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Advancements in the field of next generation sequencing lead to the generation of ever-more data, with
the challenge often being how to combine and reconcile results from different OMICs studies such as gen-
ome, epigenome and transcriptome. Here we provide an overview of the standard processing pipelines
for ChIP-seq and RNA-seq as well as common downstream analyses. We describe popular multi-omics
data integration approaches used to identify target genes and co-factors, and we discuss how machine
learning techniques may predict transcriptional regulators and gene expression.
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1. Introduction

Within an organism, all cells contain the same genome, but
have vastly different roles. These tissue and cell type specific func-
tions are largely conferred by transcriptional regulators that con-
trol gene expression and thereby define cell identity.
Transcriptional regulators include trans-acting factors, such as
transcription factors (TFs), cis-regulatory elements (promoters
and enhancers), as well as the chromatin structure (DNA-
accessibility, nucleosome structures and chromatin looping) and
epigenetic marks (histone modifications and DNA methylation).

Specific elements in this gene regulatory machinery can be
studied by different genome-wide analyses (Fig. 1). Chromatin
immunoprecipitation followed by sequencing (ChIP-seq) [1] has
become the method of choice to explore protein-DNA interactions
such as TF binding and histone modifications (HMs). Assay for
Transposase-Accessible Chromatin using sequencing (ATAC-seq)
[2] measures genome-wide chromatin accessibility, and RNA-
sequencing (RNA-seq) [3,4] identifies the transcriptome. Addition-
ally, Hi-C [5], Capture-C [6] and other methods analyze the 3-
dimensional chromosome structure by capturing chromatin
interactions.

Epigenetic modifications [7,8] are a fundamental network con-
trolling transcriptional outcomes. Since 2003, the Encyclopedia of
Schematic representation of the transcriptional machinery. Cis-regulatory element
enetic modifications and 3D chromatin structure are known to influence gene ex
DNA Elements (ENCODE) consortium [9] has systematically built
a compendium of functional elements in the human genome.
ENCODE also performs data curation and offers standardized pro-
cessing pipelines [1] for various assay types online (https://www.
encodeproject.org/), with regular updates. ENCODE includes thou-
sands of datasets on gene expression (RNA-seq, Cap Analysis of
Gene Expression (CAGE) and RNA-pet), ChIP-seq (TF binding,
HMs) and chromatin accessibility (ATAC-seq, DNase-seq) from sev-
eral cell types [10]. Within the cancer research field, the Cancer
Genome Atlas [11] offers a vast collection of genetic, epigenetic,
transcriptional and proteomics data on 33 different cancer types,
which can be accessed through the Genomic Data Commons Data
Portal [12]. The Roadmap Epigenomics project [13] and the BLUE-
PRINT project [14] are further large-scale undertakings that sys-
tematically collect data to characterize the human epigenome.
Their datasets can be accessed through the IHEC [15] data portal.
With ever more data being generated (current high-throughput
systems can sequence up to 6000 gigabases per run), the bottle-
neck has shifted from data generation towards their analysis, pos-
ing new challenges for bioinformaticians.

In this review, we provide an overview of the standard process-
ing pipelines for ChIP-seq and RNA-seq as well as common down-
stream analyses. Furthermore, we discuss popular approaches for
data integration and point out shortcomings along the way. Specif-
s (enhancers or promoters), trans-regulatory elements (transcription factors) as well
pression. TAD: Topologically associated domain.

https://www.encodeproject.org/
https://www.encodeproject.org/
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ically, we show how ChIP-seq and RNA-seq data can be used to
identify the target genes of a TF as well as coregulators for tran-
scription, and we review methods that leverage chromatin assays
to predict gene expression. Finally, we discuss how new develop-
ments in the field of machine learning contribute to the under-
standing of gene regulation.
2. Experimental design

2.1. General experimental considerations

ChIP-seq experiments assess the interactions of a protein of
interest (such as TFs or modified histones) with DNA on a
genome-wide level [1]. Depending on the samples submitted for
sequencing, this can answer different questions. The classic exper-
iment is to determine the interactions within a certain cell-type at
steady state. More often however, it is of interest how these inter-
actions change in response to a perturbation. Changing the expres-
sion level of a gene through overexpression, knock-down or knock-
out experiments, can lead to changes in DNA binding of molecu-
larly connected factors. Comparing sequencing results of these
samples with baseline data can reveal new insights on the relation-
ship between these components. Similarly, introducing a treat-
ment condition that changes the levels of the TF itself is used to
determine the target genes by comparing DNA binding in the treat-
ment condition with the steady state. Furthermore, mutating
either the gene for the TF itself, or the DNA sequence it binds to,
can validate putative targets with additional wet lab experiments.

The same steady state and/or perturbed samples assayed in
ChIP-seq, can also be submitted for RNA-seq, with the readout
being the effect on gene expression. The advantage of combining
RNA-seq and ChIP-seq in the same experiment is to link a change
in occupancy with a change in transcription, which allows infer-
ence of which peaks are functional binding sites. In this review,
we will discuss a number of methods that combine multiple
ChIP-seq datasets and/or RNA-seq data to answer this and addi-
tional questions.

2.2. ChIP-seq specific considerations

The quality of ChIP-seq results is dependent on the specificity
and the sensitivity of the chosen antibody. These factors should
be taken into consideration when comparing data generated with
different antibodies or the same antibody in different samples
[1]. ‘‘Hyper-chippable” regions [16], GC rich regions [17] and
non-random fragmentation [18] can introduce various biases or
background. Therefore, ‘‘input controls” or ‘‘IgG controls” are cru-
cial to accurately identify ‘real’ peak signals.

To ensure reproducibility of the results, it is recommended to
submit biological replicates of the samples for sequencing. In most
cases, two replicates can be sufficient and little information is
gained by further increasing the number of replicates [19]. Ranking
peaks and comparing them between replicates can then be used to
assess the agreement of the results and to determine their irrepro-
ducible discovery rate (IDR). Analogous to the concept of FDR, set-
ting the IDR to be no bigger than a predefined significance level ɑ,
can control for the rate of irreproducible peaks [20].

2.3. RNA-seq specific considerations

Compared to ChIP-seq, the number of replicates is very impor-
tant for the detection of differentially expressed genes. As
resources are limited, a thorough experimental design also
includes decisions on sample sizes and on technical parameters,
such as read depth [21–23]. Power analysis can be used to decide
the study’s optimal sample size and its impact, for the test to be
performed. In the case of RNA-seq studies, given the common sta-
tistical assumption of the most reliable differential expression
methods DESeq2 and edgeR [24], power analysis is based on the
theory of negative binomial count regression [25,26]. Deciding on
sample size is also influenced by biological heterogeneity, and sig-
nificantly, the required minimum fold change to be detectable
between the conditions at the given significance level. Various
approaches, including simulation based models [24,27] are com-
pared and benchmarked in [28].
3. Data processing

3.1. Systematic literature search

We investigated how most research groups approach data inte-
gration and whether there was a specific tool or strategy taking
hold in the scientific community, by performing a systematic liter-
ature search. Gene Expression Omnibus (GEO) is an online data-
base hosted by the National Center for Biotechnology
Information (NCBI), archiving microarray and next generation
sequencing (NGS) genomics data. We used the package GEOme-
tadb (1.44.0) within R version 3.5.2 to query all submitted entries
matching the Dataset types ‘‘Expression profiling by high through-
put sequencing” and ‘‘Genome binding/occupancy profiling by high
throughput sequencing” performed in humans or mice. After filter-
ing for those entries linked to Pubmed IDs, we checked what pub-
lications submitted both expression and genome binding data. Out
of 4377 Pubmed IDs, 346 included datasets of both assay types
(Fig. 2A). Quantifying what references those 346 studies shared
revealed a number of frequently cited peak calling algorithms, read
alignment tools and gene set enrichment approaches, to which we
will refer in the corresponding section. Importantly, no tool
designed to integrate RNA-seq and ChIP-seq data came up in our
search. Hence, despite genome occupancy profiling and gene
expression frequently being employed in the same project, no spe-
cialized tools for integrating their results have established
themselves.

3.2. ChIP-seq

Covalent modifications of histone tails are essential determi-
nants of nucleosome positioning and gene regulation [29,30]. Dif-
ferent types of HMs such as acetylation, phosphorylation,
methylation or ubiquitination, can change the interaction strength
of DNA with histones, which in turn influences transcription.
Specific epigenetic marks are associated with gene activation,
others with repression [31]. ChIP-seq offers a way to investigate
HMs as well as interactions of TFs with their DNA binding sites.

To identify the genomic sequences a transcription factor is
binding to, crosslinked chromatin is fragmented, and an antibody
specific to the target protein is used to purify the DNA-protein
complex by immunoprecipitation. After de-crosslinking, the DNA
is purified and prepared for NGS. Similarly, antibodies directed
against various histone residues can be employed. Recent advances
have further improved the technique by significantly increasing
resolution and reducing background noise, as in ChIPexo [32] or
CUT&Tag [33], for example.

3.2.1. Preprocessing & read alignment
Upon successful completion of such an NGS experiment, the

read quality needs to be assessed by checking the quality of the
base-calls, the duplication rate, GC content and adapter content.
The tool FastQC (http://www.bioinformatics.babraham.ac.uk/pro-
jects/fastqc/) evaluates these and additional criteria, and returns

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/


Fig. 2. Systematic literature search on publications combining gene expression and DNA binding data. (A) Numbers of Pubmed IDs associated with RNA-seq and ChIP-Seq
data submissions (retrieved on 01/22/2020). (B) Top 20 most commonly referenced citations from publications in the intersection of the Venn diagram shown in A. PMID:
Pubmed ID.
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an overview of the sample metrics. Depending on the results,
removal of adapter sequences [34] and removal of low quality
bases by read trimming might be desirable before mapping them
to the reference genome. Contrary to RNA-seq, aligners for ChIP-
seq reads do not need to be splice-aware, since they do not contain
exon boundaries. Commonly used tools include bwa [35], bowtie
and its successor Bowtie2 [36] (Fig. 2B).

3.2.2. Peak calling
Most peak-calling algorithms have been developed for TF bind-

ing data and consequently were optimized for narrow peaks. Few
HMs (such as H3K4me3) also fall into this category. The most com-
monly used peak caller (Fig. 2B) is the second version of Model-
based Analysis of ChIP-seq data (MACS) [37]. MACS2 considers
local biases by using a dynamic Poisson distribution when deter-
mining the fold enrichment during peak calling.

On the other hand, most histone modifications or DNA methy-
lation patterns show broad enrichments without clear peaks, so-
called domains. Methods such as histoneHMM [38] specifically
identify enriched domains, and some tools that were developed
for narrow peaks offer parameter adjustments to accommodate
domain calling (i.e. MACS2).

MACS2 is a reliable choice for TF binding data [39], but Bayesian
Change-Point (BCP) [40] and MUltiScale enrichment Calling for
ChIP-seq (MUSIC) [41] slightly outperform it when calling broad
peaks. For methods with higher signal-to-noise ratios such as
CUT&RUN or CUT&Tag, standard peak callers may generate high
false-positive rates, making specialized tools like SEACR [42] more
appropriate. For an overview of statistical methods and their
underlying models, see Supplementary Table 1.

Quality metrics after mapping and peak calling include the per-
centage of mappable reads, the library complexity, percentage of
reads in peaks and strand cross-correlation ([1,43]). As discussed
in section 2.2, the robustness of the results can further be assessed
using IDR [20].
3.2.3. Differential binding analysis
Experimental questions answered by ChIP-seq may include

qualitative or quantitative comparisons of multiple samples, i.e.
whether the same peaks are present in different conditions or
whether the strength of the peak signal differs. Immunoprecipita-
tion efficiencies can vary between samples, potentially influencing
the fraction of reads in peaks. Together with the signal to noise
ratio, these factors may affect differential binding analyses [44].

Tools to determine differential binding use alternative
approaches to model the data, each with their own strengths and
weaknesses [45]. Some Bioconductor/R packages such as edgeR
[46] and DESeq2 [47] are routinely used in RNA-seq analysis pipeli-
nes (see section 2.3.4). Others, such as csaw [48] or DiffBind
(https://bioconductor.org/packages/release/bioc/html/DiffBind.
html), make use of those packages in workflows specifically devel-
oped for ChIP-seq. Another popular tool called MAnorm [49] is
based on the assumption that the peaks shared between samples
do not differ globally, and uses them as a basis to fit a robust
regression, extrapolation to all peaks and normalization. In his-
toneHMM [38], differential binding is formulated as an unsuper-
vised classification problem and analyzed using a bivariate
Hidden Markov Model (HMM).

In case the binding landscape changes profoundly, those
assumptions do not hold true. Alternative approaches use experi-
mental spike-ins, i.e. chromatin from a different organism, during
the ChIP. The reads derived from this reference can then be used
for normalization. In CUT&Tag, the small amounts of E. coli DNA
remaining after transposase production, suffice as spike-in
substitutes.
3.2.4. Peak annotation
For the scientist interpreting ChIP-seq results within their bio-

logical context, the positional information of putative cis-
regulatory regions needs to be linked to genetic functions. An intu-
itive approach is to visually inspect the processed ChIP-seq data on
a genome browser, such as Integrative Genomics Viewer [50] or
the University of California, Santa Cruz Genome Browser [51].
The data can then be parsed in conjunction with publicly available
datasets such as DNase hypersensitivity, HMs, single nucleotide
polymorphisms, tissue specific gene expression etc. However, this
strategy does not benefit from the myriad of tools designed to
identify global patterns.

While identifying the target genes of a TF is one prime objective
of ChIP-seq experiments, the fact that most peaks are not promoter
proximal impedes this task. Linear proximity to the closest tran-
scription start site is often used to identify putative target genes

https://bioconductor.org/packages/release/bioc/html/DiffBind.html
https://bioconductor.org/packages/release/bioc/html/DiffBind.html


Fig. 3. Standard processing workflow of ChIP-seq and RNA-seq. In both cases, the quality of the sequenced reads is checked before performing the alignment. The ChIP-seq
data analysis continues with peak calling, followed by differential binding analysis. Searching for motifs in the peak regions and peak annotation are crucial steps. For RNA-
seq, the aligned reads are quantified at gene level, the raw counts are then filtered and normalized to enable further comparisons. The differential expression analysis
provides a list of significant genes, from which biological meaning may be retrieved. QC: Quality control, DE: differential expression.
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for a given TF peak. For example, GREAT [52] allows the user to
pick from a number of association rules that assign genomic
regions to their target genes. Bioconductor/R packages such as
ChIPpeakAnno [53] and ChIPseeker [54] annotate large quantities
of peaks simultaneously and visualize the peak distribution within
certain genomic features.

One obvious shortcoming of this approach is that the three
dimensional character of chromatin is discounted. For instance,
distal cis-regulatory elements can physically interact with pro-
moter regions by DNA loop formation, bringing distant regions into
close spatial contacts [55]. Recent studies on the principles of
phase separation have revealed a surprising complexity of 3D chro-
matin dynamics, which are currently challenging to study [56].
New NGS methods such as Hi-C [5] assess genome-wide chromatin
interactions and should be considered when assigning peaks to
their potential targets. However, Hi-C currently lacks the resolu-
tion to go beyond topology associating domains. Promoter-
capture Hi-C [57] overcomes this shortcoming, but it only detects
the proximity of genomic regions, which may not reflect functional
interactions, as is the technical limitation of all ligation-based
assays.

3.3. RNA-seq

With the advent of RNA-seq, or whole transcriptome shotgun
sequencing, it became possible to screen the entire transcriptome
of any organism or even single cells by NGS. Transcriptome analy-
sis consists of the quantification of all kinds of transcripts (mRNA,
microRNA, noncoding RNAs etc.), differential expression analysis,
de novo transcript assembly as well as determining the transcrip-
tional structures of genes [58,59].

RNA-seq identifies and quantifies RNA species at a given time
point (as RNA abundance is not stable over time) in biological sam-
ples. Experimentally, the RNA is extracted, randomly fragmented
and reverse transcribed into cDNA with adaptors attached to one
or both ends. After PCR amplification and sequencing, the raw data
consists of a list of reads with associated quality scores for each
sample, which are then subjected to RNA-seq data analysis.

Here we focus only on the application of RNA-seq for differen-
tial gene expression analysis and we briefly summarize the most
common necessary steps (Fig. 3).

3.3.1. Preprocessing
The steps for preprocessing raw data are comparable to those of

ChIP-seq experiments (see section 3.2.1). The downstream analysis
essentially consists of mapping, quantification, filtering and nor-
malization, detection of differentially expressed genes and finally
the biological interpretation of the results.

3.3.2. Read mapping
The process of assigning reads to their best matching location in

the reference is referred to as mapping. Fragments can either be
mapped to a reference transcriptome or genome. In the former
case, all isoforms of a gene are considered separately, whereas in
the latter, reads are aligned to the underlying genes, regardless
of what isoform the read stems from [60].

The most popular, splice-aware alignment tools, which rely on a
reference genome are STAR [61], TopHat [62], TopHat2 [63], and
Bowtie2 [36] (Fig. 2B). In the case of mapping to a transcriptome,
popular efficient alignment-free tools quantify the transcripts
directly, for example Kallisto [64] and Salmon [65]. Their quantifi-
cation is based on k-mers, i.e. they fragment the reads into all pos-
sible k-mers and then map only the unique ones to the pre-indexed
transcriptome.

Multi-mappers (i.e. reads mapping to multiple locations), repre-
sent a significant fraction of mapped reads and are bioinformati-
cally challenging. The simplest approach is to discard
ambiguously mapped reads and keep only uniquely mapped ones.
Another modality is to keep all matches, which leads to an amount
of mapped reads beyond the number of raw reads. It is also possi-
ble to use a scoring function to find the best possible alignment,
and in case of equal scores distribute the reads randomly between
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loci. There is also the option to allocate ambiguous reads in relative
proportion according to probabilistic inference, for example in
RSEM [66] and TopHat [62]. The latter strategy might be the most
applicable, as it appears to produce the least bias in inferring dif-
ferential gene expression [67].

3.3.3. Gene or transcript level quantification
The counting and clustering of reads can be performed over dif-

ferent genomic features, such as transcripts or genes. The most
common is to estimate the gene level abundances, by counting
the number of reads/fragments overlapping the exons of the gene.
However, even for the best annotated human or mouse data, a sig-
nificant amount of the reads will map outside annotated exons
[68].

Widely used quantification tools are CuffLinks [69], fea-
tureCounts [70], kallisto [64] and Salmon [65]. While fea-
tureCounts is an exon-based approach, kallisto and Salmon are
transcript based approaches, which rely on an Expectation Maxi-
mization for estimating transcript abundances. In either case, the
final output is a matrix of read/fragment counts, where each row
corresponds to a feature of interest, while the columns represent
the different samples.

3.3.4. Filtering and normalization
Importantly, the choice of normalization method has a bigger

impact on the results than the mapping method or the test statis-
tics used for finding differentially expressed genes [71,72].

There are two types of normalization to account for biological or
technical bias: within and between sample normalization. In the
first case, comparisons between the features of a single sample
are enabled by correcting for gene length and sequence composi-
tion, for example GC-content [73]. In the second case, for across
sample feature comparisons, normalization is performed to adjust
for the library size [74,75]. To set a cutoff, zero or low count genes
are omitted from the count table.

Of note, when correcting for sequencing depth, the assumption
is that the total expression is similar under different conditions, so
each condition is assumed to have the same amount of mRNA per
cell [76]. In this case using the total count normalization, each read
count will be divided by the sum of the reads of the sample [77].
The RPKM method (reads per kilobase per million mapped reads)
is based on total count normalization, but accounts also for the
length of the gene [78].

Other very popular methods rely on capturing information from
non-changing genes. For example, the Trimmed Mean of the M-
values approach implemented in the edgeR package assumes that
the majority of genes are not differentially expressed and excludes
those that are differential from the normalization factor [79]. It
selects a reference sample for computing logarithm count ratios
after trimming differential genes, and uses their mean for normal-
izing read counts. The DESeq normalization [47] is similar, but it
computes the count ratio of a reference sample relative to the geo-
metric mean of all other samples for each gene, then uses the med-
ian of these for scaling the reference counts.

3.3.5. Differential gene expression
After normalization, Principal Component Analysis can be used

for visual data inspection to detect and remove outlier samples
[80], which would distort downstream analyses. Another way to
visualize the results of the read normalization and check for out-
liers is by heatmaps. The R package ComplexHeatmaps [81] offers
highly customizable row and column annotations such as dendro-
grams, based on different distance functions. This way of including
unsupervised clustering offers an intuitive way to interpret the
overall similarity in expression across samples and genes.
Initially, RNA-seq count data was approximated with the Pois-
son distribution, under the assumption that reads follow a random
sampling process [82,83]. However, since the variance and mean of
RNA-seq counts are not equal, the negative binomial distribution
was found to be more adequate [84,85]. The most popular
approaches that were developed consequently include DESeq2
[86] and edgeR [46].

As mentioned in the previous subsection, DESeq and DESeq2
both assume a negative binomial distribution of the counts and
have two parameters, the dispersion and the mean. The dispersion
describes how much the variance (i.e. within-group variability)
deviates from the mean (Var Kij = mij + ai m2ij, where ai is the dis-
persion parameter) and it is estimated in three steps. First, with
maximum likelihood, a dispersion value is estimated for every
gene, then a curve model, as a function of the mean expression
level, is fitted to these values. Finally, a dispersion value is assigned
to every gene. In DESeq, this is computed as a function of the mean
by fitting a smoothed curve to the observed values. In DESeq2, the
dispersion value is assigned by using an empirical Bayes method to
shrink the gene-wise dispersion estimates close to the fitted
values.

When comparing the distribution of counts between different
groups, DESeq2 fits a generalized linear model (GLM) for each
gene, as defined by the design matrix. The coefficients represent
a log2 fold change in simple case-control experiments, but more
complex relations can also be modeled. After the fit, a hypothesis
test for differential expression is applied on the coefficient of inter-
est, i.e. whether they are different from 0 (the no effect case).
DESeq2 offers the use of the likelihood ratio test or the Wald test,
which can test individual coefficients, as well as contrasting them.

The different edgeR variants are also assuming a negative bino-
mial distribution. In edgeR classic, the quantile-adjusted condi-
tional maximum likelihood is used to estimate the dispersions,
conditioning on the total count of the particular gene [87]. Since
edgeR classic can only be used for designs with a single factor, an
exact test similar to Fisher’s exact test can be constructed to test
for differential expression [46]. The more advanced edgeR glm
[88] and edgeR robust [89] use the Cox-Reid profile-adjusted like-
lihood to estimate the dispersions, and fit a GLM as in DESeq, fol-
lowed by a likelihood ratio test for differential expression. To
reduce the influence of outliers, edgeR robust assigns weights to
observations based on their Pearson residual in the GLM fit.

To identify genes that change significantly in abundance across
different samples and conditions, testing methods focus on evalu-
ating the null hypothesis that there is no difference between con-
ditions, i.e. the log fold-changes between cases and controls are
exactly zero. A threshold of 5% on these p-values would limit the
number of false positives in a single test, but one still needs to
account for the large numbers of tests that are typically performed
in parallel. Under the assumption that the null-hypothesis is true,
when performing 20.000 tests, this would lead to 1.000 false pos-
itives. To control for type I errors (i.e. incorrectly rejected null
hypotheses), several methods controlling the family-wise error
rate (i.e. the probability of making at least one type I error) exist.
One of these, the Bonferroni correction [90], adjusts the signifi-
cance threshold by dividing the significance level ɑ by the number
of performed tests. In practice, this correction is too conservative,
and instead of controlling the family-wise error rate, the rate of
type I errors can be limited by false discovery rate (FDR) control-
ling procedures. The FDR is the fraction of false positives (falsely
rejected null hypotheses) among all results that were declared sig-
nificant (all rejected null hypotheses). Most commonly, the Ben-
jamini–Hochberg procedure (BH step-up procedure) is
implemented, which controls the FDR at a predefined level [91].
While adjusted p-values (i.e. q-values) are computed for each test,
the interpretations of p-values and q-values are quite different. For



Fig. 4. Data integration approaches. (A) ChIP-seq and RNA-seq data can be integrated in a discretized fashion by determining the overlap of significantly affected genes in the
2 assays. (B) Newer approaches combine ChIP-seq data from multiple TFs and HMs together with expression data and accessibility data such as DNase-seq and ATAC-seq.
They achieve data integration through various different mathematical concepts such GLMs, HMMs and deep neural networks to identify co-regulators, predict gene
expression or model TF binding. DE: differential expression, TF: transcription factor. This figure was created with BioRender (biorender.com).
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p-values, a cutoff of 5% means that 5% of all tests will result in false
positives, assuming that there are no differentially expressed genes
(the null hypothesis is true). However, the same cutoff for q-values
means that 5% of the significant tests are false positives (i.e. the
rate of false discoveries is 5%). Both in edgeR and DESeq2, the p-
values for each gene are adjusted for multiple testing, controlling
for the false discovery rate according to the Benjamini-Hochberg
procedure.

Calling a gene as being differentially expressed based on an FDR
cutoff alone has the disadvantage of including results whose effect
size, while being statistically significant due to the consistency of
the result, is biologically insignificant. Hence an additional filter
may be applied on the log2 fold change, at the risk of distorting
the FDR statistics in the selected subset. Accordingly, the SEQC
consortium [92] found that pipeline-dependent filters for p-
value, fold-change and expression-level are necessary to reproduce
results.
3.3.6. Biological interpretation of the results
Once a gene set of interest has been defined, enrichment anal-

yses can ascribe biological meaning. Gene Set Enrichment Analysis
[93] is the most widely used tool (Fig. 2B) and checks for significant
over- or underrepresentation of annotated gene sets, such as Gene
Ontology terms [94], within provided lists. Also, DAVID [95,96] is
an online platform which functionally annotates and classifies
genes.

Other approaches determine overrepresentation of selected
genes in metabolic pathways or map them to putative protein
interaction networks. These analyses obviously depend on prior
knowledge about those biological pathways. Gene lists can be
mapped onto specific pathways diagrams, and statistically signifi-
cant associations can be retrieved and visualized, for example
using the Kyoto Encyclopedia of Genes and Genomes [97], Reac-
tome [98] and WikiPathways [99]. Protein-protein interaction net-
works contribute to the system-level data interpretation. Known
cellular interaction networks represent another source of informa-
tion, since proteins that participate in the same biological process
may be more likely to interact. Therefore, integrative interactomics
aim to provide a similar view as pathway analyses, by exploiting
large interactomes identified in model organisms [100,101]. For
example, differentially expressed genes can be mapped to pro-
tein–protein interaction data, and then the functional clusters in
the networks could be determined. Important protein network
databases include IntAct [102], STRING [103] and BioGRID [104].
4. Data integration

Jointly characterizing multiple omics might enable an in-depth
understanding of the interplay between various cogs of the tran-
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scriptional machinery. Depending on the specific question, various
flavors of data integration could be applied (Fig. 4).

4.1. Identifying coregulators

TF ChIP-seq can serve to identify co-factors through motif anal-
ysis, which takes a number of sequences as input and finds motifs
(usually 8–16 bp in length) that are present more frequently than
would be expected [105]. In addition to the consensus motif
expected for the TF targeted by the specific antibody, other binding
sites for co-factors cross-talking with the protein of interest may
be enriched. Furthermore, motif analyses can pinpoint the exact
site within the ChIP peak that is occupied by the TF. Also, ChIP peak
lists can first be narrowed down by integrating expression data
before searching for distinct motifs associated with a defined tran-
scriptional outcome.

Exploring all possible solutions to find the highest ranking
motifs is still challenging. The most commonly used tool HOMER
[106] determines enrichment using cumulative hypergeometric
distributions. MEME-ChIP [107] applies expectation maximization
and Discrover [108] uses discriminative learning based on Hidden
Markov Models. Most tools perform de novo motif discovery as
well as testing for the enrichment of known-motifs, which are rep-
resented as position weight matrices (PWMs). Motif databases like
JASPAR [109], Cis-BP [110] and HOCOMOCO [111] store PWMs and
can be used by motif analysis tools to link the discovered
sequences to known consensus motifs.

4.2. Identifying epigenetic cofactors

In addition to the profiling and functional characterization of
individual histone marks, comprehensive models aim to combine
several dozens of epigenetic HMs [112]. For example, a multivari-
ate HMM on the combinatorial patterns of 38 different modifica-
tions, RNA polymerase II, H2A.Z and CTCF ChIP-seq data, was
used to define ‘‘chromatin states” and to systematically annotate
the genome at 200 bp resolution [113].

This approach of chromatin segmentation has since been imple-
mented and expanded by the NIH Roadmap Epigenomics Consor-
tium [13]. The Roadmap project integrated chromatin states with
DNA methylation, DNA accessibility and RNA expression to create
reference epigenomes for over 100 human cell types and tissues.

4.3. Identifying target genes

Classical strategies to investigate the direct and indirect targets
of a TF, are gain and loss of function experiments or specific treat-
ments in conjunction with controls. ChIP-seq and RNA-seq data of
matched samples may first be processed separately according to
their respective analysis standards, and then be combined in a dis-
cretized fashion. In order to obtain comparable results, ChIP-seq
peaks are usually assigned to nearest genes (see section 3.2.4).
Then, one can determine whether the genes that are differentially
expressed show concordant patterns of differential TF binding or
epigenetic modifications. A prevalent approach to assess the simi-
larity in changes across assays is to arrange those genes showing
differential ChIP signals, and those being differentially expressed,
as contingency tables and to test for overrepresentation with Fish-
er’s exact test. A common way to depict these numbers in publica-
tions is as a Venn diagram. The intersection, which represents
genes that have differential ChIP signals and expression changes,
can then further be displayed in a heatmap to visually inspect their
expression pattern (Fig. 4A). The biggest shortcoming of this
approach is that the results for both assays need to be binarized
by setting an arbitrary threshold to split the data into significant
and non-significant results.
A possible approach to avoid arbitrary cutoffs when integrating
the results of different experiments was proposed by Roider and
colleagues [114]. It was originally developed for a combination of
ChIP-chip and affinity data, but could be applied to combine p-
values of ChIP-seq and expression data as well. This method trans-
forms the results into ranked lists and systematically adjusts the
threshold to find the optimal cutoff, yielding the most significant
enrichment as measured by hypergeometric testing.

A way to avoid setting a hard p-value threshold on one of the
datasets is by performing gene set testing. The results of one plat-
form are hereby ranked according to a test-statistic of choice, and
the positions of the elements in a gene set on that ranked list, such
as the significant hits of another platform, are determined [115]. E.
g. RNA-seq results can be ranked based on a test statistic repre-
senting the degree of differential expression between two samples
(such as the t-value), and the genes with significant ChIP-seq peaks
can be indexed on the ranked list. This can then be used to test
whether the genes with ChIP-seq peaks tend to be more differen-
tially expressed than genes without ChIP-seq peaks.

In order to prevent setting thresholds altogether, the log2 fold
changes of expression and peak intensities can be tested for corre-
lation. Those genes that show alterations in ChIP-seq and RNA-seq
are likely direct or indirect targets of the TF.

More formally, BETA [116] assigns a regulatory potential to
each gene based on the number and proximity of TF binding sites
to its transcription start site, and, determines if the TF is mainly an
activator or a repressor in conjunction with the gene expression
data. Direct targets are selected using a rank product between
the RNA and ChIP data. Interestingly, BETA and Discrover [108] also
return differential motifs, which again might identify co-
regulators.

4.4. Predicting gene expression

It is still an open question whether TF binding strength (ChIP-
Seq) can be used to predict gene expression levels (RNA-Seq). A
study using the quantitative ChIP-seq signal of TFs around the
transcription start site could explain 67% of the variation in CAGE
data, i.e. nascent transcription, but performed poorly for total
RNA [117].

Conversely, chromatin marks and histone modifications (for
example H3K27ac) are more established predictors, with a small
number of HMs at promoter regions being sufficient to correlate
well with gene expression (Fig. 4B). It appears that the relationship
between the chromatin landscape and RNA expression can be gen-
eralized across different cell types [118].

Finally, IMAGE pinpoints transcriptional regulators by utilizing
PWMs to model the activity of a certain motif. This information
is then used to infer causality by modelling the contribution of
the motif to expression levels [119].

4.5. Predicting TF binding

Modelling cell-type specific gene expression on TF binding data
remains difficult, as the available ChIP-seq datasets for any given
cell type are still limited. In an attempt to predict gene expression
with fewer assays, tools hinging on chromatin accessibility in com-
bination with PWMs were developed.

4.5.1. Classical approaches
DNase-seq and ATAC-seq find cell type specific open regulatory

regions in the genome, which are prone to DNase I and Tn5 activ-
ity, respectively [120,121]. TF occupancy protects short sequences
from these cleavage enzymes, causing dips in the accessibility sig-
nal. Matching the protected sequence of these footprints with
known PWMs can identify the bound TF [122]. The presence of
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TF motifs within proximal and distal DNase I hypersensitive sites
can be quantified and used to generate scores or footprints for
regression models classifying tissue specific expression patterns
[123,124].

The CENTIPEDE [125] algorithm uses DNase-seq and HM data as
prior information to predict TF binding with hierarchical mixture
models. HINT [126] also uses accessibility data and HMs to calcu-
late active TF binding sites based on HMMs. This algorithm was
later extended by HINT-ATAC [127] to identify footprints in
ATAC-seq data, while correcting for transposase specific artifacts.

Continued interest in predicting in vivo TF binding for various
tissue types sparked the ENCODE-DREAM challenge which now
serves as a benchmarking study (https://www.synapse.org/#!
Synapse:syn6131484/wiki/402031).
4.5.2. Deep learning approaches
The availability of large amounts of training data and break-

throughs in high-performance computing such as the use of graph-
ical processing units (GPUs) have triggered a comeback of neural
networks in the analysis of genomic data [128].

Two methods based on convolutional neural networks (CNNs),
are DeepSEA [129] and DeepBind [130]. DeepSEA predicts chro-
matin features such as HMs, DNase I hypersensitive sites and TF
binding sites, and calculates how sequence alterations can affect
chromatin. DeepBind applies deep CNNs to predict both binding
affinity from sequence and the binding in vivo (as measured by
ChIP-seq).

The performance of deep learning is evidenced by FactorNet
placing in the top 3 of the DREAM challenge, predicting TF binding
from DNA sequences. Their convolutional-recurrent neural net-
works can predict cell type specific TF binding [126], leveraging
binding in a reference cell type and chromatin accessibility from
the cell type of interest.

Moreover, ExPecto [131] uses a deep CNN to predict HMs, TF
binding and other transcriptional regulators from DNA sequence
alone by training on ENCODE and Roadmap Epigenomics data.
These features are then transformed and fed into a cell type-
specific linear model to predict gene expression (whereas DeepSEA
only predicted the effect of non-coding variants on chromatin).

CNNs are also used in BPNet [132], which takes a DNA sequence
as input and directly predicts ChIPexo signals at single base resolu-
tion to elucidate how TF binding is influenced by the motif syntax.
This way, no information is lost in the intermediary peak calling
process which usually precedes motif discovery in a standard anal-
ysis pipeline, and the regulatory elements of multiple TFs can be
assessed simultaneously.
5. Conclusions & outlook

Taken together, the integration of multi-omics data can con-
tribute to decrypting transcriptional regulatory codes. With new
techniques and data forms constantly emerging, novel data inte-
gration methods are evolving. Besides data analysis tools, data-
bases provide meaningful biological interpretation.

Overall, the exact molecular mechanisms of TF binding, histone
modifications and transcriptional regulation are far from under-
stood. The field has moved from individual genes and factors
towards a higher dimensional view, integrating epigenetic marks,
distal regulatory elements and the 3D structure. Furthermore, live
cell imaging coupled with single-cell RNA-seq is on the rise.

Advancements in the development of experimental methods in
combination with novel analysis tools hold great potential. As
such, pooled CRISPR screening combined with single-cell RNA-
seq is a powerful method to investigate distinct perturbations in
thousands of individual cells. For example, Perturb-seq [133] cou-
ples gene inactivation using CRISPR with single-cell RNA-seq to
study phenotypic alterations in parallel in many cells. scMAGeCK
[134] is now able to find genes and enhancers which play a role
in cell proliferation, simply by associating common proliferation
markers.

Despite the progress in bioinformatics, the identification of
functional enhancer-promoter interactions remains challenging,
and in silico predictions still require high-throughput experimen-
tal validation. While STARR–seq [135] (self-transcribing-active-reg
ulatory- region-sequencing) creates genome-wide quantitative
enhancer activity maps, the recently published enCRISPRa and
enCRISPRi [136] epigenetic editing systems allow for functional
interrogation of enhancers in situ and in vivo.

To understand complex biological systems, specialized tools
merging different omics data sets like genomics, transcriptomics,
metabolomics, proteomics etc. and ultimately integrating not only
transcriptional data, will yield unprecedented insights into the fea-
ture space of systems biology.
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