0.1364 0.1984 0 0 0.1984 −0.1984 −0.1984
0.2857 0.4392 0.2112 0.24 0.2398 0.2832 0 0.2832 −0.2832 0 0
0.2219 0.2857 0.1386 0.2398 0.2378 0.2248 0.2248 −0.2248 0.2248 0 −0.2248
0.2398 0.2378 0.2398 0.2114 0.2398 0.2337 0.2337 0 −0.2337 0.2337 0
0.2398 0.2398 0.2378 0.2453 0.4692 0.2864 0.2864 0.2864 0 −0.2864 0.2864
Average 0.24416 0.00673 0.00847 −0.00841 0.00594 0.01624

Table 6: Algorithm parameters.

AGACD

Start grid number 0
Target grid number 399
Initial population size 60
Number of iterations 300

Crossover probability pc_high 0.7
pc_low 0.65

Mutation probability pm_high 0.3
pm_low 0.15

BGA

Start grid number 0
Target grid number 399
Initial population size 60
Number of iterations 300
Crossover probability 0.8
Mutation probability 0.3

Table 3: Testing level of fractional factorial DOE.

Population size pc_low pc_high pm_low pm_high
Min Mid Max Min Mid Max Min Mid Max Min Mid Max Min Mid Max
40 50 60 0.55 0.6 0.65 0.7 0.75 0.8 0.05 0.1 0.15 0.2 0.25 0.3
Symbol of DOE Symbol of DOE Symbol of DOE Symbol of DOE Symbol of DOE
−1 0 1 −1 0 1 −1 0 1 −1 0 1 −1 0 1

Table 4: Fixed variable of AGACD with the DOE method.

No.
Level factor Real factor

Population pc_low pc_high pm_low pm_high Population pc_low pc_high pm_low pm_high
1 40 0.55 0.7 0.05 0.25 −1 −1 −1 −1 0
2 40 0.6 0.75 0.1 0.3 −1 0 0 0 1
3 40 0.65 0.8 0.15 0.2 −1 1 1 1 −1
4 50 0.55 0.75 0.15 0.3 0 −1 0 1 1
5 50 0.6 0.8 0.05 0.2 0 0 1 −1 −1
6 50 0.65 0.7 0.1 0.25 0 1 −1 0 0
7 60 0.55 0.8 0.1 0.2 1 −1 1 0 −1
8 60 0.6 0.7 0.15 0.25 1 0 −1 1 0
9 60 0.65 0.75 0.05 0.3 1 1 0 −1 1
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closer to the average andmuch less discrete.+e data of BGA
are very discrete. In the standard deviation of average
program running time, the value of AGACD is much less
than the value of BGA. So, the data of AGACD are much
closer to the average andmuch less discrete.+e data of BGA
are very discrete.

In order to support these analyses and conclusions, we
make appropriate statistical analysis on the simulation data
of the algorithm.

In Figure 8, the number of times AGACD outperforms
BGA is 18. It accounts for 90% of all simulations. It means
that, in most cases, AGACD produces better individuals
than BGA. Furthermore, the optimal individual fitness of
AGACD can reach 0.4392. By contrast, the best individual

fitness produced by BGA is only 0.3431. +e worst indi-
viduals produced by AGACD are also much better than
those produced by BGA. +erefore, AGACD is superior to
BGA in terms of optimal individual fitness.

As can be seen from Figure 9, the number of iterations
required for BGA convergence is generally high. Conver-
gence over 200 generations is 50% of the total number of
times. +e number of iterations required for AGACD to
converge is about 60 generations. In almost every simula-
tion, the number of iterations of AGACD convergence is less
than that of BGA convergence. +erefore, AGACD is much
better than BGA in terms of convergence iteration number.

In Figure 10, the number of times AGACD outperforms
BGA is 19. It accounts for 95% of all simulations.+is means

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

Co
or

di
na

te
 Y

Coordinate X

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

Coordinate X

Co
or

di
na

te
 Y

(b)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

Coordinate X

Co
or

di
na

te
 Y

(c)

Figure 6: +e experimental path of the two algorithms. (a) AGACD without the optimization operator. (b) AGACD with the optimization
operator. (c) BGA.
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that, inmost cases, the AGACD program runs faster than the
BGA program. And the running time of the AGACD
program is usually concentrated in 1.5 seconds. +e running
time of the BGA program is usually concentrated in 2
seconds. +erefore, AGACD is superior to BGA in terms of
program running time.

5.3. Simulation Experiment Based on the 50 ∗ 50 Grid Map.
In the 50 ∗ 50 grid map, the black obstacles represent in-
feasible areas, and the white grids represent feasible areas.
+e mobile robot enters from grid 0 and leaves from grid
2499 (as shown in Figure 11).

5.3.1. Algorithm Parameter Setting. We will use the DOE
method to obtain the high-quality parameter combination of
the three algorithms. +e specific process is described in
Section 5.2.1. It will not be described in detail here. +e
design parameters for the three algorithms are shown in
Table 10.

5.3.2. Path Generation. +e experimental paths of the three
algorithms are shown in Figure 12. Figure 12(a) shows the
path generated by AGACD that does not use an optimi-
zation operator, and Figure 12(b) shows the path generated
by AGACD that uses an optimization operator. By com-
paring the two figures, we can find that the path shown in
Figure 12(a) can form the path shown in Figure 12(b) after
optimization. +e optimization operator is composed of the
deleting point method and collision detection algorithm
used inseparably. By comparing the path shown in
Figure 12(a) with the path shown in Figure 12(b), the
function and practicability of the collision detection algo-
rithm can be fully demonstrated. Figure 12(c) shows the path
generated by the MPMGA. Figure 12(d) shows the path
generated by BGA.

It can also be seen from Figure 12 that all algorithms can
generate effective paths in the simulated map. With respect
to path length and path smoothness, the path generated by
AGACD is superior to the path generated by BGA and the
path generated by MPMGA. However, in terms of path
safety, AGACD is better thanMPMGA but worse than BGA.

5.3.3. Optimal Individual Fitness Analysis. Figure 13 shows
the evolutionary process of optimal individual fitness under
current parameter settings. In terms of the number of
convergence iterations, AGACD is better than BGA. +is is
because AGACD uses an adaptive crossover mutation op-
erator and improves the traditional roulette selection
strategy. +ese improvements can further accelerate the
convergence speed of the algorithm. However, the number
of convergence iterations of AGACD is almost the same as
the number of convergence iterations of MPMGA. +is
shows that the convergence speeds of the two algorithms are
almost the same. From the quality of convergent individuals,
AGACD is better than BGA and MPMGA. +is is because
the optimization operator proposed by AGACD can per-
form a second optimization of the convergent individuals
and thus can improve the quality of the convergent
individuals.

5.3.4. Time Analysis. Table 11 details the program running
time of each stage of AGACD, BGA, and MPMGA during a
program running process. By comparing Tables 7 and 11, we
can find that, with increasing map size, the average program
running time of BGA also increases sharply. +e ratio of the
initial population generation time to the total time of BGA
increased from 15.6% to 82.34%. In the simulation envi-
ronment of the 50 ∗ 50 grid map, the program running time
of MPMGA reached an astonishing 62.6864 seconds. +e
time taken to generate the initial population accounted for
85.62% of the total time. However, the program running
time of AGACD only increases slightly with the increased
map size. +e time taken to generate the initial population
accounted for only 10.14% of the total time. +rough the
above comparative analysis, we believe that AGACD pro-
posed in this paper can effectively reduce the running time of
the program.

5.3.5. Comprehensive Comparison. In the simulation envi-
ronment of the 50 ∗ 50 grid map, each algorithm is sim-
ulated 20 times, and the average value is taken. We obtain
the data shown in Table 12. Table 12 shows that AGACD is
better than BGA and MPMGA in average fitness, average
convergence iteration number, and average program run-
ning time. By comparing the average program running time
of Tables 8 and 12, we can find that the average program
running time of BGA increases sharply with the increased
map size. In the simulation environment of the 50 ∗ 50 grid
map, the average program running time of MPMGA reaches
an astonishing 55.69 seconds. However, the average pro-
gram running time of AGACD only increases slightly with
the increased map size.
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Figure 7: Evolutionary diagram of optimal individual fitness.
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Table 7: Comparison table of the running time of each program.

Algorithm Initial population generation
time (s)

Population evolution
time (s)

Total time
(s)

Proportion of initial population generation time to
total time

AGACD 0.0414 1.5886 1.63 2.54
BGA 0.3089 1.6711 1.98 15.60

Table 8: Data comparison table of the two algorithms.

Algorithm Average fitness Average convergence iteration number Average program running time (s)
AGACD 0.2952 60.95 1.5125
BGA 0.2072 170.3 1.9508

Table 9: Standard deviation.

Algorithm Standard deviation of average
fitness

Standard deviation of average convergence
iteration number

Standard deviation of average program
running time

AGACD 0.0798 21.6004 0.1834
BGA 0.0639 100.788 0.4922
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Figure 8: Scatter diagram of optimal individual fitness.
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Figure 9: Scatter diagram of convergence iteration number.
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Figure 10: Scatter diagram of program running time.
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Figure 11: A 50 ∗ 50 grid simulation map.
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Table 10: Algorithm parameters.

AGACD

Start grid number 0
Target grid number 2499
Initial population size 80
Number of iterations 500

Crossover probability pc_high 0.9
pc_low 0.75

Mutation probability pm_high 0.3
pm_low 0.15

BGA

Start grid number 0
Target grid number 2499
Initial population size 60
Number of iterations 500
Crossover probability 0.9
Mutation probability 0.3

MPMGA

Start grid number 0
Target grid number 2499
Initial population size 45

+e size of each small population 15
Number of iterations 500

Crossover probability High crossover probability 0.8
Low crossover probability 0.3

Mutation probability High mutation probability 0.6
Low mutation probability 0.1

Accuracy coefficient 1
Initial temperature 1

Temperature decay rate 0.9
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Figure 12: Continued.
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+e standard deviation is a measure of the dispersion of
the mean of a set of data. A larger standard deviation in-
dicates a larger difference between most values and their
mean, and a smaller standard deviation indicates that these
values are closer to the mean. So, we use the standard de-
viation to measure the average in Table 12. +e standard
deviation is shown in Table 13. As can be seen from Table 13,
the value of AGACD is larger than that of BGA in terms of
standard deviation of average fitness, but the value of
AGACD is smaller than that of MPMGA. As a result, the
data of BGA are closer to the average. +e data of AGACD
are relatively discrete. In the standard deviation of average

convergence iteration number, the value of AGACD is much
less than the value of BGA and MPMGA. So, the data of
AGACD are much closer to the average and much less
discrete. +e data of BGA and MPMGA are very discrete. In
the standard deviation of average program running time, the
value of AGACD is much less than the value of BGA and
MPMGA. So, the data of AGACD are much closer to the
average and much less discrete. +e data of BGA and
MPMGA are very discrete.

In order to support these analyses and conclusions, we
make appropriate statistical analysis on the simulation data
of the algorithm.

In Figure 14, the number of times AGACD outperforms
BGA is 20. It accounts for 100% of all simulations. +e
number of times AGACD outperforms MPMGA is 17. It
accounts for 85% of all simulations. It means that, in most
cases, AGACD produces better individuals than BGA and
MPMGA. Furthermore, the optimal individual fitness of
AGACD can reach 0.5634. By contrast, the best individual
fitness produced by BGA is only 0.3376. +e worst indi-
viduals produced by AGACD are also much better than
those produced by BGA. +erefore, AGACD is superior to
BGA and MPMGA in terms of optimal individual fitness.

As can be seen from Figure 15, the number of iterations
required for BGA and MPMGA convergence is generally
high. In almost every simulation, the number of iterations of
AGACD convergence is less than that of BGA and MPMGA
convergence. +erefore, AGACD is much better than BGA
and MPMGA in terms of convergence iteration number.

In Figure 16, the number of times AGACD outperforms
BGA is 20. It accounts for 100% of all simulations. +e
number of times AGACD outperforms MPMGA is 20. It
accounts for 100% of all simulations. +is means that, in
most cases, the AGACD program runs faster than the BGA
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Figure 12: +e experimental path of the three algorithms. (a) AGACD without the optimization operator. (b) AGACD with the opti-
mization operator. (c) MPMGA. (d) BGA.

0 100 200 300 400 500
Number of iterations

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Fi
tn

es
s

MPMGA
AGACD
BGA

Figure 13: Evolutionary diagram of optimal individual fitness.
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and MPMGA program. And the running time of the
AGACD program is usually concentrated in 10 seconds. +e
running time of the BGA and MPMGA program is usually
concentrated in 50 seconds. +erefore, AGACD is superior
to BGA in terms of program running time.

+rough the above simulation analysis, we can obtain the
following conclusions:

(1) Regardless of the simulation environment, AGACD
is feasible and effective.

(2) With the increase in the scale of the simulation map,
the average program running time of BGA increases
sharply. In the large-scale simulation map, the av-
erage program running time of MPMGA is even
longer than the average program running time of
BGA. +e average running time of AGACD only
increases slightly with increasing map size. Com-
pared with other improved algorithms, AGACD can
effectively reduce the running time of the program.

Table 11: Comparison table of the running time of each program.

Algorithm Initial population generation
time (s)

Population evolution
time (s)

Total time
(s)

Proportion of initial population generation time to
total time (%)

AGACD 0.9777 8.664 9.6417 10.14
MPMGA 53.6721 9.0143 62.6864 85.62
BGA 43.3714 9.3021 52.6735 82.34

Table 12: Data comparison table of the three algorithms.

Algorithm Average fitness Average convergence iteration number Average program running time (s)
AGACD 0.5197 111.9 10.16
MPMGA 0.4356 217.25 55.69
BGA 0.3065 327.2 49.13

Table 13: Standard deviation.

Algorithm Standard deviation of average
fitness

Standard deviation of average convergence
iteration number

Standard deviation of average program
running time

AGACD 0.0426 48.4886 1.1732
MPMGA 0.0514 62.3849 8.3968
BGA 0.0208 84.6433 5.9017
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Figure 14: Scatter diagram of optimal individual fitness.

AGACD
MPMGA
BGA

0 5 10 15 20
Simulation times

0

50

100

150

200

250

300

350

400

450

500

Co
nv

er
ge

nc
e i

te
ra

tio
n 

nu
m

be
r

Figure 15: Scatter diagram of convergence iteration number.

Computational Intelligence and Neuroscience 17



(3) AGACD is superior to BGA andMPMGA in average
fitness, average convergence iteration number, and
average program running time.

6. Conclusions

In this paper, a path planning method of an adaptive genetic
algorithm based on collision detection is proposed, and the
operators of the basic genetic algorithm are improved. In
terms of population initialization, this paper uses a priori
knowledge and the random disturbance method. +is
population initialization method can effectively reduce the
running time of the algorithm program and ensure the
diversity of the initial population. In terms of fitness, this
paper uses the Delphi weight method to evaluate the weight
of each optimization objective to obtain a set of weights close
to the actual situation. +is fitness calculation method en-
hances the application ability of the algorithm in real life. In
terms of the selection operator, this paper adopts the method
of combining the roulette selection strategy with the elite
selection strategy. On the one hand, this selection strategy
can accelerate the convergence speed of the algorithm. On
the other hand, this selection strategy can prevent the al-
gorithm from data fallback phenomena. In terms of the
crossover operator and mutation operator, an adaptive
crossover operator and adaptive mutation operator are
proposed in this paper.+ese two adaptive operators can not
only protect high-quality individuals to speed up the con-
vergence rate of the algorithm but also enhance the evo-
lutionary potential of low-quality individuals to increase the
searching ability of the algorithm. To improve the quality of
convergent individuals, an optimization operator is pro-
posed in this paper. +e optimization operator can perform
a second optimization on the convergent optimal individual.
+e proposed new operator or the improvement of the
original operator can make the algorithm avoid the local

optimal solution, accelerate the convergence speed of the
algorithm, and improve the quality of the convergent in-
dividual. Simulation results show that the adaptive genetic
algorithm based on collision detection is not only suitable
for simulation maps of various sizes and obstacles but also
has superior performance. In the same simulation map,
compared with other improved algorithms, the program
running time of the adaptive genetic algorithm based on
collision detection is also greatly reduced.

7. Future Work

In this paper, the adaptive genetic algorithm based on
collision detection is not only suitable for simulationmaps of
various sizes and obstacles but also has superior perfor-
mance. However, the adaptive genetic algorithm based on
collision detection also has obvious disadvantages. First, the
mechanical property constraints of the robot are not con-
sidered, for example, the robot’s minimum turning radius,
maximum acceleration, maximum driving force, and
maximum driving distance. Second, path planning in dy-
namic or unknown environments is not considered. +e
adaptive genetic algorithm based on collision detection
proposed in this paper is suitable for global path planning in
static environments. It does not take into account dynamic
or unknown environments. +erefore, in real life, the ap-
plication scenario of this algorithm is limited. In the future,
we need to address three aspects. First, we need to add
mechanical performance constraints to the algorithm.
Second, we need to study and improve the algorithm to
enhance its application ability in dynamic or unknown
environments. Finally, we consider applying AGACD on
actual mobile robots. Mobile robots can obtain information
about obstacles in the surrounding environment through
visual sensors to generate electronic maps (Castaño et al.
[23, 24] introduced how to identify and detect obstacles
under different weather conditions by using radar or sensor,
so as to build an electronic map). We need to use the grid
environment modeling method and map preprocessing
process given in Section 2 to process the electronic map.
After processing the electronic map, we get a grid map that
algorithm can run. +en, we can run the AGACD program
on the grid map to generate the actual path we need.
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