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ABSTRACT

Objective: Foodborne diseases pose a significant
public health concern globally. This study aims to
analyze the correlation between disease prevalence and
climatic conditions, forecast the pattern of foodborne
disease outbreaks, and offer insights for effective
prevention and control strategies and optimizing health
resource allocation policies in Guizhou Province.

Methods: This study utilized the x 2 test and four
comprehensive prediction models to analyze foodborne
disease outbreaks recorded in the Guizhou Foodborne
Disease Outbreak system between 2012 and 2022. The
best-performing model was chosen to forecast the
trend of foodborne disease outbreaks in Guizhou
Province, 2023-2025.

Results: Significant variations were observed in the
incidence of foodborne disease outbreaks in Guizhou
Province concerning various meteorological factors (all
P<0.05). Among all models, the SARIMA-ARIMAX
combined model demonstrated the most accurate
predictive performance (RMSE: Prophet
model=67.645, SARIMA model=3.953, ARIMAX
model=26.544, SARIMA-ARIMAX model=26.196;
MAPE:  Prophet  model=42.357%,  SARIMA
model=37.740%, ARIMAX model=15.289%,
SARIMA-ARIMAX model=13.961%).

Conclusion: The analysis indicates that foodborne
disease outbreaks in Guizhou Province demonstrate
distinct seasonal patterns. It is recommended to
concentrate prevention efforts during peak periods.
The SARIMA-ARIMAX hybrid model enhances the
precision of monthly forecasts for foodborne disease
outbreaks, offering valuable insights for future
prevention and control strategies.

A foodborne disease outbreak occurs when two or
more cases of a similar clinical illness arise from a
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common  food source, as determined by
epidemiological investigations, or when such exposure
results in one or more fatalities (7). Outbreaks of
foodborne illnesses exert a more profound impact on
individuals, families, and public health systems
compared to isolated incidents of foodborne illnesses
(2). Forecasting future patterns of foodborne disease
outbreaks can facilitate the provision of healthcare
resources, inform targeted interventions, and help
prioritize preventative measures (3—4). The incidence
of foodborne diseases is influenced by multiple factors,
including the immune competence of individuals,
improper food handling practices, and characteristics
of the pathogens involved (5). Additionally, with the
ongoing trend of global warming, the interplay
between foodborne diseases and climate change is
becoming more pronounced. Nevertheless, domestic
research exploring the link between weather patterns
and foodborne disease outbreaks is sparse. Moreover,
some predictive studies of foodborne disease outbreaks
have overlooked meteorological variables (6).

This study aims to develop a prediction model
utilizing data from the “Guizhou Foodborne Disease
Outbreak Surveillance System” between 2012 and
2022. The objective is to forecast future trends,
identify crucial prevention and control measures for
foodborne disease outbreaks in Guizhou Province, and
lay the foundation for crafting prevention and control
strategies, early warning systems, and health resource
distribution policies. The ultimate goal is to decrease
the frequency of foodborne disease outbreaks and
mitigate associated risks.

METHODS

This study utilized data from the “Guizhou
Foodborne Disease Outbreak Surveillance System” at
the Guizhou Center for Disease Control and
Prevention. Meteorological data from the World
Weather Information Service (http://worldweather.
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wmo.int/zh/home.html) and China Weather Network
(http://www.weather.com.cn) were collected for each
city and state in Guizhou Province from 2012 to 2022.
Five monthly average weather indicators were analyzed:
average monthly rainfall, average monthly rainfall days,
average monthly relative humidity, monthly relative
humidity, and average hours of sunshine.

The data was organized using Excel 2019
(Microsoft, Redmond, WA, US), and SPSS 24.0
(IBM, Armonk, NY, US) was utilized to perform the
x? test for the reported prevalence of foodborne
disease outbreaks. The statistical analysis considered
differences to be significant at P<0.05. The rate of
foodborne disease outbreaks was the dependent
variable, while climate factors were the independent
variables. Each climate factor was categorized into five
groups based on its magnitude. The x? test was
employed to assess the statistical significance of
differences in disease rates among the various factor
groups.

Due to the seasonal patterns of foodborne disease
outbreaks and their correlation with climatic
conditions, this research utilized the seasonal
autoregressive integrated moving average (SARIMA)
model. The study also applied the autoregressive
integrated moving average with exogenous regressors
(ARIMAX) model and a combination of SARIMA-
ARIMAX models (7). The Prophet model served as a
reference for comparison. Given the complexity of the
analysis process with fewer random variables (8), a
substantial sample size spanning from 2012 to 2022
was necessary for reliable results. The time series
prediction model was developed using R 4.2.2 (R Core
Team, Vienna, Austria), with parameters selected for
model fitting assessment (9).

RESULTS

Prevalence of Foodborne Disease
Outbreaks in Guizhou Province in

Climatic Conditions

For the investigation
outbreaks under varied climatic conditions, the study
classified average monthly rainfall into five categories:
from 5 to 65.2 mm, 65.2 to 125.4 mm, 125.4 to
185.6 mm, 185.6 to 245.8 mm, and 245.8 to
306 mm. The number of rainy days per month was
similarly grouped: 4 to 7.2 days, 7.2 to 10.4 days, 10.4
to 13.8 days, 13.8 to 16.8 days, and 16.8 to 20 days.
Average monthly temperature was divided into the
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ranges of 2.7 to 8.6 °C, 8.6 to 14.5 °C, 14.5 t0 20.4
°C, 20.4 t0 26.3 °C, and 26.3 to 32.2 °C. For monthly
relative humidity, the categories were set from 62.0%
to 66.8%, 66.8% to 71.6%, 71.6% to 76.4%, 76.4%
to 81.2%, and 81.2% to 86.0%. Lastly, average
sunshine hours per month were categorized into ranges
of 1.8 to 3.06 hours, 3.06 to 4.32 hours, 4.32 to 5.58
hours, 5.58 to 6.84 hours, and 6.84 to 8.1 hours. The
x? test results revealed statistically significant
differences in the incidence rates of foodborne disease
outbreaks across the various climatic categories in
Guizhou Province from 2012 to 2022. The ) 2 values
are respectively: 2,122.142, 1,066.166, 2,753.543,
1,656.289, and 1,739.290, all  P<0.001
(Supplementary Table S1, available at https://weekly.
chinacdc.cn/).

Results of Predictive Model

Based on the Prophet model: According to
Supplementary Figure S1 (available at https://weekly.
chinacde.cn/), the prediction plot generated by the
Prophet model (Supplementary Figure S1A) displayed
that all predicted values fell within the 95% confidence
interval (CI). The assessment metrics indicated a good
fic of the Prophet model with RMSE=67.645 and
MAPE=42.357%. This demonstrates the model's
capability in capturing the general incidence trend and
seasonal patterns of foodborne disease outbreaks. The
upper segment of Supplementary Figure S1B suggests a
potential increasing trend in foodborne illnesses in
Guizhou Province in the future. The lower segment of
Figure S1B illustrates the seasonal pattern of foodborne
disease outbreaks, highlighting a peak season from June
to September.

Based on the SARIMA model: In this study, 16
SARIMA models were finally listed, and three better
models were selected for the series based on the AIC
and BIC criteria. Each of the three models is expressed
as SARIMA (1,1,1) (0,1,1);,, SARIMA (0,1,2)
(1,1,1)12, SARIMA (0,1,2) (1,1,1)12. The BIC Vall,lCS
for the three models were 1,317.555, 1,322.103, and
1,321.861; the AIC values were 1,306.864, 1,308.739,
and 1,308.497, respectively. For the three alternative
models initially selected, RMSE and MAPE were used
as the main prediction accuracy evaluation indexes,
and the RMSE values of the three models were 53.953,
60.489, and 62.301, respectively; and the MAPE
values were 37.740%, 36.021%, and 37.209%,
respectively. A comprehensive comparison of the AIC
and BIC values of the alternative models revealed that
the SARIMA (1,1,1) (0,1,1);, model is the best, as can
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be seen in its prediction graph, fits well with the actual
reported values (Supplementary Figure S2, available at
https://weekly.chinacdc.cn/).

Based on the ARIMAX model: In this study, 16
ARIMAX models were evaluated, and three models
were chosen based on AIC and BIC criteria. The
selected models are ARIMAX (1,1,1) (0,1,1),
ARIMAX (0,1,1) (0,1,1), and ARIMAX (1,1,1)
(1,1,1). The BIC wvalues for these models were
1,321.170, 1,325.520, and 1,324.470, while the AIC
values were 1,308.400, 1,310.320, and 1,309.270,
respectively. RMSE and MAPE were used to assess
prediction accuracy, with the RMSE values being
26.544, 28.614, and 67.999, and the MAPE values
being 15.289%, 20.441%, and 44.102%, respectively.
Comparing the AIC and BIC values, the model
ARIMAX (1,1,1) (0,1,1) was found to be the best,
showing good agreement with actual data
(Supplementary Figure S3, available at https://weekly.
chinacdc.cn/).

Based on the SARIMA-ARIMAX combination
model: The RMSE and MAPE values were used to
compare the predictive performance of two models
simultaneously. The optimal sub-models selected were
SARIMA (1,1,1) (0,1,1);, with a MAPE value of
37.740% and ARIMAX (1,1,1) (0,1,1) with a MAPE
value of 15.289%. Weight coefficients of 0.246 and
0.654 were assigned to the SARIMA and ARIMAX
models, respectively, based on calculations. The
expression for the combined SARIMA-ARIMAX
model is:

Ft+h|t = 0'246ﬁ,t+/9|t + 0'654ﬁ,t+/9|t

The respective predictive outputs of two submodels
are weighted according to their associated coefficients
and then aggregated to determine the forecast of the
combined SARIMA-ARIMAX model. This integrated
approach was employed to model the occurrence of
foodborne disease outbreaks in Guizhou Province from
2012 to 2022. The resulting fitted data aligned well
with the original trend (Supplementary Figure S4,
available at https://weekly.chinacdc.cn/). Data from
foodborne disease outbreaks between January and
December 2022 constituted the test set. Evaluation of
this test set indicated that the combined SARIMA-
ARIMAX model achieved RMSE of 26.196 and
MAPE

Comparison of Forecasting Models
Upon a thorough examination of the prediction
curves of various models forecasting the occurrence of
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foodborne disease outbreaks in Guizhou Province from
January to December 2022, it is evident that all
models' projected values align closely with the actual
data. Analyzing the RMSE and MAPE metrics, the
SARIMA, ARIMAX, and SARIMA-ARIMAX models
developed in this study outperform the benchmark
Prophet model. Additionally, the ARIMAX model
surpasses the SARIMA model individually, while the
combined SARIMA-ARIMAX model excels over the
three standalone models. Forecasts using the optimal
SARIMA-ARIMAX model for 2023 to 2025 indicate a
stable trend in foodborne diseases in Guizhou
Province, with approximately one to two peak periods
each year (Supplementary Figure S4, available at
hteps://weekly.chinacdc.cn/).

DISCUSSION

Foodborne illness represents a significant public
health challenge globally, and in China, it stands as the
paramount concern for food safety (10-11). Factors
influencing the incidence of foodborne disease
outbreaks are manifold, including human, natural, and
geographic variables, with distinct characteristics
observed across various regions (/2). Enhancing
rescarch on foodborne disease outbreaks within
different localities aids in devising prevention and
control strategies that are more effectively customized
and targeted, thereby diminishing the impact and
burden of these outbreaks (73). In this study, a time
series analysis was performed using surveillance data of
foodborne disease outbreaks in Guizhou Province
spanning from 2012 to 2022 to forecast future
patterns. Findings indicated that outbreaks in Guizhou
Province exhibited marked seasonal trends, with
statistically significant correlations between incident
rates and meteorological factors, and predicted a
relatively stable trend moving forward.

Analysis of foodborne disease outbreaks in Guizhou
Province indicates that variations in outbreak rates
across climatic subgroups are statistically significant,
aligning with findings from the study by Xiaojuan Qi
et al. (/4). Predictive models also revealed seasonal
spikes in outbreaks, with higher incidences occurring
during the warmer and wetter months of summer and
autumn. These patterns suggest a probable link
between climate change and the prevalence of
foodborne (15). While the
proliferation of such diseases can be attributed to a
range of factors, including environmental conditions,
climate, insect vectors, and human behavior (76),
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research has established that shifts in climate can
influence the frequency of foodborne infections. For
instance, a rise in average temperatures may enhance
the growth of pathogens like Salmonella and
Campylobacter, thereby escalating the risk of foodborne
(17). Nonetheless, these influences are
multifaceted rather than straightforward and warrant
comprehensive study and analysis.

Forecasting plays a crucial role in decision-making
and planning, especially in predicting foodborne
disease outbreaks. The combination of various
prediction models suggests a gradual increase in
foodborne disease outbreaks in Guizhou Province over
the next few years. This indicates the importance of
maintaining rigorous monitoring, warning, prevention,
and control measures. Analysis of prediction graphs
highlights June—September as peak incidence months,
with possible yearly peaks. Timely intervention
strategies, effective communication, and proactive
measures are essential for reducing the occurrence of
foodborne disease outbreaks during these critical
periods.

Each model possesses unique strengths and
weaknesses. Although the Prophet model yields clearer
results, it lacks the predictive capabilities of the
SARIMA, ARIMAX, and the combined SARIMA-
ARIMAX models. The SARIMA model demonstrated
superior predictive performance compared to the
Prophet model in forecasting episode numbers within a
single model but fell short of the multivariate analysis
model, ARIMAX. Overall, the combined SARIMA-
ARIMAX model exhibited the highest predictive
accuracy among the four models.

The SARIMA-ARIMAX model,
weighted by MAPE, demonstrated superior predictive
performance compared to other models. The forecast
suggests that the frequency of foodborne discase
outbreaks in Guizhou Province may exhibit a relatively
stable trend during the period of 2023 to 2025, with
one or two peak occurrences annually.

The findings highlight the pivotal role of accuracy,
completeness, and chain consistency in foodborne
disease outbreak reports for the stability of prediction
models. Factors affecting foodborne outbreaks extend
beyond meteorological conditions to include local
and dietary aspects.
prediction models should prioritize authentic data
acquisition, incorporate various influencing factors,
and integrate multidisciplinary approaches to enhance
accuracy and reliability.
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SUPPLEMENTARY MATERIAL

Methods

The Prophet model: The Prophet model is based on treating time series as a function of t and utilizes curve fitting
to forecast, distinguishing it from traditional time series models as it aligns more with machine learning methods. It
is user-friendly, effective, and precise, commonly serving as a benchmark model due to its attributes. Moreover, it
offers detailed statistical insights and visual aids with strong interpretative capabilities, making it well-suited for
predictive tasks across different industries and situations.

The SARIMA model: The SARIMA forecasting model is a well-established tool for predicting time series data
and is extensively employed in domains such as infectious diseases, economics, and energy (/-3). The essence of the
SARIMA model lies in its ability to treat data exhibiting seasonal patterns as a stochastic process. This process
involves capturing the temporal dynamics and inherent properties of the data to model the trajectory of the
phenomena in question. By leveraging past and current observations, the model facilitates forecasting of future
values with reliable accuracy, making it particularly valuable for real-time predictions. SARIMA models are noted
for their proficiency in handling data that display both trends and seasonal fluctuations, hence their prevalence in
practical applications. The structure of a SARIMA model is denoted as SARIMA (p, d, q) x (P, D, Q)s, where “d”
and “D” represent the orders of non-seasonal and seasonal differencing, respectively, with “s” indicating the length
of the seasonal period. Additionally, “p” and “q” are the orders of the autoregressive and moving average
components, with “P” and “Q” being their seasonal counterparts. Building a SARIMA model involves a five-step
process: initial preprocessing of the data (time series characterization), data smoothing, model identification and
parameter testing, assessing the model’s forecasting performance, and ultimately projecting future trends.

First, Sequence preprocessing: Prior to analyzing a series of observations, it is essential to perform tests to evaluate
smoothness and randomness of the sequence, commonly referred to as white noise testing. This sequence
preprocessing involves two primary methods for assessing smoothness: 1) graphical analysis, where judgments are
made based on the visual inspection of the time series plot and the autocorrelation coefficient (ACF) plot; 2)
hypothesis testing that involves constructing a test statistic to determine smoothness. In this study, we
predominantly utilized graphical analysis. If the time series and ACF plots exhibit clear trends or periodicity, the
sequence is deemed non-smooth and requires smoothing, typically achieved through differencing methods.
Concurrently, from a statistical perspective, a purely random series (white noise) is considered devoid of analytic
significance. Therefore, it is imperative to conduct a test for pure randomness. We employed the Ljung-Box test for
this purpose, with P<0.05 indicating the presence of non-white noise in the time series, thereby qualifying it for
further analysis.

Second, Smoothing: Considering the evident seasonal cyclic distribution pattern of the incidence event series,
initially apply the first-order 12-step differencing technique to eliminate the temporal trend and seasonal impacts.
The differencing is performed using the “diffs()” function in R 4.2.2 software, and subsequently, using the
“adf.test()” function in R 4.2.2 to assess smoothness. If the sequence is confirmed to be smooth at this stage,
denoted as a smooth sequence (4), then it indicates d=1 and D=1. Otherwise, further differencing steps are
necessary.

Third, Model identification: Model identification was performed to account for the complex relationship between
seasonal effects, long-term trends, and random fluctuations in the time series of foodborne disease outbreak
incidences in Guizhou Province. Since a seasonal additive model might not suffice, a multiplicative seasonal model
was chosen. The selection of P, Q, p, and q values was based on the ACF and partial autocorrelation coefficient
(PACF) plots after smoothing the series, leading to the identification of potential models. The final values were
determined through residual tests using Akaike information criterion (AIC) and Bayesian information criteria (BIC)
(5).

Fourth, Parameter testing: A parametric significance test was conducted using the t-statistic and the function pt()
to determine the P-value for each parameter in the model. A parameter is considered statistically significant and
included in the model when P<0.05, indicating its effect on the dependent variable. Conversely, a parameter is
excluded if P>0.05, suggesting its corresponding independent variable is not significant in influencing the

dependent variable (6).
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Fifth, Evaluation of the forecasting accuracy and trend prediction: A significance test was conducted on the model
using the Ljung-Box test on the residuals. The ts.diag() function was utilized for this purpose, where if >0.05
indicates a white noise sequence, confirming that the model effectively captures the data information and is
statistically significant in its effectiveness.

The ARIMAX model: When incorporating related input sequences (independent variables) into a predictive
model, the prognostic accuracy for a target sequence is enhanced, due to the interdependence of the various
sequences. The ARIMAX model, a subset of multivariate time series analysis, incorporates these related sequences to
improve prediction accuracy significantly. In our research, we included factors that demonstrated statistically
significant associations on the x 2 test within the ARIMAX forecasting model. Constructing the ARIMAX model
entails a six-step process: preprocessing of the data (characterization of time series), testing for interdependencies,
smoothing the data, identifying the model and validating its parameters, assessing the forecasting performance, and
projecting trends (7). We utilized the gridExtra() function in R 4.2.2 to create a matrix for the series of
meteorological factors and employed the forecast() package for the prediction tasks. These methodological steps
align closely with those used in the SARIMA model.

The SARIMA-ARIMAX combination model: Prior research has established that composite predictive models
often yield more accurate forecasts than those based on a single model (8-10). Consequently, this study aims to
construct a combined SARIMA-ARIMAX model. It has been demonstrated that employing a mean absolute
percentage error (Mean Absolute Percentage Error, MAPE) weights combination method enhances predictive
accuracy (11); thus, we adopt this approach to balance the limitations inherent to individual models. To do so, the
data regarding the incidence of foodborne disease outbreaks are segmented into three intervals: 2012-2021 serves as
the training set; January to June 2022 as the validation set; and July to December 2022 as the testing set. Initially,
the training set is utilized to develop sub-models. These models’ forecasts are compared to actual outcomes to
calculate prediction errors and assign corresponding weights—smaller errors result in larger weights and vice versa.
Subsequently, MAPE values are computed for the validation set to determine the weight coefficients for the sub-
models, which are then validated. The final phase involves testing the composite model using the test data; the final
forecast is derived by multiplying each model’s predicted values by its respective weights. The model formulation is

as follows:
N

Ef+/7|t = Z Wili,t+h|t

=1

Where N represents the number of single models included in the combined model, £, represents the final

t+h|t
prediction result at a time point 7+ 4 based on time t, s .rey) TEPTESENLS the prediction result ofl a single model 7, and
w; is the corresponding weight for the i model, and the final prediction result is the sum of the product of weight
coefficients and predicted outputs of each model.

In this study, the weight coefficients for each sub-model in the combined model were determined based on the
MAPE. The reciprocal of the MAPE value was used to calculate the weight of each sub-model in the combination
(12). MAPE serves as a metric to evaluate the accuracy of prediction models, highlighting their strengths and
weaknesses. A lower MAPE value for a sub-model indicates higher prediction accuracy, leading to increased

importance in the combined model and a higher weight coefficient (13).

Where i =1, 2, ..., N, represents that there are N sub-models in the combined model; represents the absolute
. -1 . .
percentage error of the ith sub-model, and ;" represents the inverse of the absolute percentage error of the ith sub-
model; and w; represents the weight coefficient of the ith sub-model (w;>0).

Model Evaluation Indexes
In this study, we utilized root mean square error (RMSE) and MAPE as evaluation metrics to determine the
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predictive capabilities of the model. Lower RMSE and MAPE values indicate higher prediction accuracy and better
model fitting.

RMSE is defined as the square root of the average of squared differences between predicted and actual values,
thereby scaling the measure to the same magnitude as the predictions. This standardization facilitates the assessment
of predictive models and allows for the comparison of prediction errors across different models within the same
dataset. Additionally, RMSE illustrates the model’s sensitivity to outliers. Meanwhile, MAPE serves as an indicator
of predictive accuracy. MAPE is computed by dividing the absolute difference between actual and forecasted values
by the actual value for each period, expressing the average proportional error across the entire test set. Due to its
representation in percentage terms, MAPE is a favored metric for expressing prediction errors and is commonly
utilized in both regression analysis and model evaluation (74).

RMSE =115 () =)’

MAPE=1 Y o) =21
S Ji

Where n is the amount of data, f(x,) is the predicted value, and y; is the true value.
SUPPLEMENTARY TABLE S1. Prevalence of foodborne disease outbreaks in Guizhou Province, 2012-2022.

Factors Subgroups Exposures  Morbidity number Prevalence (%) X P
[5.000-65.200) 20,412 3,525 17.269 2,122.142  <0.001
[65.200-125.400) 28,769 4,394 15.273
Average monthly rainfall (mm) [125.400-185.600) 20,442 3,875 18.956
[185.400-245.800) 7,084 2,375 33.526
[245.800-306.000) 3,894 626 16.076
[4.000-7.200) 1,297 389 29.992
[7.200-10.400) 2,245 895 39.866 1,066.166  <0.001
Monthly rainfall days (d) [10.400-13.800) 16,031 3,189 19.893
[13.800-16.800) 38,946 5,310 13.634
[16.800-20.00) 22,082 5,012 22.697
[2.700-8.600) 3,293 874 26.541
[8.600—14.500) 12,866 2,095 16.283 2,753.543  <0.001
Average monthly temperature (°C) [14.500-20.400) 15,101 2,827 18.721
[20.400-26.300) 31,048 4,345 13.994
[26.300-32.200) 18,293 4,654 25.441
[62.00-66.800) 1,828 648 35.449
[66.800—71.600) 2,402 552 22.981 1,656.289  <0.001
Monthly relative humidity (%) [71.600-76.400) 25,896 5,202 20.088
[76.400-81.200) 45,571 7,594 16.664
[81.200-86.000) 4,904 799 16.293
[1.800-3.060) 16 241 2388 14.704
[3.060-4.320) 11038 2092 18.953 1,739.290 <0.001
Average hours of sunshine (h) [4.320-5.580) 31011 4961 15.998
[5.580-6.840) 15 875 3326 20.951
[6.840-8.100) 6 436 2028 31.510
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SUPPLEMENTARY FIGURE S1. Prophet model projections of the number of incidents of foodborne disease outbreaks in

Guizhou Province from 2012 to 2022. (A) The Prophet model prediction plot; (B) the general and seasonal trends of
outbreaks.
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SUPPLEMENTARY FIGURE S2. SARIMA model prediction of foodborne disease outbreaks in Guizhou Province from 2012
to 2022.

Abbreviation: SARIMA=seasonal autoregressive integrated moving average.

S4 CCDC Weekly / Vol. 6/ No. 18 Chinese Center for Disease Control and Prevention



China CDC Weekly

Forecasts from Regression with ARIMA(1,1,1)(0,1,1),,

500

Number of cases

=500

2010 2015 2020 2025 2030

Year

SUPPLEMENTARY FIGURE S3. ARIMAX (1,1,1) (0,1,1),, model prediction of the number of incidences of foodborne
disease outbreaks in Guizhou Province from 2012 to 2022.
Abbreviation: ARIMAX=multiple difference autoregressive moving average model.
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SUPPLEMENTARY FIGURE S4. Optimal model’s trend prediction of the number of foodborne disease outbreaks in
Guizhou Province from 2023 to 2025.
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