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introduction
Radiotherapy treatment in general and personalized adap-
tive radiotherapy (pART) in particular have a promising 
prospective to improve cancer patients’ therapeutic satis-
faction.1,2 However, pART success highly depends upon 
accurate radiation outcomes prediction. Closely related to 
computational statistics, machine learning (ML) explores 
the study design and the construction of computer algo-
rithms to learn from data and make data-driven predic-
tions by employing complex mathematical optimization 
schemes.3,4 As more biophysical data become available 
before and during radiation treatment, the application 
of ML in radiation oncology will continue to experi-
ence tremendous growth, including treatment planning 
optimization,5,6 normal tissue toxicity prediction,7,8 
tumor-response modeling,9,10 radiation physics quality 
assurance.11–13 In this paper, we focus on the application 
of ML approaches in radiation outcome modeling as a case 
study.

ML is typically classified into supervised learning, unsu-
pervised learning and reinforcement learning methods.14 
While supervised learning handles a set of data containing 
both the inputs and the labeled outputs, unsupervised 
learning deals with a set of data with only inputs. Rein-
forcement learning intends to identify the best actions in a 
dynamic system by maximizing the cumulative reward. As 
multilayer neural networks to extract “complex patterns” 
from large scale of data sets become popular in the era 
of Big Data, ML approaches can also be categorized into 
shallow learning and deep learning (DL), where the latter 
combines data representation with classification/regression 
tasks in the same framework. As DL has garnered remark-
able attention for its capacity to achieve accurate prediction 
in various fields, there is a growing realization that better 
explanation of these ML methods is equally desired. While 
explainability and interpretability have been used inter-
changeably, we would like to distinguish between them to 
provide more accurate definition of different ML techniques 
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Abstract

Radiation outcomes prediction (ROP) plays an important role in personalized prescription and adaptive radiotherapy. A 
clinical decision may not only depend on an accurate radiation outcomes’ prediction, but also needs to be made based 
on an informed understanding of the relationship among patients’ characteristics, radiation response and treatment 
plans. As more patients’ biophysical information become available, machine learning (ML) techniques will have a great 
potential for improving ROP. Creating explainable ML methods is an ultimate task for clinical practice but remains a 
challenging one. Towards complete explainability, the interpretability of ML approaches needs to be first explored. 
Hence, this review focuses on the application of ML techniques for clinical adoption in radiation oncology by balancing 
accuracy with interpretability of the predictive model of interest. An ML algorithm can be generally classified into an 
interpretable (IP) or non-interpretable (NIP) (“black box”) technique. While the former may provide a clearer explana-
tion to aid clinical decision-making, its prediction performance is generally outperformed by the latter. Therefore, great 
efforts and resources have been dedicated towards balancing the accuracy and the interpretability of ML approaches 
in ROP, but more still needs to be done. In this review, current progress to increase the accuracy for IP ML approaches 
is introduced, and major trends to improve the interpretability and alleviate the “black box” stigma of ML in radiation 
outcomes modeling are summarized. Efforts to integrate IP and NIP ML approaches to produce predictive models with 
higher accuracy and interpretability for ROP are also discussed.
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in this review. Explainable models can be defined as those that 
are able to summarize the reasons for the behavior of ML algo-
rithms, gain the trust of users, or allow the user to produce 
insights into the causes of the algorithm decisions.15 Essentially, 
one consensus among recent studies is that explainability based 
on human understanding is not a monolithic concept, but rather 
a complex construction. According to the description of Gilpin 
et al and Ribeiro et al,15,16 it can be decomposed into several 
human factors, such as trust, causality, transferability, and algo-
rithm transparency. On the other hand, interpretability can be 
loosely defined as comprehending what a model did (or might 
have done) based on the inputs, with the capacity to defend its 
actions, provide relevant responses to questions, and be audited. 
Their relationship can be described as that explainable models 
are interpretable by default and the reverse is not always true. 
Although interpretability alone is insufficient for the explanation 
of different ML techniques, it is a necessary first step towards full 
explainability, and it is employed in this paper to classify existing 
literature in radiation oncology. In this context, ML approaches 
can be sorted into interpretable (IP) and non-interpretable (NIP) 
approaches. In addition to DL, some shallow learning approaches 
such as support vector machines (SVMs), random forests (RFs), 
and “shallow” neural network approaches belong to the NIP 
category. The rest of shallow learning approaches such as gener-
alized linear models (e.g. linear regression, logistic regression), 
linear discriminant analysis, decision trees, Bayesian networks 
are considered IP ML approaches.

For clinical applications such as radiation outcomes prediction, 
the accuracy and interpretability of the ML approaches are major 
concerns. As accurate prediction of the treatment outcomes 
provides direct guidance to tailor and adapt a treatment plan 
in cancer therapy, and it is highly essential to use interpretable 
results for clinical decision-making support. If the goal is to 
assist physicians and patients reach the best decision, then an 
ML approach with a good balance between interpretability of 
the results and accurate predictions is needed to gain trust of 
the treating clinician, i.e. increase its credibility.17,18 However, 
no single IP or NIP approach is located at a Pareto optimum, 
where it enjoys both the highest accuracy and the highest inter-
pretability, but it rather exists as a comprise between them. For 
example, while a decision tree has more interpretable capability 
than the RF approach, its accuracy is generally outperformed by 
the latter.

The relationship of IP and NIP ML approaches in terms of 
accuracy and interpretability has been studied.19 However, the 
selected ML approaches refer to “off the shelf ” algorithms, where 
they have been implemented by someone else and are available 
in prepackaged libraries. In other words, there will be some 
room to improve their accuracy or interpretability performance. 
In fact, researchers in the field of medical physics have been 
struggling to improve accuracy and interpretability of the ML 
approaches for radiation outcomes prediction, and their efforts 
were based upon both the IP and NIP ML categories. This study 
intends to summarize current efforts and to provide a big picture 
of the current trends to develop more advanced ML approach 
for pART. The rest of the paper is organized as follows. Section 

2 introduces the strategies that have been used to increase the 
accuracy of IP ML approaches, Section 3 summarizes the devel-
oped strategies or tactics to improve interpretability of NIP ML 
approaches, discussion and conclusions are given in Section 4.

balancing accuracy and interpretability 
of interpretable ML approaches
Logistic regression
Logistic regression is most commonly used model to repre-
sent linear relationships with the assumption of uncorrelated 
features. For example, logistic regression has been employed to 
predict xerostomia after radiotherapy, and in some instances 
it can approximate the performance of neural networks when 
sigmoidal functions are used.20 An objective statistical multivar-
iate model was also developed to describe radiation pneumonitis 
risk by assessing continuous and nominal parameters to deter-
mine the optimal model order and its parameters.21 In order to 
predict pneumonia risk and hospital 30-day readmission, gener-
alized additive models (GAMs) with low-dimensional terms 
were developed, and pairwise interactions were added to stan-
dard GAMs resulting in GA2Ms. Logistic regression with single 
and cross-terms not only improved accuracy compared to the 
GAMs, the pairwise interaction could also be visualized as a heat 
map22. It turns out adding pairwise cross-terms may improve the 
prediction accuracy of the logistic regression, although it might 
not be fully explainable.

For modern data sets with a high dimension of features, GAMs 
and GA2Ms could be very complicated by considering all the 
features and their interactions. While ridge regression (logistic 
regression +L2 norm regularization) intends to regularize the 
ill-posed problems caused by high dimensional data sets,22 
least absolute shrinkage and selection operator (LASSO, logistic 
regression + L1 norm regularization), is a regression analysis 
method that performs both variable selection and regularization 
to enhance the prediction accuracy and interpretability of the 
statistical model it produces.23 Elastic net is another regularized 
regression model that linearly combines the L1 and L2 penalties 
of the LASSO and ridge methods to handle correlated features 
and high-dimensional data set, and it was used for outcome 
prediction in chemoradiotherapy.24 The elastic net was reported 
to have similar prediction performance as RFs and yielded 
higher discriminative performance than decision tree, neural 
network, SVM and LogitBoost in chemoradiotherapy outcome 
and toxicity prediction, particularly, when the complexity of the 
input features is limited to basic clinical and dosimetric vari-
ables.24 However, with the increment of the accuracy, elastic net 
trades off a little interpretability compared to logistic regression.9

In order to facilitate the interpretability of regression-based 
analyses, graphical calculating devices named “nomograms” 
were widely employed in clinical practice for oncology appli-
cations including radiation treatment outcomes prediction by 
conducting the approximate graphical computation of a regres-
sion function.25 The group at Memorial Sloan Kettering Cancer 
Center has developed several nomograms for varying cancer 
diagnostics.26 In addition, such nomograms have been used to 
predict response for treatment. For instance, a nomogram was 
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devised for estimating treatment failure among males with clin-
ically localized prostate cancer treated with radical prostatec-
tomy27 and for predicting disease-specific survival after hepatic 
resection for metastatic colorectal cancer.28 Nomograms were 
also employed to predict recurrence-free survival for cervical 
cancer based on combining individual clinical information with 
imaging-based fludeoxyglucose/positron emission tomography 
prognostic factors.29

Decision tree
Decision trees can model nonlinear effects and are obviously 
interpretable as long as the tree depth is shallow.24 More than 
three decades ago, a recursive algorithm (decision tree) was 
applied to arbitrary dose–volume histograms to estimate the 
complication probability for treatment planning optimization.30 
Recently, a recursive partitioning analysis was constructed to 
stratify patients into risk groups for clinically significant radia-
tion pneumonitis after chemoradiation therapy for lung cancer.31 
Additionally, decision trees were employed to predict pneumo-
nitis in Stage I non-small cell lung cancer (NSCLC) patients after 
stereotactic body radiation therapy (SBRT). Ensemble techniques 
based on the decision tree such as boosting with RUSBoost and 
bagging with RFs had been used to improve its accuracy, but at 
the expense of losing its interpretability.7

In order to study weight loss in head and neck cancer patients 
treated with radiation therapy, a classification and regression 
tree (CART) prediction model was developed based on a knowl-
edge-discovery approach. The CART not only does not require 
a specification of the function to model covariates, but also its 
prediction accuracy increases with additional treatment toxicity 
information.32 It seems that tree structure has a good potential 
to interpret nonlinear relationships and to be integrated with 
other NIP ML approaches for prediction accuracy improve-
ment. Gradient boosting machine (GBM) intends to produces 
a prediction model by combing weak prediction decision trees, 
and it has been employed to predict long-term meningioma,9 
outcomes after radiosurgery for cerebral arteriovenous malfor-
mations with a high prediction performance and a less inter-
pretability.33 As a tree-structured boosting, MediBoost is a new 
framework to construct decision trees that retain interpretability 
while having accuracy similar to ensemble methods.34 While it 
has the same structure as CART to build a single decision tree, it 
has the improved accuracy by considering weighted versions of 
all cases at each split.9

Bayesian network
Naïve Bayesian network (NBN) is a simple probabilistic classi-
fier based on applying Bayes’ theorem with strong (naive) inde-
pendence assumptions, and it is interpretable but less accurate.35 
An advantage of the NBN is that it requires a small amount of 
training data to estimate the parameters (means and variances 
of the variables) necessary for classification. Since independent 
variables are assumed, only the variances of the variables for 
each class need to be determined instead of the entire covari-
ance matrix.36 Hierarchical Bayesian networks (HBNs) are an 
extension of NBNs, which intends to improve inference and 
learning methods by using knowledge about the structure of the 

data. In order to predict 2-year survival in lung cancer patients 
treated with radiotherapy, HBN models were developed, and 
they were reported to outperform SVM models at handling 
missing data, and therefore are more suitable for the medical 
domain.37 In a study of modeling local failure in lung cancer, 
a graphical HBN framework was generated to demonstrate 
that combining physical and biological factors with a suitable 
framework can improve the overall prediction, which highlights 
the potential of the integrated approach to predict post-radio-
therapy local failure in NSCLC patients.38 Additionally, a HBN 
was employed to estimate overall survival among colon cancer 
patients in a large population-based data set, resulting in a 
significant improvement upon existing AJCC stage-specific OS 
estimates.39

Moreover, a multiobjective HBN (MO-HBN) was developed to 
explore the biophysical relationships among treatment plans, 
patients’ personal characteristics and radiation outcomes so 
that appropriate treatment plans before and during the course 
of radiotherapy can be identified.40 Figure 1 shows an example 
of a during treatment MO-HBN to predict tumor local control 
(LC) and radiation pneumonitis toxicity Grade II or above (RP2) 
simultaneously in lung cancer patients. The important features for 
radiation outcomes prediction including tumor and lung gEUDs, 
three SNPs (errc2_Rs238406, ercc5_Rs1047768 and cxcr1_
Rs2234671), two miRNAs (miR_20a_5p and miR_191_5p), two 
pre-treatment cytokines (IL_15 and IL_4), one pre-treatment 
radiomics feature (MTV), the relative change of one during 
treatment cytokine (IP_10) and the relative changes of two 
during treatment radiomics features (GLSZM_LZLGE, GLSZM_
ZSV) were selected from a retrospective data set as denoted by 
the nodes in the figure. The edges of the MO-HBN, denoted by 
different colors, represent the biophysical relationships between 
the features analyzed. The study demonstrated that the MO-HBN 
has the potential to achieve a better performance than that of the 
corresponding NBN due to its hierarchical structure and addi-
tional biophysical information, and its prediction performance 
can be improved with patients’ response during radiotherapy.40 
However, the confidence interval of the MO-HBN’s prediction 
performance is still relatively large.

Although the BNs do not offer a significant improvement in 
outcome prediction over those resulting from less complex 
classifier algorithm as naïve Bayes, logistic regression or C4.5 
decision trees, they still provide unique benefits to explore the 
relationship among features from large patient cohort data. The 
ability of carrying out causal inferences allows them to be utilized 
for answering complex clinical questions from unobserved 
evidence, and the probability distributions underlying the BN 
can be automatically updated with newly added patient infor-
mation. Although it is hard to automatically learn a single graph 
that faithfully represents the casual structure of an application 
field, hybrid causal learning is an emerging field to show promise 
in obtaining causal structures with high prediction performance 
and causal patterns set out by domain experts (HBN with expert 
knowledge, HBN-EK).41
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balancing accuracy and interpretability 
of non-interpretable ML approaches
Random forests and support vector machine
As previously stated, some shallow learning methods such as 
RFs and SVMs belong to the NIP ML approaches. RFs are an 
ensemble learning method which constructs a multitude of deci-
sion trees at training time and outputs the mean prediction of 
the individual trees. While variance can be controlled from the 
ensemble learning, the ensemble learning approach can sacri-
fice most of its interpretability at the same time, except that the 
frequency of feature appearance in the top layers of the ensemble 
decision tree may be used to explain their importance. However, 
the concept of RFs was integrated with other IP ML approaches 
to balance their accuracy and interpretability for radiation 
outcomes prediction. For example, formerly mentioned Medi-
boost approach34 attempts to emulate the performance of RFs 
while maintaining the intuition of classical decision trees.42

A SVM with a radial basis function kernel (SVM-RBF) trans-
forms the original feature space into another space that can 
separate classes better. This transformation, however, can be 
much less intuitive than linear SVMs.24 A non-linear SVM was 
developed for prediction of local tumor control after Stereotactic 
Body Radiation Therapy for early-stage NSCLC, and the predic-
tion performance of the SVM model was significantly larger than 
that of a logistic tumor control probability model.43 Interpreting 

SVM models is far from obvious, and the absence of a direct 
probabilistic interpretation also makes SVM inference difficult. 
However, work was done in providing methods to visualize SVM 
results as nomograms to support interpretability.42 A nonlinear 
kernel, called localized radial basis function kernel (SVM-LRBF) 
was developed with the assumptions of intrafeature nonlinearity 
and interfeature independence. In addition to capturing nonlin-
earity of the classification function, the LRBF kernel can be visu-
alized via nomograms. The SVM-LRBF method together with 
other SVM methods with linear kernel and RBF kernel had been 
applied for breast cancer prediction, and the study showed that 
while all the three kernel methods were equal in performance in 
terms of the area under the curve in the ROC curve, LRBF kernel 
was less sensitive to noise features than an RBF kernel.44

Deep learning
The impact of deep learning on radiation outcomes 
prediction
As a NIP ML approach, DL is mostly an extension of previously 
existing forms of artificial neural networks (ANNs) to larger 
number of hidden layers and artificial neurons in each layer for 
automatic discovery of useful features. Historically, ANNs lost 
popularity in favor of SVMs, RFs and gradient boosting trees 
due to the limited data set, computing resources and being prone 
to local minima. With the availability of larger data sets, graph-
ical processing units (GPU) and stochastic gradient descent 

Figure 1. A during treatment MO-HBN for LC and RP2 prediction in lung cancer.40 RP2, radiation pneumonitis toxicity Grade II or 
above; LC, local control; MO-HBN, multiobjective hierarchical Bayesian network.
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algorithms, DL became possible to explore faster the training of 
larger, deeper architectures.45 The key property of DL is that it 
can automatically learn useful representations of the data without 
conducting feature selection, which is one important component 
of other ML techniques. The reason why DL has relatively high 
prediction performance is that an architecture with sufficient 
depth can produce a compact representation, whereas an insuffi-
ciently deep one may require an exponentially larger architecture 
to represent the same function.

Now, DL based on neural networks has broad applications in 
radiation response, and it is poised to dominate medical image 
analysis for radiation outcomes prediction. Convolution neural 
networks (CNNs) were used to extract features from non-medical 
images for computer-aided diagnosis tasks,46 extract radiomics 
features from the image patterns in developing a radiomics-based 
predictive model,47 and extract deep features from preopera-
tive multimodality MR images for survival prediction in Glio-
blastoma Multiforme.48 Also, a CNN was developed to analyze 
rectum dose distributions and to predict rectal toxicity. 28 Studies 
show that DL has better performance than shallow learning 
approaches in radiation outcomes prediction. As a method-
ological proof-of-principle, a deep neural network (DNN) was 
created to predict the complete response of advanced rectal 
cancer after neo-adjuvant chemoradiation, which is an accurate 
surrogate for long-term local control. The DNN outperformed 
a linear regression model and a SVM model.49 Also, CNNs and 
their variants were applied to the discovery of consistent patterns 
in three-dimensional dose plans associated with toxicities after 
liver stereotactic body radiotherapy. When the number of false 
negatives, i.e. missed toxicities, was minimized, DL produced 
almost two times fewer false‐positive toxicity predictions in 
comparison to dose–volume histogram‐based predictions.50

While the development of DL will transform the way we use 
imaging for diagnosis, treatment planning and decision making 
and will disrupt the way we practice medicine in a positive way, 
it may also affect clinical practice in negative ways.49 Given that 
the field of medical physics has unique characteristics that differ-
entiate it from those fields where these techniques have been 
applied successfully, the DL techniques have their limitations and 
nuances in radiation oncology with the limited sample sizes.51 
Another important issue with the DL is that these black-box-like 
networks are very difficult to debug, isolate the reason behind 
certain outcomes, and predict when and where failures will 
happen,52 which are called interpretability challenges.53 As the 
limited sample size issue could be gradually released by further 
collaboration of the hospitals and data centers, solving the issue 
of DL’s interpretability becomes more important. Actually, the 
underlying mathematical principles of DLs are understandable. 
But they lack an explicit declarative knowledge representation, 
hence have difficulty in generating the underlying explanatory 
structures.54 Although the potential of DL to improve prediction 
accuracy may outweigh their interpretability challenges in many 
industries,32,54 professionals in the field of radiation oncology 
are working mostly with distributed heterogeneous and complex 
sources of data, and there must be a possibility to make the 
results re-traceable on demand.54 There has been increasing 

interest in radiation oncology to make DL transparent, interpre-
table, and explainable, and the efforts to improve its interpret-
ability for radiation outcomes prediction are summarized in the 
next section.

interpretability improvement for deep 
learning
Deep learning with a combination of handcrafted 
features and latent variables (DL-HLV)
When a DNN is used as a feature extractor thousands of features 
are extracted. Unlike engineered handcrafted features, these 
features do not directly relate to something radiologists can 
easily interpret. Supplementing DL with information already 
known to be useful may improve the performance of these DL 
models and their interpretability. Previously, for survival predic-
tion following glioblastoma multiforme, after deep features 
were extracted from preoperative multimodality MR images, a 
six-deep-feature signature was constructed by using the LASSO 
Cox regression model. The deep feature signature was combined 
with clinical risk factors to build a radiomics nomogram. The 
combined model not only achieved better performance for OS 
prediction, but also increased the interpretability of survival 
prediction through a nomogram construction.48 Similarly, a 
methodology was developed to extract and pool low- to middle-
level features using a pretrained CNN and to fuse them with 
handcrafted radiomic features computed using conventional 
CADx methods. In comparison to existing methods, the fusion-
based breast CADx method demonstrated statistically signifi-
cant improvements in terms of area under the curve on three 
different imaging modalities, and can also be used to more effec-
tively characterize breast lesions.55 Recently, the combination of 
traditional ML methods and DL variational autoencoders (VAE) 
techniques was developed to deal with limited datasets for radi-
ation-induced lung damage prediction as shown in Figure 2.56 It 
was demonstrated that a multilayer perceptron (MLP) method 
using weight pruning (WP) feature selection achieved the best 
performance among different hand-crafted feature selection 
methods, and the combination of handcrafted features and latent 
representation (Case D: latent Z + WP + MLP) yielded signifi-
cant prediction performance improvement compared with hand-
crafted features only (Case A: WP + MLP), VAE-MLP disjoint 
(Case B) and VAE-MLP joint architectures (Case C).

Deep learning with sensitivity analysis (DL-SA)
Another method to increase the interpretability of DL is to calcu-
late the sensitivity of the prediction with respect to changes in the 
input. Heat maps are visualization techniques that represent the 
importance of each pixel for the prediction task, which could help 
further optimize a CNN training approach. In a study of devel-
oping survival CNNs to predict cancer outcomes from histology 
and genomics, a heat map was employed to investigate the visual 
pattern that SCNN methods associate with poor outcomes by 
displaying the risks predicted by the SCNN in different regions 
of whole-slide images. The transparent heat map overlays in the 
study enable pathologists to correlate the predictions of highly 
accurate survival models with the underlying histology over 
the expanse of a whole-slide image. 57 In a DL-based radiomics 
model for survival prediction in glioblastoma multiforme, a 
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heat map was also used to show the Z-score difference of each 
radiomics feature between high risk and low risk group, and a 
consistency of radiomics feature Z-Score between the discovery 
data set and the validation data set.48 In a retrospective multico-
hort radiomics study for lung cancer prognostication, DL was 
used in medical image for automated quantification of radio-
graphic characteristics to improve patient stratification. A gradi-
ent-weighted activation mapping technique was employed to 
generate activation maps by mapping important regions in an 
input image with respect to predictions made, and the heat maps 
indicate regions in the input image having the most impact on 
the final prediction layer as shown in Figure 3.52 In a previous 
study to develop CNNs for individualized hepatobiliary toxicity 
prediction after liver stereotactic body proton therapy, saliency 
maps of the CNNs were used to estimate the toxicity risks asso-
ciated with irradiation of anatomical regions of specific organs 
at risk, and the CNN saliency maps automatically estimated the 
toxicity risks for portal vein regions.50 In order to classify lung 
cancer using chest X-ray images, a 121-layer CNN was devel-
oped along with the transfer learning scheme. A class-activation 
map technique was employed to provide a heat map to identify 
the location of the lung nodule.58

Deep learning with attention mechanisms (DL-AM)
Attention mechanisms are optional components of sequential 
prediction systems that allow the system to sequentially focus on 
different subsets of the input, and the subset selection is typically 
conditioned on the state of the system which is itself a function 
of the previously attended subsets. In addition to reducing the 
computational burden of processing high dimensional inputs by 
selecting only process subsets of the input, attention mechanisms 
also allow the system to focus on distinct aspects of the input and 
thus improve the ability to extract the most relevant information. 
Especially, soft attention mechanisms avoid a hard selection of 
which subsets of the input to attend and use a soft weighting of 
the different subsets for each piece of the output, thus leading to 
improvements in the quality of the generated outputs. The advan-
tage brought by the soft-weighting is that it is readily amenable to 
efficient learning via gradient backpropagation.59 Additionally, 

a gated recurrent unit (GRU)-based recurrent neural network 
(RNN) with hierarchical attention (GRNN-HA) was developed 
for clinical outcomes prediction through handling the high 
dimensionality of medical codes, modeling the temporal depen-
dencies of healthcare events and characterizing the hierarchical 
structure of healthcare data. It was reported to have a better 
prediction accuracy and improve the interpretability of predic-
tive models compared to baseline models by using the diagnostic 
codes from the medical Information Mart for Intensive Care to 
evaluate the model. The interpretability of the model depends 
on attention weights assigned to individual diagnostic codes and 
hospital visits, which were determined from relative importance 
of diagnostic codes on prediction.60

Deep learning with disentangled hidden layer 
representations (DL-DHLR)
Training DNNs with disentangled hidden layer representations 
is an active area of research to improve the interpretability of DL, 
although they have not been used for radiation outcomes predic-
tion. The disentanglement of “the mixture of patterns” encoded 
in each filter of CNNs mainly disentangle complex representation 
in convolution-layers and transform network representations 
into interpretable graphs.61 An explanatory graph represents the 
knowledge hierarchy hidden in convolution-layers of a CNN. 
While each filter in a pre-trained CNN may be activated by 
different object parts, part patterns can be disentangled from 
each filter in an unsupervised manner to clarify the knowledge 
representation.62 A CNN was learned for object classification 
with disentangled representations in the top convolution-layer, 
where each filter represents a specific object part. Since the deci-
sion tree encodes various decision modes hidden inside fully 
connected layers of the CNN in a coarse-to-fine manner, given 
an input image, the decision tree infers a parse tree to quanti-
tatively analyze rationales for the CNN prediction as shown in 
Figure 4.63 The above methods focus on the understanding of a 
pre-trained network, but it is more challenging to learn networks 
with disentangled representations.64–66

Figure 2. The evaluation of combination of handcraft features and latent variables for radiation-induced lung damage predic-
tion,56 where, “RF”, random forest; “SVM”, support vector machine; “MLP”, multi-layer perceptron; “FQI”, feature quality index; 
“FSPP”, feature-based sensitivity of posterior probability; “WP”, weight pruning; “VAE”, variational autoencoders.
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discussion and conclusions
Interpretability and explainability are different concepts although 
they have been used interchangeably. While the former is about 
being able to discern the predictions without necessarily knowing 
the underlying mechanics, the latter is being able to quite literally 
explain what are the mechanics that led to a particular behavior 
or decision by the algorithm.67 In medicine including radiation 
oncology, interpretability represents physician’s ability to accept, 
and interpret an algorithm decision in a scientifically sound 
manner without the need to explain algorithmic behaviors. As 
questions of accountability and transparency become more and 
more important, the interpretability of AI algorithms for radio-
therapy outcomes prediction has improved in recent years, but is 

still far away from achieving full explainability. In this study, we 
focus on the trade-off of accuracy and interpretability in evalu-
ating the prediction performance of common ML approaches, 
and summarize the balance of IP and NIP ML approaches for 
radiation outcomes prediction purposes from the current radia-
tion oncology literature.

Table  1 shows the accuracy, interpretability and explainability 
levels of basic ML approaches such as logistic regression, deci-
sion trees, naïve Bayesian networks, SVM kernels, DL, and 
improved ML approaches associated with them. Since under-
standing the reasons behind prediction is quite important in 
assessing trust or credibility if one plans to take a clinical action 

Figure 3. Activation mapping. The first column represents the central axial slice of the network input (150 × 150 mm) with tumor 
annotations. In the second column, a 50 × 50 mm patch is cropped around the tumor. In the third column, activation contours are 
overlaid, with blue and red showing the lowest and highest contributions (gradients), respectively. Column four represents the 
activation heatmaps for a better visual reference.52
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based on a prediction, an algorithm, called local interpretable 
model-agnostic explanations (LIME), was developed to inter-
pret the predictions of any classifier by approximating it locally 
with an interpretable model.69 Due to its potential to enhance 
the interpretability of DL approaches, combining DL with LIME 
(DL-LIME) is considered as an improved DL approach as listed 
in Table 1. The number of “stars” associated to each ML approach 
in the table intends to describe the relative assessment of the 
accuracy, interpretability and explainability among these ML 
approaches, where the more stars represent the higher accuracy 
or interpretability or explainability. The evaluation of each ML 
approach is generated based on indicated literature next to it in 
the table. As can be seen from Table 1, the explainability of ML 
NIP methods is still a work in progress in many instances. It is 
interesting to evaluate the properties of these ML approaches in 
a general way by reviewing more literatures in different theo-
retic and application fields. However, it is out of the scope of this 
paper.

Due to the limited data sizes in radiation treatment and the 
requirement of clinical decision-making for pART, developing 
unique ML approaches to achieve the Pareto optimum of accu-
racy and explainability is necessary and challenging at the 
same time. Explainable AI was proposed based on the trade-off 
between prediction accuracy and explainability by producing 
more explainable models and maintaining a high level of 
learning performance.70 However, as previously stated, we only 
focus on accuracy and interpretability, an initial stage towards 
full explainability, in this paper. The efforts to balance them not 

only came from IP ML approaches but also from NIP ML aspects 
as illustrated in Figure 5. The y- and x-axes of the figure represent 
the accuracy and interpretability of IP and NIP ML approaches 
for radiation outcomes prediction, respectively. Then the loca-
tions of these ML approaches were determined based on radia-
tion oncology literatures as shown in Table 1. For the sake of clear 
description, blue or green color was used to represent NIP or IP 
ML approaches in terms of accuracy or interpretability. While 
the deeper the color indicates the higher accuracy or interpret-
ability, ideal approaches to balance them are denoted as cyan 
color, which is the mixed color of blue and green. In addition to 
giving a general concept of the current status of ML approaches 
for radiation outcomes prediction, the figure also shows poten-
tially possible trends to develop more balanced ML approach for 
pART.

The rising of DL approaches is attributed to their potential for 
high accuracy performance when sufficient data and compu-
tational support are available. These black box models create 
nonlinear predictors and automatically take into consideration 
a large number of implicit variable interactions. However, what 
makes them accurate is what makes their predictions difficult 
to understand; they are too complex. The exact DL architecture 
does not seem to be the most important determinant in getting 
a good solution for both accuracy and interpretability. A key 
aspect that is often overlooked is that expert knowledge about 
the task to be solved can provide advantages that can go beyond 
adding more layers to a CNN.59

Figure 4. Decision tree that encodes all potential decision modes of the CNN in a coarse-to-fine manner. a CNN was learned for 
object classification with disentangled representations in the top convolution layer, where each filter represents an object part. For 
an input image, a parse tree (green lines) can be referred from the decision tree to semantically and quantitatively explain which 
object parts (or filters) are used for the prediction and how much an object part (or filter) contributes to the prediction.63CNN, 
convolution neural network.



9 of 12 birpublications.org/bjro BJR Open;1:20190021

BJR|OpenReview article: Accuracy and Interpretability for Machine Learning in Oncology

On the other hand, the main purpose of a predictive model’s 
interpretability is to conduct statistical inferences, which intends 
to use the model to learn about the data generation process. 
However, none of NIP ML methods are able to conduct infer-
ence. In contrast, linear regression models, which assume that 
the data follow a Gaussian distribution, determine the standard 
error of the coefficient estimates and output confidence inter-
vals. Since they allow us to understand the probabilistic nature of 
the data generation process, they are suitable method for infer-
ence. Also, a decision tree is one of the most widely used and 
practical methods for inductive inference. Particularly, Bayesian 
networks are popular for causal inference, since these models 
can be arranged to incorporate many assumptions about the data 
generation process.

Although there is no unified framework for ML interpretability, 
in general, the interpretability of the NIP ML methods can be 
improved by integrating them with the IP ML approaches. In 
addition to combining handcrafted features with latent variables, 
employing decision trees to encode all potential decision modes 
of the CNN in a coarse-to-fine manner as previously stated in 
Interpretability Improvement for Deep Learning, nomograms 
were employed to visualize and interpret SVM results44,71 and 
to combine a DL-based radiomics signature with clinical factors 
to improve the accuracy and interpretability of overall survival 
prediction.48 Moreover, other IP ML methods have also been 
used to improve the explanation of DL methods. For example, 

the problem of neural network structural learning was cast as 
a problem of Bayesian network structure learning, where a 
generative graph was learned, and its stochastic inverse was 
constructed resulting in a discriminative graph to simplify the 
neural network structure. Also it was proven that condition-
al-dependency relations among the latent variables in a gener-
ative graph are preserved in the class-conditional discriminative 
graph.72 In order to handle the exhaustive and empirical neural 
network parameterization process, a new deep Bayesian network 
architecture was proposed by adopting the principle of multi-
layer Bayesian network in order to make use of the edges’ signifi-
cance, the causality, and the uncertainty of the Bayesian network 
for improving the meaningfulness of the hidden layers and the 
latent variable’s connections.73

As more patient-specific information is becoming available due 
to advances in imaging and biotechnology, the classical p(vari-
ables)>>n(samples) inference problem of statistical learning will 
become more challenging in the areas of personalized and adap-
tive radiation oncology. Therefore, more advanced data analytics 
will be deployed and the demand to integrate accuracy and inter-
pretability will rise to cope with clinical practice needs in the 
field.74 Although different techniques are associated with distinct 
inherent limitations for radiation outcomes prediction, which 
include the independence assumption for features in logistic 
regression, the robustness in decision trees, the need for feature 
discretization in Bayesian networks, or the network configuration 

Table 1. The evaluation of the accuracy (A), interpretability (I) and explainability (E) of ML approaches in radiation outcomes 
prediction

Basic ML Type A I E Improved ML Type A I E
Logistic regression20,21 IP * **** *** GA2M68 IP ** *** **

Ridge Regression22 IP ** ** *

LASSO23 IP ** *** **

Elastic Net9,24 IP *** ** *

Decision tree
24,30,31

IP ** ***** ***** CART32 IP *** **** *****

Random Forests7 NIP **** * NA

GBM9,33 NIP **** * NA

MediBoost9,34 IP **** ** *

Naïve BN
35,37

IP * **** **** HBN38,40 IP ** *** **

HBN-EK41 IP ** **** ***

Linear SVM
24

NIP ** ** * SVM-RBF43 NIP *** * NA

SVM-LRBF44 NIP *** ** *

Deep learning49,50 NIP **** * NA DL-HLV
48,55,56

NIP ***** ** NA

DL-SA52,57 /AM59,60 NIP ***** ** NA

DL-DHLR61–63 NIP ***** *** NA

DL-LIME69 NIP ***** *** NA

BN, Bayesian network; CART, classification and regression tree; DHLR, disentangled hidden layer representation; DL-AM, deep learning 
withattention mechanisms; DL-HLV, deep learning withcombination of handcrafted features and latent variables; GBM, gradient boosting machine; 
HBN, hierarchical Bayesian network; HBN-EK, hierarchical Bayesiannetwork with expert knowledge; HLV, handcrafted features and latent variables; 
IP, interpretable; LASSO, least absolute shrinkage and selection operator; LIME, local interpretable model-agnostic explanation; ML, machine 
learning; NIP, non-interpretable; SVM, support vector machine.
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dependency in DL, our review shows that combining predictions 
among a handful of good, but different, IP and NIP models may 
result in better ML approaches to achieve higher accuracy and 
interpretability for radiation outcomes prediction.
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Figure 5. The accuracy and interpretability of IP and NIP ML approaches in radiation outcomes prediction and the location of 
potential ideal approaches with more balanced accuracy and interpretability for the pART. Besides the notifications introduced 
in the paper, the rest of abbreviations in the figure can be described as follows, “EN”, elastic net; “LR”, logistic regression; “MB”, 
MediBoost; “RR”, ridge regression; “LSVM”, linear support vector machine; “DT”, decision tree. IP, interpretable; ML, machine 
learning; NIP, non-interpretable.
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