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Abstract 

Background:  The implantation of screws is a standard procedure in musculoskeletal surgery. Heat can induce 
thermal osteonecrosis, damage the bone and lead to secondary problems like implant loosening and secondary 
fractures. The aim of this study was to investigate whether screw insertion generates temperatures that can cause 
osteonecrosis.

Methods:  We measured the temperature of twenty human femur diaphysis in a total of 120 measurements, while 
screws of different material (stainless steel and titanium alloy) and different design (locking and cortex screw) were 
inserted in three different screwing modes (manual vs. machine screwing at full and reduced rotational speed) with 
6 thermocouples (3 cis and 3 trans cortex). Each was placed at a depth of 2 mm with a distance of 1.5 mm from the 
outer surface of the screw.

Results:  The screw design (cortical > locking), the site of measurement (trans-cortex > cis-cortex) and the type of 
screw insertion (hand insertion > machine insertion) have an influence on the increase in bone temperature. The 
screw material (steel > titanium), the site of measurement (trans-cortex > cis-cortex) and the type of screw insertion 
(machine insertion > hand insertion) have an influence on the time needed to cool below critical temperature values. 
The combination of the two parameters (maximum temperature and cooling time), which is particularly critical for 
osteonecrosis, is found only at the trans-cortex.

Conclusion:  Inserting a screw hast the potential to increase the temperature of the surrounding bone tissue above 
critical values and therefore can induce osteonecrosis. The trans-cortex is the critical area for the development of tem-
peratures above the osteonecrosis threshold, making effective cooling by irrigation difficult. It would be conceivable 
to cool the borehole with cold saline solution before inserting the screw or to cool the screw in cold saline solution. If 
possible, insertion by hand should be considered.
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Background
The success of an osteosynthesis in trauma and orthope-
dic surgery depends on numerous factors. Some of them 
can be influenced by the surgeon and the technique used. 
Drilling holes and placing screws is an essential step in 
most osteosynthesis. This happens so often and routinely 
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that most surgeons are not aware of effects on bone. In 
particular, the possibility of thermally induced bony 
necrosis during screw insertion might be underestimated.

The heat generation during several surgical procedures 
(e.g. drilling) has the potential to irreversibly change and 
therefore weaken the mechanical competency of the 
bone and could be one factor leading to damage such as 
screw and implant loosening resulting in construct fail-
ure, re-fracture, and delayed union or malunion [1, 2].

Bone tissue necrosis occurs immediately, if the temper-
ature of 60 °C is exceeded [3]. At lower temperatures, the 
exposure time has a crucial influence on the occurrence 
of irreversible damage to the bone tissue. Whereas ten 
minutes at 45 °C cause thermal necrosis, only one minute 
at 47 °C is necessary to induce an irreversible damage. A 
heat of 50 °C causes necrosis after 30 s [3–5].

Drilling is a process that has already been extensively 
investigated with regard to heat development and opti-
mization. It was shown, that under special conditions a 
temperature of 70 °C was exceeded [6]. The following fac-
tors have been identified to have an impact on the heat 
development during drilling: design and size of the drill 
bit, force applied to the drill, the speed of the drill, the 
application of a coolant, the sharpness and the times of 
reuse of the drill bit [7–10].

While Augustin et al. were able to demonstrate that the 
optimal method of drilling to generate as little heat as 
possible was the use of lower drill speeds and higher feed 
rates [11], there have been few studies to date that deal 
with factors influencing the temperature development 
during screwing in human bone.

Therefore, the aim of this study is to investigate if oste-
onecrotic temperatures can be induced by the screw 
insertion. Additionally, different conditions and their 
influence on temperature generation have been exam-
ined. Hence, the screw material, the screw design and the 
screwing mode have been investigated in a standardized 
method.

Methods
Study design
We measured peak temperature and duration while 
screws of different material (stainless steel and tita-
nium alloy) and design (locking and cortical screw) were 
inserted into the human femoral diaphysis in three dif-
ferent screwing modes (manual and machine screwing 
at full and reduced rotational speed), for a total of 120 
measurements. Each single combination of parameters 
was tested 5 times.

Specimens
Ten pairs of fresh-frozen human femoral diaphysis 
(length 15 to 20 cm) were used. The mean age of the 

donors was 77.4 years (range 60–93 years). Six of the 
donors were female, four male.

BMD analysis
Bone mineral density (BMD) of the cortical bone was 
determined for all specimens within the diaphyseal 
region by means of a peripheral quantitative computer 
tomography (pQCT). Therefore, all specimens were 
packed under vacuum and thawed to room tempera-
ture. CT scan with a slice thickness of 0.63 mm was per-
formed (SOMATOM Emotion 6 CT scanner, Siemens 
Healthcare GmbH, Erlangen, Germany). Image data 
given in Hounsfield unit (HU) was calibrated to volumet-
ric BMD (vBMD) values given in mg hydroxyapatite per 
ccm (mgHA/ccm) using a BMD phantom (Model. No. 
8783219, Siemens AG, München, Germany). The BMD 
was measured within a region of interest (ROI) over 12 
slices.

Implants
30 × 5 mm head locking screws (15 made of titanium 
alloy and 15 made of steel) and 30 × 4.5 mm cortical 
screws (15 made of titanium alloy and 15 made of steel) 
were used for this investigation (Fig.  1; DePuy Synthes, 
Zuchwil, Switzerland). All screws had a length of 56 mm. 
Each screw was used for two measurements, which 
allowed us to perform 120 tests in total with 60 screws. 
In a preliminary test, no statistically significant difference 
between the first and second screwing process of the 
same screw could be found.

Specimen preparation
Specimens were thawed at room temperature and then 
fixed in a standard bench vise.First, six screw holes per 
femur diaphysis were pre-drilled following standard sur-
gical recommendations using 4.3 mm (locking screws) or 
3.2 mm (cortical screw) drill bits. For all drilling opera-
tions we used a commercially available non-surgical 
cordless screwdriver (Fa. Würth - Model BS 18A Com-
pact, Künzelsau, Germany).

In order to consider the working length of each screw, 
we measured the cortical thickness for the cis- and the 
trans-cortex at each drill hole using a depth gauge prior 
to inserting the screw. Additionally, all parameters (mate-
rial, design, screwing modes) were examined on one pair 
of specimens in order to minimize the influence of bone 
density/thickness as far as possible.

To measure temperature near the screw hole, a cus-
tom-made jig was inserted into each of the pre- drilled 
screw holes. It was thus possible to drill six 1 mm holes 
around each screw hole (three at the cis- and three at 
the trans-cortex). These holes had a depth of 2 mm and 
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were placed at a distance of 1.5 mm from the screw 
outer surface (Fig. 2).

After preparing the bones as described above, we 
implanted six PFA-isolated thermocouples (Fa. TC 
Direct, Mönchengladbach, Germany Typ T- Nr. 401–
304, ∅0,02 mm) into the 1 mm pre-drilled holes and 
adapted them with “Arctic MX-2 Compound” insula-
tion gel to ensure temperature conductivity. A seventh 
sensor was placed next to the bone as a reference value 
with the room temperature.

Temperature measurement
All measurements were performed at room temperature. 
Three screwing modes were tested on each bone: manual 
insertion, full speed and reduced speed machine drilling. 
For manual insertion a standard surgical screwdriver was 
used. For insertion with the drilling machine, standard 
compressed air-operated surgical drilling machine was 
adapted, so that a standardized free-running speed could 
be guaranteed with the help of a rotary wheel. Two dif-
ferent power settings (688 rounds per minute (rpm) and 
787 rpm; the compressed air line was adjusted to 8 bar) 

Fig. 1  Photograph taken by the authors showing the screws used for this investigation. All screws had a length of 56 mm. A cortex screw steel, 
4,5 mm B locking screw steel,5 mm C cortex screw titanium, 4,5 mm D locking screw titanium, 5 mm

Fig. 2  Photograph taken by the authors showing a specimen with pre-drilled screw holes and prepared holes for the thermocouples. Within one 
screw-hole a titanium locking screw is placed surrounded by three thermocouples in the cis- and three in the trans-cortex
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were used to simulate a full speed insertion as well as a 
reduced speed insertion.

Before each measurement, the correct position of 
the thermal sensors was checked. Each individual test 
lasted for 120 s. By placing the sensors, it was possible to 
derive the temperature at the cis- and the trans-cortex 
separately.

To calculate the cooling time until the temperature 
increase falls below 10 Kelvin, the measured tempera-
ture was mathematically interpolated (linear range in 
the cooling phase), and the resulting time determined. 
For this purpose, only the values of the sensors with a 
temperature rise of more than 10 K were used and aver-
aged for further calculation. Under physiological condi-
tions (body temperature 37 °C), the evaluated cooling 
time means the time required for the bone tissue to fall 
below the temperature of 47 °C [2–5]. To estimate which 
parameters have particularly high risks of exceeding oste-
onecrotic thresholds, we combined the parameters (max-
imum temperature and cooling time) and tightened the 
limits even more (maximum temperature increase 15 K) 
and a necessary cooling time of more than 70 s. Thus, we 
can safely assume osteonecrotic values [2–5].

Modified temperature coefficient for bones
In addition, a modified temperature coefficient for bones 
(mTCb) was calculated, which allowed us to investigate 
the temperature development in relation to the density of 
the tested bone. The coefficient is based on the assump-
tion that there is a correlation between the temperature 
development and the amount of bone(mass) around the 
predrilled canal (Fig.  3). The coefficient describes the 
temperature increase in Kelvin relative to 1 g bone mass.

Using the BMD and volume of the cylinder (radial 
distance (rd) and cortical thickness (t)), the mass of the 
region of interest can be calculated.

The influence of the variation in bone density and cor-
tical thickness is thus eliminated and statements can be 
made independently, e.g., on the material of the screw.

The mTCb does not describe the temperature gradient 
over a wider area in the bone.

Data acquisition and evaluation
With the implemented 7 thermocouples the tempera-
ture while screw insertion was recorded using a 8 chan-
nel thermocouple data logger by Pico Technology (Pico 
Technology, Cambridgeshire, United Kingdom). The soft-
ware used for data recording was the PicoLog-Recorder 
(Pico Technology, Cambridgeshire, United Kingdom, 
Windows, Release 5.21.5).

The temperature was recorded in degrees Celsius with 
a frequency of 10 Hz. For each side (cis- and trans-cor-
tex), an average of the three sensors/cortex was used in 
order to approximate the average temperature increase. 
In the event that the screw directly touched a thermo-
couple, this sensor was excluded.

Additionally, for all measurements with a tempera-
ture increase of more than 10 K the time necessary to fall 
below the 10 K values was evaluated.

Statistical analysis
Statistical evaluation was performed using Microsoft 
Excel 2016 (Version 16.16.1, Microsoft Cooperation, 
Redmond, USA) and SPSS software package (Version 26, 
SPSS, Chicago, IL, USA).

mTCb =
�T

mass
=

�T

BMD × cylinder volume
;

[

K

g .

]

Fig. 3  Schematic illustration created by the authors (using Inventor Professional 2016, Autodesk, San Rafael, United States) for the calculation of 
mTCb
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The parameters were each determined using a Man-
Whitney-U test or a Kruskal-Wallis). Significance level 
was set at p = 0.05 for all statistical tests.

Results
A summary of all results is given in Table 1.

Bone mineral density
Mean bone mineral Density was 1125.13 mgHA/ccm 
(Range from 932.65 to 1221.65 mgHA/ccm, SD 95.0 
mgHA/ccm).

General heating
The average heating over all measurements was 12.04 K 
(SD 6.67 K), the mean value for the mTCb is 0.159 K/g 
bone (SD 0.86). The mean time necessary to fall below 
the critical 10 K values was 61.27 s (SD 32.81).

Screw‑material
No significant difference in temperature development 
was seen when comparing steel and titanium screws 
(Fig. 4, p = 0.447 for delta K and p = 0.295 for the mTCb). 
The cooling time was significant longer for the steel 

screws (p = 0.013). This is especially the case with the 
combination of steel and cortex screw (steel+cortex: 69 s. 
vs. steel+locking: 60 s., p = 0.289).

Screw‑design
When comparing cortical and head locking screws, a 
significant higher temperature increase for the cortical 
screw design could be found (p = 0.000 for delta K and 
p = 0.002 for the mTCb). (Fig. 5). There was no significant 
difference in the cooling time (p = 0.599).

Location of measurement
On average, the temperature sensors on the trans-cortex 
heated up more than those on the cis-cortex (p = 0.000 
for both delta K and mTCb, Fig.  6). Additionally, the 
cooling time is significant longer for the trans-cortex 
(p = 0.000).

Mechanism of screw insertion
Manual screw insertion was associated with the high-
est heat generation followed by machine screw insertion 
at reduced speed (p = 0.541) and full speed (p = 0.021, 

Table 1  Summary of results as mean temperature increase [K] with (SD) and mean time [sec] with (SD) necessary to fall below the 
critical 10 K temperature increase. All values with more than 10 K temperature increase or more than 60 s. to fall below critical 10 K 
temperature value are marked light yellow. All values with more than 15 K increase or mor than 70 s. were marked in dark yellow. In red 
all critical values are marked (combination of more than 15 K heating AND more than 70 s. cooling time)
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Fig.  7). There was no statistical difference between full 
and reduced speed machine insertion (p = 0.549).

However, manual screw insertion showed similar 
increase at cis- and trans-cortex (p = 0.645), whereas 
both machine insertions showed significant higher 

increase at the trans-cortex (reduced speed: p = 0.000, 
full speed: p = 0.000). The same is true for the considera-
tion of the coefficient instead of the temperature in K.

Regarding the cooling time manual insertion showed 
similar times at the cis- and trans-cortex (below 60 s.), 

Fig. 4  Box-plot diagram of the temperature increase and cooling time for both screw materials

Fig. 5  Box-plot diagram of the temperature increase and cooling time for both screw designs



Page 7 of 10Paul et al. BMC Musculoskelet Disord          (2021) 22:841 	

Fig. 6  Box-plot diagram of the temperature increase and cooling time at the cis- and trans-cortex for all measurements

Fig. 7  Box-plot diagram of the temperature increase and cooling time at different mechanisms of screw insertion
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whereas both types of machine insertion showed signifi-
cant longer cooling times at the trans-cortex (reduced 
speed: p = 0.000, full speed: p = 0.000).

Critical combination (> 15 K heating AND > 70 s. cooling)
The first thing to note is that the combination of these 
critical values occurs only at the trans-cortex. Parameters 
that lead to these critical values being exceeded are the 
screw material steel, the cortical screw design and the 
insertion of the screw with the machine both at reduced 
and full speed.

Discussion
During drilling and also during screw insertion, the 
resistance of the cortical bone causes an increase of the 
temperature in the surrounding bone tissue. The main 
cause for the temperature increase is frictional heat [11–
14]. Several parameters have already been identified for 
drilling that have an influence on temperature develop-
ment. For example, Chen et al. were able to show that the 
temperature increases with the thickness of the cortical 
bone, the bone density and the drill diameter [15].

In order to answer the question of whether osteone-
crotic temperatures occur while screw insertion, the 
hypothesis must first be made that the temperature dif-
ference achieved at room temperature would be con-
stant at body temperature conditions (37 °C). Assuming 
normal body temperature conditions of 37 °C for the 
bone in vivo and considering the osteonecrotic tempera-
ture limit of 47 °C set by Eriksson et al. [3], osteonecro-
sis would already occur from a temperature difference 
of 10 °C. Under this assumption, 134 of the 240 meas-
urements (trans- and cis-cortex considered separately) 
would have exceeded or at least reached osteonecrotic 
temperatures (> 47 °C). In addition to the absolute tem-
perature increase, a second parameter, the duration of 
the critical temperature rise, is important for the devel-
opment of osteonecrosis and must be considered [3–5].

In a preliminary test, we were unable to determine any 
significant influence of a second use of the screw (cortex 
and locking screw) with regard to an increased tempera-
ture development. This might be important also for intra-
operative application. The surgeon can replace a screw 
and reuse it at another location without having to fear an 
increased risk of thermal induced osteonecrosis.

Our investigation showed that the screw material (tita-
nium alloy and stainless steel) has no significant influ-
ence on the temperature development, but steel screws 
showed a significant longer cooling time. A possible rea-
son for this result could be the different properties of the 
materials in terms of thermal conductivity. Due to their 
better thermal conductivity, steel screws absorb and 
release more heat. Titanium screws, on the other hand, 

absorb less heat due to their lower thermal conductivity 
and can therefore also release less heat.

However, the screw design has significant impact on 
the heat generation. Higher temperatures were achieved 
by the cortical screw design compared to the head lock-
ing screw design. The cortical screw design has a larger 
surface area, which would actually favor heat dissipation, 
but it has only about 60% of the mass of the head locking 
screw design. Thus, the heat can be dissipated less into 
the screw and remains in the bone.

Additionally, the trans-cortex showed significantly 
higher temperatures over all measurements compared to 
the cis-cortex. Furthermore, the cooling time was signifi-
cantly longer for the trans-cortex, too. It can be assumed 
that the greatest frictional forces occur at the screw tip 
(thread cutting) and accumulate in the trans-cortex. The 
heat is then transmitted to the bone tissue of the trans-
cortex and leads to a significantly higher heating. Addi-
tional attention must be given to the medullary canal. 
In the present study, this was no longer completely filled 
with medullary material due to sample preparation. This 
influences the temperature development and dissipation.

We can identify some parameters that lead to a criti-
cal combination at the trans-cortex (> 15 K temperature 
rise and > 70 s. cooling time). The screw material steel, 
the screw design cortex screw and the insertion of the 
screw with machine at reduced and full speed are to be 
regarded as unfavorable.

An investigation by Manoogian et al. confirmed the sig-
nificant influence of the screw design. They investigated 
the heat generation the during insertion of standard 
and self-drilling Schanz-Pins into mid-diaphysis bovine 
femora. This group showed the highest temperature rise 
for the self-drilling pins followed by the insertion of self-
drilling pins into a pre-drilled hole. The lowest rise was 
found for the insertion of standard pins into a predrilled 
hole [16].

The mechanism of screw insertion also seems to have 
a substantial impact on the heat generation. The high-
est temperature rise was found when the screws were 
inserted by hand, as opposed to the lowest in the group 
using full speed machine insertion. But, the cooling time 
shows uncritical values for the manual screw insertion. 
The relatively high temperature increase can be explained 
by an increase in both the cis- and the trans-cortex 
(whereas when screwing with the machine, only the 
opposite cortex shows a relevant temperature increase). 
Thus, manual screw insertion can be defined as safe 
method of screw insertion.

Both steps of placing a screw, the drilling and the screw 
insertion, have the potential to increase temperature of 
the surrounding bone tissue above critical values and 
therefore can induce osteonecrosis. This can finally result 
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in screw loosening or ultimate failure of the osteosynthe-
sis [3, 16, 17]. The trans-cortex in particular is affected by 
a critical increase in temperature and a long cooling time.

One effective strategy to prevent osteonecrosis during 
drilling is sufficient irrigation. Sener at al. investigated the 
effects of irrigation on heat generation in different drill-
ing depths. Interestingly, they found the highest rise in 
temperature without irrigation in a depth of 3 mm. With 
irrigation the highest temperature was found in 12 mm 
depth, but the temperature maximum was only 36.4 °C. 
Using saline solution with a temperature of 10 °C all 
measurements were below body temperature [18]. This 
technique only allows cooling around the entry point 
when screwing in screws. Therefore, the effectiveness 
especially in the trans-cortex region is limited. It would 
be conceivable to irrigate the screw holes with cold saline 
before inserting the screw or to cool down the screw in 
a cold saline bath prior to insertion. Recently, Bruketa 
et al. described a method that allows cooling during drill-
ing by using a cannulated drill bit perforated at the tip in 
combination with flow rate control. The group was able 
to demonstrate that the application is possible without 
increasing intramedullary pressure. This system pro-
vides a means of cooling the drill bit and the bone. How-
ever, the efficiency of the cooling was not investigated in 
this work [19]. In addition, it is known from studies by 
Haddad et al. that cooling bones prior to deburring has 
a tendency to increase the fusion rate and bone strength 
after the healing process. It is therefore questionable 
whether cooling not only limits damage but also pro-
motes bone healing [20].

This study also has limitations. The experiments have 
been performed at room temperature and not at body 
temperature. This was done in accordance with the study 
of Matthews and Hirsch, who found no difference in the 
temperature rise during bone drilling in in  vivo and in 
in  vitro [8]. Additionally, we used standardized labora-
tory settings for drilling and screw insertion to minimize 
confounding co-factors. This does not fully represent the 
intraoperative setting in an operation theater.

Conclusion
Both steps of placing a screw, drilling and screw inser-
tion, have the potential to increase the temperature of the 
surrounding bone tissue above critical values and there-
fore can induce osteonecrosis.

Relevant influence on temperature development is the 
screw design (cortical > locking), the location of meas-
urement (trans-cortex > cis-cortex) and the mode of 
screw insertion (hand insertion > machine insertion).

Relevant influence on cooling time have the screw 
material (steel > titanium), the location of measurement 

(trans-cortex > cis-cortex) and the mode of screw inser-
tion (machine insertion > hand insertion).

Critical combination of both parameters (> 15 K heat-
ing AND > 70 s. cooling) can only be found at the trans-
cortex. Parameters that lead to these critical values being 
exceeded are the screw material steel, the cortical screw 
design and the screw insertion with the machine both at 
reduced and full speed.

The screw design and the location of measurement 
cannot directly be influenced. The higher temperature 
development at the trans-cortex makes effective irri-
gation problematic. It would be conceivable to cool the 
borehole with cold saline solution before inserting the 
screw or to cool the screw in cold saline solution.

The surgeon, however, should be aware that the tech-
nique of insertion of the fixation elements may influence 
the later outcome of the entire construct. If possible, 
insertion by hand and irrigation should be considered.
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