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ABSTRACT: Cytosolic nucleic acid sensors contribute to the initiation of innate immune responses by playing a 

critical role in the detection of pathogens and endogenous nucleic acids. The cytosolic DNA sensor cyclic-GMP-

AMP synthase (cGAS) and its downstream effector, stimulator of interferon genes (STING), mediate innate 

immune signaling by promoting the release of type I interferons (IFNs) and other inflammatory cytokines. These 

biomolecules are suggested to play critical roles in host defense, senescence, and tumor immunity. Recent studies 

have demonstrated that cGAS-STING signaling is strongly implicated in the pathogenesis of central nervous 

system (CNS) diseases which are underscored by neuroinflammatory-driven disease progression. Understanding 

and regulating the interactions between cGAS-STING signaling and the nervous system may thus provide an 

effective approach to prevent or delay late-onset CNS disorders. Here, we present a review of recent advances in 

the literature on cGAS-STING signaling and provide a comprehensive overview of the modulatory patterns of 

the cGAS-STING pathway in CNS disorders. 
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The innate immune system is the first line of defense 

against microbial infections and is essential for the 

activation of adaptive immunity. Innate immune 

recognition is mediated by a vast array of germline-

encoded innate immune receptors, often referred to as 

pattern recognition receptors (PRRs) [1]. PRRs play an 

essential role in the sensing of pathogen-associated 

molecular patterns (PAMPs) and damage-associated 

molecular patterns (DAMPs). For example, toll-like 

receptors (TLRs) recognize a variety of PAMPs and 

DAMPs which initiate the process of inflammation via the 

activation of nuclear factor (NF)-κB and the synthesis and 

release of cytokines and interferons (IFNs) [2]. 

Inflammasomes are a distinct class of intracellularly 

expressed PRRs that recognize nucleic acids and mediate 

pro-inflammatory responses [3]. In addition to these 

PRRs, the cyclic-GMP-AMP synthase-stimulator of 

interferon genes (cGAS-STING) axis has been identified 

as a major nucleic acid recognition pathway. cGAS 

typically resides as an inactive protein in the cell and is 

activated upon binding to aberrant DNA. Activated cGAS 

then synthesizes 2′,3′-cGAMP, which acts as a secondary 

messenger that activates STING [4,5]. Activated STING 

translocates to the Golgi and activates tank-binding kinase 

1 (TBK1), resulting in phosphorylation of TBK1. TBK1 

phosphorylates type I interferon regulatory factor 3 

(IRF3) [6], which then dimerizes and translocates into the 

nucleus, where it functions concomitantly with NF-κB, a 

transcription factor activated by STING. This induces the 

expression of type I IFNs and inflammatory cytokines, 

leading to antiviral immune responses [7, 8] (Fig.1). 
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Figure 1. Activation of cGAS-STING signaling pathway. cGAS is activated by sensing cytosolic DNA either from 

pathogenic DNA or self-DNA. Activated cGAS utilizes ATP and GTP to produce the second messenger cGAMP. cGAMP 

binds to the ER adaptor STING, which can also be activated by CDNs derived from bacteria. Activated STING translocates 

from the ER to Golgi compartments and recruits TBK1, which further recruits IRF3 for phosphorylation and dimerization. The 

phosphorylated IRF3 dimer then enters the nucleus and functions in concert with NF-κB to induce the expression of type I IFNs 

and inflammatory cytokines.  

 

Mounting evidence has demonstrated that the 

physiological and pathological relevance of cGAS and 

STING extends far beyond “traditional” antiviral 

immunity [8]. Increased cytosolic DNA levels due to 

factors such as mitotic stress in cancers, cellular 

senescence, or autoimmune disorders may lead to cGAS-

STING activation and aggravation of pathological 

progression [9-11]. Research on the role of the cGAS-

STING pathway in CNS disorders has grown in recent 

years. Constitutive and systemic activation of cGAS-

STING results in chronic neuroinflammation and 

neurodegeneration. There has yet to be a comprehensive 

review of this topic. In this review, we present recent 

advances in the literature on cGAS-STING signaling, 

focusing on the contribution of the cGAS-STING axis to 

CNS disorders. 

 

 

Recognition of dsDNA by cGAS and formation of 

cGAMP 

 

cGAS mediates DNA-sensing via direct binding, which 

triggers conformational changes that induce enzymatic 

activity [12]. cGAS dimerization increases with DNA 

binding depending on the length of the bound DNA [13]. 

Double-stranded DNA (dsDNA) equal to or more than 

36bp in length is optimal for recognition by cGAS [4]. 

cGAS is activated by pathogenic DNA, such as viral and 

bacterial DNA, as well as self-DNA, such as nuclear DNA 

derived from dead cells or tumor cells that have damaged 

DNA repair and mitochondrial DNA (mtDNA) resulting 

from mitochondrial oxidant damage. Studies have 

demonstrated that BAX and BAK can permeabilize the 

outer mitochondrial membrane. In the context of caspase 

inhibition, these pores grow substantially, allowing inner 

membrane herniation and extrusion of mtDNA [14, 15]. 
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In the absence of apoptotic caspase, mtDNA activates 

cGAS in a promiscuous manner, which leads to elevated 

IFN-β [16, 17]. cGAS was originally assumed to be 

primarily cytosolic, thereby avoiding persistent activation 

by self-DNA in the nucleus [18, 19]. The DNA replication 

and repair factors, RPA and Rad51, constitute an intrinsic 

cellular mechanism that protects the cytosol from self-

DNA [20]. However, this idea has been challenged by 

several recent studies demonstrating that cGAS is also 

localized in the nucleus and is tightly tethered to 

chromatin [21,22]. cGAS has been reported to interact 

with histone 2A-histone 2B and is tightly anchored to the 

acidic patch [23-27]. Volkmann et al. demonstrated that 

the majority of cGAS proteins resided in the nucleus, and 

the authors proposed a model whereby cGAS must be 

“desequestered” prior to its full activation [21]. Another 

study demonstrated that cytosolic cGAS was largely 

localized to the plasma membrane, which enabled more 

rapid and efficient detection of viral DNA that entered the 

cell via endocytosis [28]. Nevertheless, the mechanisms 

by which cGAS avoids inappropriate sensing of self-DNA 

remain unclear. 

Active cGAS converts GTP and ATP into cGAMP, 

which contains one 2′,5′- phosphodiester linkage and a 

canonical 3′,5′-linkage (c[G (2′,5′)pA(3′,5′)p]) [5, 20, 29]. 

cGAMP activates STING, which triggers type I IFNs 

responses. Other cyclic dinucleotides (CDNs), including 

cyclic di-GMP and cyclic di-AMP, are secreted during 

intracellular bacterial infections and directly activate 

STING [30, 31]. STING is also known to bind dsDNA 

directly [32], although the physiological relevance of this 

remains to be clarified. cGAMP can be transferred 

between cells via gap junctions, which may stimulate the 

activation of the IFN pathway in uninfected neighboring 

cells to promote resistance to infection [33]. cGAMP 

packaged into viral particles may also be transferred into 

newly infected cells [34]. SLC19A1, a folate-organic 

phosphate antiporter, has been implicated in the transport 

of extracellular cGAMP into the cytosol [35, 36]. 

Moreover, LRRC8A:C/E transports cGAMP into 

bystander cells, a process mediated by STING activation 

[37, 38]. cGAMP is degraded by a specific mammalian 

phosphodiesterase, ENPP1, which controls cGAMP 

uptake by cells [39]. In addition to triggering STING, 

extracellular cGAMP can directly bind to cGAS and 

induce its activation [40]. 

 

Activation of STING and downstream signals 

 

STING is retained in the endoplasmic reticulum (ER) by 

interacting with the Ca2+ sensor, stromal interaction 

molecule 1 (STIM1) [41]. The cytosolic ligand-binding 

domain (LBD) of STING is the most functional unit 

capable of integrating with cGAMP. Upon interaction, 

closure of the ligand binding pocket in the LBD occurs, 

leading to the activation of STING [42]. Following 

stimulation, STING traffics to the Golgi and ER-Golgi 

intermediate compartments (ERGIC), resulting in 

recruitment of TBK1 and activation of the STING 

signalsome [43]. STING ER exit protein 

(STEEP//CxORF56) interacts with STING and promotes 

trafficking from the ER [44]. This process is mediated by 

the stimulation of phosphatidylinositol-3-phosphate 

(PtdIns(3)P) production and ER membrane curvature 

formation, which induce coat protein complex II (COP-

II)-mediated ER-to-Golgi trafficking of STING [44]. 

SNX8 recruits VPS34 to STING, which is required for 

trafficking of STING [45]. Various factors, including 

iRhom2, SCAP, INSIG1, and TMED2 facilitate ER-to-

Golgi trafficking [46-49]. Blocking ER-to-Golgi 

trafficking with brefeldin A and Shigella effector protein 

IpaJ abolishes phosphorylation of IRF3 and induction of 

type I IFNs [43, 50, 51]. Further, knockdown of the small 

GTPase Sar1 regulates COP-II-mediated ER-to-Golgi 

trafficking and inhibits the translocation of STING from 

the ER and phosphorylation of IRF3 [52]. Mutations in 

COPA, which encodes the α-subunit of the COPI 

complex, result in chronic elevation of type I IFNs [53]. 

COPI promotes retrograde Golgi-ER transport, and 

mutant COPA is associated with an accumulation of 

STING in the Golgi [54]. These results imply that 

translocation of STING is associated with its activation. 

However, the molecular hierarchy of this process and the 

coordination with COPII trafficking are not fully 

understood. In the Golgi, STING is palmitoylated at two 

cysteine residues (Cys88/91), which is necessary for 

STING activation [55, 56]. The STING signalosome 

produces a scaffold for the phosphorylation of IRF3 and 

NF-κB, which further translocate into the nucleus and 

promote the transcription of genes encoding type I IFNs 

and other cytokines such as tumor necrosis factor (TNF), 

interleukin (IL)-1β, and IL-6, which stimulate the immune 

response [57]. 

 

Regulation of cGAS-STING pathway 

 

Tight regulation of the cGAS-STING pathway is 

necessary to maintain innate immune homeostasis. Post-

translational modifications (PTMs) such as 

phosphorylation, ubiquitination, and glutamylation play 

important roles in the regulation of the cGAS-STING 

pathway. Here, we canvass factors in the literature that 

may regulate cGAS (Table 1) and STING (Table 2). 

cGAS and STING are also targeted by various viral 

proteins, but these lie outside the scope of this review and 

will not be discussed further. 
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Table 1. The regulation factors of cGAS. 

 
Mechanisms Factors Functions Effects Ref. 

Acetylation KAT5 Acetylating at multiple lysine residues in 

its N-terminal domain 

Promotes its DNA binding ability [58] 

Ubiquitination 

 

RNF185 K27-linked ubiquitination at K137, K384 Enhances production of IFN [59] 

 TRIM56 Monoubiquitination at K33 Increases its DNA binding 

activity and cGAMP production 

[60] 

 TRIM14 Recruiting USP14 to cleave K48-linked 

ubiquitination at K414 

Inhibits its degradation [61] 

Phosphorylation AKT Phosphorylation at S305 (human) or 

S291(mouse) 

Inhibits its catalytic activity [62] 

SUMOylation TRIM38 Sumoylation at K217 or K464 Promotes its stabilization [63] 

 SENP2 Desumoylation at K217 or K464 Induces its degradation [63] 

 SENP7 Desumeylating cGAS Activates sumoylated cGAS [64] 

Glutamylation TTL6/ 

TTL4              

Polyglutamylation at 

E272/monoglutamylation at E302 

Inhibits its DNA binding 

capacity 
[65] 

 CCP6/ 

CCP5 

Deglutamylation at E272/E302 Releases the inhibitory effects of 

glutamylation 

[65] 

Other mechanisms G3BP1 Promoting the formation of large cGAS 

complexes 

Efficient activation of cGAS [66] 

 OASL Bounding to cGAS Inhibits its enzyme activity [67] 

 ZCCHC3 Enhancing the binding of cGAS to 

dsDNA 

Efficient innate immune response [68] 

 

cGAS-STING signaling in CNS disorders 

 

Neuroinflammation is a CNS defense mechanism induced 

by various pathological insults such as ischemia, trauma, 

infection, and toxins [91]. This inflammatory response 

protects the brain by removing or inhibiting pathogens 

and promoting tissue repair. However, prolonged 

neuroinflammation elicits secondary injury, leading to 

progressive neurodegeneration [92, 93]. The specialized 

immune system of the CNS detects foreign pathogens and 

tissue damage, initiates immunological interventions at 

the local level, and recruits help from the periphery to aid 

in efficient clearance of pathogens and/or debris [94]. 

Neuroinflammation leads to infiltration of peripheral 

immune cells, especially neutrophils and 

monocytes/macrophages, via the disrupted blood-brain 

barrier (BBB). Neuroinflammatory responses are 

mediated by pro-inflammatory cytokines, including IL-1β, 

IL-6, and TNF; chemokines such as CCL1, CCL5, 

CXCL1; small-molecule messengers, including nitric 

oxide (NO) and prostaglandins; and reactive oxygen 

species (ROS) produced by innate immune cells in the 

CNS [95]. Microglia are the principal innate immune cells 

in the brain and the first responders to pathological insults 

[96]. Indeed, much of the innate immune capacity of the 

CNS is mediated by microglia [97]. Activated microglia 

rapidly alter their transcriptional profile, migrate towards 

sites of injury or infection, and produce inflammatory 

cytokines and chemokines [94] (Fig.2).  

Activation of the innate immune system involves the 

induction of the type I IFN-stimulated genes (ISGs) by the 

mechanisms described earlier. STING is predominantly 

expressed in microglia, although neurons and astrocytes 

also produce IFN [95]. Many neuroinflammatory diseases, 

such as ischemic injury, subarachnoid hemorrhage, 

traumatic brain injury (TBI), Alzheimer’s disease (AD), 

and Parkinson’s disease (PD) are characterized by 

activation of the cGAS-STING pathway and expression 

of type I IFNs and inflammatory cytokines which 

underscore pathological progression. In the following text, 

we discuss the role of cGAS-STING signaling in CNS 

disorders (Fig.3). 

 

Ischemic stroke and subarachnoid hemorrhage (SAH) 

 

The cGAS-STING pathway is activated during ischemic 

injury, which is a debilitating neurological disorder that 

results in elevated neuroinflammation. Middle cerebral 

artery occlusion (MCAO), a murine model of ischemic 

stroke, increases the release of dsDNA into the cytosol 

and initiates inflammatory responses by activating cGAS 

[98]. Treatment with A151, an inhibitor of cGAS, reduces 

the expression of cGAS and neuroinflammatory responses. 

Moreover, A151 administration significantly reduces 

infarct volume and ameliorates neurodegeneration in 

MCAO mice [98]. Liao et al. demonstrated that the 

microglial cGAS-STING pathway was activated 

following transient MCAO (tMCAO), which promoted 

the formation of a pro-inflammatory microenvironment. 

In addition, they demonstrated that histone deacetylase 
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(HDAC)3 regulated the acetylation and nuclear 

localization of p65, which promoted the expression of 

cGAS and potentiated the activation of the cGAS-STING 

pathway. Deletion of cGAS or HDAC3 in microglia 

attenuates neuroinflammation and brain injury in tMCAO 

mice, highlighting a novel therapeutic avenue for the 

treatment of ischemic stroke [99]. Ischemic stroke is 

characterized by lack of oxygen and glucose in local brain 

tissue [100]. McDonough et al. reported that the 

expression of ISGs was upregulated within microglia 

exposed to ischemia/reperfusion (I/R) in both in vitro and 

in vivo experimental paradigms [101]. Deletion of either 

IFN-alpha receptor 1 (IFNAR1) or IRF3 exerts protective 

effects on tMCAO [102, 103]. The STING pathway is also 

relevant to neovascularization and vascular remodeling. 

STING knockdown and IFN receptor-neutralizing 

antibody treatment reduce BBB breakdown and increase 

vascular plasticity [104]. Collectively, these studies 

indicate that activation of the endogenous cGAS-STING 

cascade may be detrimental to the outcomes of ischemic 

stroke. 

 
Figure 2. The effect of neuroinflammation in the disruption of CNS homeostasis. Neuroinflammation is accompanied by 

increased blood-brain barrier (BBB) permeability. Peripheral immune cells, including neutrophils and monocytes/macrophages, 

are recruited to the lesion site via the disrupted BBB. Microglia are the principal innate immune cells in the brain and produce a 

range of cytokines at the early stage of neuroinflammation that mediate clearance of pathogens and debris and promote injury 

repair. In contrast, prolonged neuroinflammation elicits secondary injury, which affects nearby neuronal and glial cells and leads 

to neurodegeneration.  

Neuroinflammation has recently been implicated in 

secondary injury following SAH [105]. Preclinical studies 

have indicated that suppressing neuroinflammation 

confers increased neurological outcomes after SAH [106, 

107]. STING expression increases significantly after SAH, 

predominantly in microglia. Administration of C-176, a 

small-molecule inhibitor of STING, confers robust anti-

inflammatory effects, alleviates neuroinflammation, and 

ameliorates short-term and persistent neurological 

dysfunction after SAH. Further, administration of the 

STING agonist CMA promotes microglial activation, 

aggravates neuroinflammation, exacerbates neuronal 

injury, and increases neurological impairments [108]. 

These findings suggest that STING is an important 

regulator of SAH-induced neuroinflammation. 
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Table 2. The regulation factors of STING. 

 
Mechanisms Factors Functions Effects Ref. 

Ubiquitination TRIM56 K63-linked polyubiquitination at K150 Induces STING dimerization [69] 

 TRIM32 K63-linked polyubiquitination at K20, 

K224, K236 

Promotes the interaction with 

TBK1  

[70] 

 MUL1 K63-linked ubiquitination at K224 Enhances IRF3-dependent 

signaling 

[71] 

 AMFR K27-linked polyubiquitination at K137, 

K150, K224, and K236 

Facilitates TBK1 recruitment 

and activation 

[48] 

 TRIM30α K48-linked ubiquitination at K275 Promotes the degradation of 

STING 

[72] 

 RNF5 K48-linked polyubiquitination at K150 Mediates its degradation  [73] 

 TRIM29 K48-linked polyubiquitination at K370 Mediates its degradation  [74] 

 RNF26 K11-linked polyubiquitination at K150 Protects STING from 

degradation  

[75] 

 MYSM1 Cleaving K63-linked ubiquitination Represses the production of IFN  [76] 

 USP49 Deconjugating K63-linked ubiquitination Terminates innate antiviral 

responses 

[77] 

 USP20 Deconjugating K48-linked ubiquitination Facilitates STING-mediated 

signaling 

[78] 

 CYLD Deconjugating K48-linked 

polyubiquitination 

Boosts the innate antiviral 

response 

[79] 

 USP21 Hydrolyzing K27/63-linked polyubiquitin 

chain 

Reduces the production of IFN [80] 

 USP13 Deconjugating K27-linked 

polyubiquitination 

Negatively regulates cellular 

antiviral responses 

[81] 

 EIF3S5 Deconjugating K48-linked 

polyubiquitination 

Stabilizes STING protein [46] 

SUMOylation TRIM38 Sumoylating at K337 (murine) or K338 

(human) 

Promotes its stability and 

activation 

[63] 

 SENP2 Desumoylating STING Induces its degradation [63] 

Phosphorylation ULK1 Phosphorylating at S366 Suppresses IRF3 activation [51] 

 PTPN1/2 Dephosphorylating at Y245 Leads to its degradation  [82] 

 PPM1A Dephosphorylating at S358 Prevents its aggregation [83] 

 S6K1 Interacting with phosphorylated STING and 

TBK1 

Induces IRF3 activation [84] 

Other mechanisms TOLLIP Directing interaction with STING Prevents STING degradation at 

the resting state 

[85] 

     

 NLRC3 Breaking the association of STING with 

TBK1 

Negatively regulates the innate 

immune signaling 

[86] 

 NLRX1 

 

Blocking the assembly of the STING–TBK1 

complex 

Inhibits IFN response and 

facilitates viral spread 

[87,88] 

 ZDHHC1 Mediating STING aggregation and 

recruitment of TBK1 and IRF3 

Positively regulates the innate 

immune response 

[89]             

 TMEM203 Interacting with STING Activates TBK1 and IRF3 [90] 

 TMED2 Reinforcing STING dimerization Potentiates IFN responses [49] 
 

 

 

 

 



Li F., et al                                                                                                  cGAS-STING in CNS Disorders 

 

Aging and Disease • Volume 12, Number 7, October 2021                                                                              1664 

 

 
 
Figure 3. cGAS-STING signaling pathway in CNS disorders. cGAS-STING signaling pathway is involved in 

neuroinflammation in various CNS disorders such as ischemic stroke, SAH, TBI, AD, and PD. These markers are expressed 

predominantly in microglia and play different roles depending on the type of disease. This axis acts as a contributing factor to the 

production of type I IFNs and inflammatory cytokines and promotes microglial phagocytosis. It may also lead to secondary injury 

and aggravate the pathological progression of CNS disorders. 

 

Traumatic brain injury (TBI) 

 

TBI is a widespread public health concern that results 

from excessive contact in sports, blast injuries in war, or 

occupational hazards [109]. Neuroinflammation plays an 

integral role in the pathophysiology of TBI by promoting 

the clearance of debris and regeneration, as well as 

mediating neuronal death and progressive 

neurodegeneration [110]. Microglial and peripheral 

inflammatory cells respond to TBI and provide 

neuroprotection or participate in maladaptive secondary 

injury reactions [111]. Type I IFNs are upregulated in 

postmortem human TBI brains and activate 

proinflammatory microglia in murine models of TBI 

[112]. A recent study documented that TBI resulted in 

acute (within 72 h post-injury) upregulation of cGAS and 

STING in a mouse model of TBI [113]. Type I IFNs, 

neuroinflammatory genes, and proinflammatory 

mediators in the cortex and hippocampus are upregulated 

following TBI. Knock-down of IFN-β results in decreased 

levels of these inflammatory markers, and an attenuation 

of behavioral deficits [113]. Abdullah et al. reported that 

STING expression was elevated in postmortem human 

TBI brains; this finding has been confirmed in murine 

models of TBI. STING deletion suppresses the expression 

of type I IFNs, accompanied by a reduction in lesion 

volume [114]. Sen et al. reported that STING signaling 

was activated by neuronal ER stress [115]. 

Phosphorylation of protein kinase R-like endoplasmic 

reticulum kinase (PERK) initiates ER stress after TBI 

[116]. Blockade of PERK abrogates the STING signaling 

cascade, thereby reducing neuroinflammation and 

cognitive impairments [115]. Collectively, these findings 

highlight a novel targetable signaling axis following TBI. 
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Alzheimer’s disease  and ataxia-telangiectasia 

 

Alzheimer’s disease (AD) is a chronic neurodegenerative 

disorder characterized by progressive memory loss and 

behavioral changes [117]. The essential roles of 

inflammation in AD pathophysiology is increasingly 

being recognized [118]. Increased levels of inflammatory 

markers in patients with AD and the identification of AD 

risk genes suggest that neuroinflammation plays a 

prominent role in AD pathogenesis [91, 119]. Indeed, the 

contribution of neuroinflammation to AD pathogenesis is 

commensurate (or even exceeds) that of senile plaques 

and neurofibrillary tangles [120]. Microglial activation 

was observed at the pre-plaque stage in a transgenic rat 

model of AD and in individuals with mild cognitive 

impairment (MCI) without amyloid tracer uptake in a 

neuroimaging study [121, 122]. Studies have also 

demonstrated the influence of neuroinflammation at the 

symptomatic stage of AD [123, 124]. Emerging evidence 

suggests that the STING pathway is hyperactivated with 

aging due to internal factors such as chromatin and 

mtDNA fragments in the cytosol [125, 126]. A rare 

mutation of the triggering receptor expressed on myeloid 

cells 2 (TREM2) increases the risk of AD to a similar 

extent as that for apolipoprotein E (ApoE) ε4 [127, 128]. 

TREM2 is highly expressed by microglia and promotes 

Aβ clearance [129]. However, TREM2 mutations 

aggravate the accumulation of Aβ and neuroinflammation 

in the brain. Xu et al. reported that cGAMP induced 

TREM2 expression, which decreased Aβ deposition and 

ameliorated cognitive impairments [130], highlighting the 

therapeutic potential of targeting cGAMP to treat AD. 

Ataxia-telangiectasia (A-T) is a progressive 

neurodegenerative disease caused by mutations in the 

ataxia telangiectasia mutated (ATM) gene. ATM plays a 

major role in sensing and coordinating the repair of DNA 

double-strand breaks (DSBs). ATM deficiency leads to a 

breakdown of DNA repair mehanisms and an 

accumulation of cytoplasmic fragments of nuclear DNA, 

resulting in activation of the STING signaling cascade and 

overproduction of cytokines [131]. Inhibition of STING 

blocks the overproduction of neurotoxic cytokines. ATM 

deficiency induces STING-mediated IFN production, 

which promotes anti-microbial immunity [132]. Thus, 

inhibition of ATM may be a promising approach to boost 

cellular innate immunity and enhance immune checkpoint 

blockade therapy. A recent study reported that ATM 

inhibition potently activated the cGAS-STING pathway 

and further enhanced immunotherapy by downregulating 

mitochondrial transcription factor A (TFAM), which 

resulted in mtDNA leakage into the cytoplasm [133]. 

Accumulation of cytosolic DNA has been observed in the 

hippocampus, cerebellum, and spinal cord in rat models 

of A-T; these events contribute to microglial activation 

and increased production of IFN-β and IL-1β [134, 135]. 

Betamethasone treatment reduces neuroinflammatory 

responses and motor neuron loss, and extends the lifespan 

of ATM knockout rats [134]. In sum, these studies 

indicate that cGAS-STING signaling and neuro-

inflammation play an essential role in the pathogenesis of 

AD and A-T.  

 

Parkinson’s disease (PD), Huntington disease (HD), 

and amyotrophic lateral sclerosis (ALS) 

 

PD is the second most common age-related 

neurodegenerative disorder characterized by the 

progressive loss of dopaminergic neurons in the 

substantia nigra, involving both motor and non-motor 

symptoms [136]. Mutations in the leucine-rich repeat 

kinase 2 (LRRK2) gene are a major cause of PD. LRRK2 

is involved in immune system responses and 

mitochondrial function. Loss of LRRK2 in macrophages 

induces elevated IFN and ISGs, which are driven by 

mtDNA leakage into the cytosol and chronic cGAS 

engagement [137]. Pink1 and Parkin work in concert in 

mitophagy, thereby removing damaged mitochondria 

[138]. In a mouse model of Parkin knockout mutants 

combined with a mtDNA mutator strain, selective 

degeneration of nigral dopaminergic neurons, increased 

mitochondrial dysfunction, and a decline in motor ability 

were noted [139]. Supporting these observations, mice 

lacking Parkin and Pink1 in mutator combination exhibit 

a strong inflammatory phenotype that results from 

mtDNA mutational stress, which activates the cGAS-

STING pathway. In addition, genetic inactivation of 

STING prevents exercise and cytokine production, 

resulting in rescue of neurodegeneration and locomotor 

deficits [140]. These findings strongly implicate the 

induction of STING in the pathogenesis of PD. In 

contrast, a study reported that loss of STING was 

insufficient to suppress behavioral deficits or 

mitochondrial disruption in Drosophila Pink1/Parkin or 

mtDNA mutator models [141]. The reasons for these 

discrepant results are unclear. One possibility is that 

aberrant innate immune activation is not mediated by the 

presence of cytosolic DNA or by activation of the STING 

pathway. A recent clinical study reported elevated levels 

of IL-6 and mtDNA in carriers of Parkin/Pink1 mutations, 

suggesting that inflammation plays a role in PD 

pathogenesis [142].  

HD is an autosomal dominant inherited 

neurodegenerative disorder caused by mutations in the 

Huntingtin gene. HD is characterized by impairments in 

motor, psychiatric, and cognitive functions [143]. 

Inflammatory responses are implicated in the 

pathogenesis of HD [144, 145]. Ribosome profiling 

revealed that cGAS mRNA has high ribosome occupancy 
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in HD striatal cells derived from mouse embryos. cGAS 

activity is enhanced, and the expression of inflammatory 

genes and autophagy proteins is increased. Depletion of 

cGAS decreases inflammatory and autophagy responses 

in HD striatal cells, indicating that cGAS promotes 

inflammatory responses in HD and may be a therapeutic 

target for HD [146]. 

ALS is a devastating disease that involves loss of 

motor neurons, leading to progressive impairments in 

motor function [147]. In a German ALS population 

study, higher education and living in a rural 

environment was associated with a higher risk of 

developing ALS [148]. In addition, emotional ability at 

disease onset is associated with faster disease progression 

in ALS [149]. TAR DNA-binding protein of 43 kDa 

(TDP-43) is an RNA/DNA-binding protein that regulates 

mRNA splicing, stability, and translation in the nucleus. 

Cytoplasmic accumulation of TDP-43 is observed in 

neurons of almost all patients with ALS [147]. TDP-43-

mediated neurodegeneration in ALS is associated with 

increased proinflammatory cytokine production related to 

elevated NF-κB and type I IFNs signature [150, 151]; 

these effects are driven by the cGAS-STING pathway 

[152]. TDP-43 invades mitochondria and releases 

mtDNA, which is detected by cGAS and leads to further 

activation of STING. Further, elevated levels of cGAMP, 

the specific cGAS signaling metabolite, have been 

observed in spinal cord samples of ALS patients [152]. 

Expansions of a GGGGCC repeat in the C9orf72 gene are 

the most commonly identified genetic cause of 

ALS/frontotemporal dementia (C9-ALS/FTD) [153]. 

Marked expression of type I IFNs mediated by STING in 

dendritic cells isolated from C9orf72-deficient mice have 

been observed, and blocking STING suppresses the type 

I IFNs response. Moreover, an elevated type I IFNs 

signature has been observed in blood-derived 

macrophages and brain tissue of patients with C9-

ALS/FTD, and this elevated signature can be suppressed 

with administration of a STING inhibitor [154]. 

Collectively, these findings suggest that targeting the 

cGAS-STING pathway is a viable therapeutic strategy to 

alleviate the damage caused by ALS. 

 

Multiple sclerosis and Aicardi-Goutières syndrome 

 

Multiple sclerosis (MS) is an inflammatory and 

autoimmune neurological disorder characterized by 

demyelination [155]. Immunomodulatory therapies such 

as IFN and rituximab prevent or delay the progression of 

MS [156]. IFN-β is thought to mediate beneficial effects 

by targeting innate and adaptive immune cells. Microglia 

are abundant in MS lesions. Microglial activation is often 

remote from lesions and may represent the earliest stage 

of lesion development [157]. Mathur and colleagues 

reported that ganciclovir (GCV) treatment resulted in an 

upregulation of several antiviral proteins in cultured 

microglia, including CXCL10 and IFN-β, at both the 

mRNA and protein levels [158]. In experimental 

autoimmune encephalomyelitis (EAE), a mouse model of 

MS, STING is exclusively expressed in microglia, and 

GCV induces a type I IFNs response dependent on 

activated STING. Notably, this response is necessary for 

GCV to inhibit inflammation in cultured myeloid cells 

and in EAE. Inhibition of STING pathway mediators, 

such as STING, IRF3, and TBK1, results in reduced 

activity of GCV. GCV may mimic CDNs and activate the 

STING pathway [158]. Similarly, Lemos et al. 

demonstrated that administration of DNA nanoparticles 

(DNPs) and CDNs significantly delayed EAE onset and 

reduced disease severity. DNPs and CDN activates the 

STING pathway and attenuate infiltration of effector T 

cells into the CNS, highlighting the beneficial effects of 

STING in vivo [159]. Further, STING/IFN-β is 

downregulated in relapse-remitting MS (RRMS) patients 

[160]. These observations have shed insight into the role 

of STING as a potent immune regulator in MS. 

Aicardi-Goutières syndrome (AGS) is a rare lupus-

like autoimmune disease characterized by excessive 

production of type I IFNs. AGS is driven by mutations in 

genes involved in nucleic acid transactions, including 

TREX1, RNASEH2A, RNASEH2B, RNASEH2C, 

SAMHD1, ADAR1, and IFIH1 [161]. TREX1 (DNase III) 

is an exonuclease that degrades DNA in the cytoplasm. 

Loss of Trex1 in dendritic cells is sufficient to cause IFN 

release and autoimmunity [162]. Genetic ablation of 

cGAS alleviates autoimmune phenotypes, suppresses the 

expression of ISGs, and decreases T-cell activation, 

suggesting that cGAS activation induced by accumulated 

DNA is involved in AGS [9]. Vincent et al. developed a 

small-molecule inhibitor of cGAS, RU.521, that reduced 

constitutive expression of IFN in macrophages in a mouse 

model of AGS [163]. STING and TBK1 have also been 

implicated in the inflammatory response of AGS [164, 

165]. RNase H2-deficient mice exhibit increased 

expression of ISGs dependent on the cGAS-STING 

signaling pathway, and ablation of STING partially 

rescues perinatal lethality [166]. SAMHD1 is a dNTPase 

that promotes the degradation of nascent DNA at stalled 

replication forks in human cell lines. In SAMHD1-

depleted cells, the cGAS-STING pathway is activated and 

induces the expression of IFN [167]. Immunoreactivity in 

AGS may be underscored by the accumulation of nucleic 

acids and involvement of the cGAS-STING pathway. 

 

Encephalitis 

 

Acute viral encephalitis is a devastating disease that can 

cause irreversible damage and even death [168]. Herpes 
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simplex virus type 1 (HSV-1) is the primary cause of viral 

encephalitis that accounts for 50–75% of all viral cases 

[169]. Early production of IFN is critical for controlling 

the spread of CNS viral infections. Microglia are the main 

producers of type I IFNs following HSV-1 infection, a 

response that is dependent on the cGAS-STING signaling 

axis. Mice defective in cGAS or STING are highly 

susceptible to HSV-1 infection [170]. HSV-infected 

microglia confer STING-dependent antiviral activity in 

neurons and prime type I IFNs production in astrocytes 

via the TLR3 pathway [170]. HSV-1 infected microglia 

undergo apoptosis at high viral levels and induce IFN-

mediated responses at low viral doses, effects that are 

dependent on cGAS [171]. Bodda et al. reported that a 

HSV1 mutant lacking deubiquitinase (DUB) activity of 

the VP1-2 protein induced elevated IFN expression in 

microglia and STING phosphorylation [172]. VP1-2 is 

directly associated with STING, leading to its 

deubiquitination, blocking IFN expression, and 

promoting brain infection. DUB activity of HSV1 VP1-2 

is a major viral immune-evasion mechanism in the brain 

[172]. Further, HSV-1 UL37 tegument protein impairs the 

catalytic ability of cGAS and disarms host defenses. 

Consistent with these findings, inactivating mutations in 

HSV-1 UL37 induce more robust cytokine responses, 

lower brain viral loads, and higher survival rates [173]. 

Japanese encephalitis virus (JEV), a flavivirus with 

single-stranded RNA, is recognized by RIG-I and acts in 

concert with STING to induce IFN-mediated responses. 

STING ablation inhibits inflammatory molecules and 

increases intracellular viral load. Conversely, 

overexpression of STING decreases intracellular viral 

load [174]. STING signaling is also involved in 

encephalitis caused by West Nile virus infections, and 

STING knockouts exhibit increased mortality, viral load, 

and aberrant T cell responses that are linked with CNS 

pathology in a murine model of infection [175].  

Zika virus (ZIKV) is a member of the flavivirus genus 

of RNA viruses which can infect the fetal brain during 

pregnancy and result in significant brain abnormalities 

[176]. ZIKV predominantly infects neural stem cells and 

induces serious neurological complications during fetal 

development [177]. STING confers protection against 

ZIKV by inducing autophagy, while loss of autophagy 

leads to increased ZIKV infection and death [178]. Cao et 

al. reported that inhibition of autophagy limited vertical 

transmission of ZIKV and ameliorated adverse placental 

or fetal outcomes in a mouse model of pregnancy [179]. 

ZIKV attenuates STING signaling in primate cells via 

NS2B3 protease [180]. Lennemann and Coyne 

demonstrated that ZIKV NS2B3 protease cleaved 

FAM134B (an ER-localized reticulophagy receptor), 

suppressed the reticulophagy pathway, and promoted 

viral replication [181]. Nevertheless, it remains unclear 

whether autophagy suppresses ZIKV infections in the 

mammalian brain. 

 

Conclusions 

 

The cGAS-STING pathway is essential for modulation of 

the innate immune response. This signaling pathway is a 

double-edged sword in CNS disorders. It acts as a 

contributing factor by providing defense mechanisms via 

the regulation of type I IFNs production and spreading of 

immune signaling to adjacent cells. However, its 

overactivation may lead to secondary injury and aggravate 

the pathological progression of CNS disorders. These 

findings have spurred efforts to harness this natural 

defense-related pathway in the generation of brain 

disorders therapy. 

In this review, we summarize the recent advances in 

cGAS-STING signaling, and its crucial role in the 

pathogenesis of CNS disorders. The activation of cGAS 

and STING may exert either positive or negative 

influences, depending on the context. Further research on 

this pathway will pave the way for deriving novel targets 

to halt disease progression or reverse symptoms at an 

early stage. For example, remaining questions include 

how the different regulators of the cGAS-STING pathway 

reciprocally interact and how the activities of these 

enzymes are regulated in a timely manner. To date, studies 

of the cGAS-STING pathway in CNS disorders have 

predominantly been conducted in preclinical settings, and 

further studies are necessary to explore the clinical 

relevance of this pathway. 
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