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Stromal cells are a subject of rapidly growing immunological interest based on their ability

to influence virtually all aspects of innate and adaptive immunity. Present in every bodily

tissue, stromal cells complement the functions of classical immune cells by sensing

pathogens and tissue damage, coordinating leukocyte recruitment and function, and

promoting immune response resolution and tissue repair. These diverse roles come

with a price: like classical immune cells, inappropriate stromal cell behavior can lead to

various forms of pathology, including inflammatory disease, tissue fibrosis, and cancer.

An important immunological function of stromal cells is to act as information relays,

responding to leukocyte-derived signals and instructing leukocyte behavior in kind. In

this regard, several members of the interleukin-6 (IL-6) cytokine family, including IL-6,

IL-11, oncostatin M (OSM), and leukemia inhibitory factor (LIF), have gained recognition

as factors that mediate crosstalk between stromal and immune cells, with diverse roles in

numerous inflammatory and homeostatic processes. This review summarizes our current

understanding of how IL-6 family cytokines control stromal-immune crosstalk in health

and disease, and how these interactions can be leveraged for clinical benefit.
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THE DIVERSE ROLES OF STROMAL CELLS IN IMMUNITY AND
INFLAMMATION

The term “stroma” refers to the non-parenchymal components of tissues that form a supportive
matrix in which parenchymal cells reside (1). While a confusingly broad array of cell types
have been described as “stromal cells,” in this review they are defined as non-hematopoietic,
non-epithelial mesenchymal cells, including fibroblasts, myofibroblasts, bonemarrow stromal cells,
and the specialized fibroblast-like stromal cells of secondary lymphoid organs. Other mesenchymal
populations such as endothelial cells, adipocytes, and muscle cells, while of great interest, are
largely omitted from this discussion for the sake of brevity and clarity. Long considered to
be mere structural entities without specialized functions, an explosion of data in the last two
decades has established stromal cells as key regulators of both protective and pathological immune
responses (2).

Regulation of immune function by stromal cells has beenmost extensively studied in the context
of secondary lymphoid organs. First identified in 1992, podoplanin (PDPN)+ fibroblastic reticular
cells (FRC) form a dense reticular network in lymph nodes that facilitates leukocyte migration and
antigen presentation (2–5). By producing soluble chemokines, cytokines, and other factors—such
as CCL19 (C-C motif chemokine ligand 19), CCL21, and IL-7 (interleukin 7)—FRC are crucial for
controlling leukocyte recruitment, survival, and proliferation. FRC-like stromal cells play similar
roles in other lymphatic tissues, such as in tertiary lymphoid organs of the intestinal mucosa (6, 7).
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In non-lymphoid tissues, stromal cells can exert similar effects
to those of the secondary lymphoid organs by acting as scaffolds
for leukocyte migration and by producing a diverse array of
cytokines and chemokines (2).

Importantly, the immunological functions of stromal cells
can vary substantially depending on their host organ and
physiological context. For example, lymph node FRC recruit
CCR7 (C-C chemokine receptor type 7)+ T cells (naïve
and central memory) and CCR7+ dendritic cells (DC) to
lymph nodes by producing the chemokines CCL19 and
CCL21, as well as the pro-survival cytokines IL-7 and IL-
15, thereby coordinating T cell activation and maintenance
(4). In contrast, stromal cells in peripheral tissues generally
lack expression of CCL19 and CCL21; accordingly, naïve
and central memory T cells are infrequent in the periphery.
However, expression of various pattern recognition and cytokine
receptors by non-lymphoid tissue stromal cells allows them
to sense microbial molecules and endogenous danger signals
(1, 8, 9). In response, they produce chemokines [including
CCL20 and CXCL10 (C-X-C motif chemokine ligand 10)] that
attract effector T cells to sites of inflammation. Furthermore,
inducible expression of leukocyte adhesion molecules including
ICAM-1 (intercellular adhesion molecule 1) and VCAM-1
(vascular cell adhesion molecule 1) allows tissue-resident
stromal cells to further influence the balance between leukocyte
recruitment, retention, and recirculation (1, 2, 9). Finally,
stromal cells contribute directly to immune response resolution
and tissue repair, the latter being one of their best studied
functions. Examples of “pro-resolution” factors produced by
stromal cells include NOS2 (nitric oxide synthase 2) and NO
(nitric oxide), which are released by lymph node FRC to
constrain T cell proliferation (10–12), and IDO1 (indoleamine
2,3-dioxygenase 1) produced by peripheral stromal cells,
which similarly limits T cell proliferation by depleting the
critical T cell metabolite tryptophan (13, 14). Thus, stromal
cells in different tissues collectively regulate the strength,
quality, and duration of immune responses via diverse and
complementary mechanisms.

As with most immunological processes, communication
between stromal and immune cells is highly dependent on
cytokines. Stromal cells bear receptors to a variety of biologically
diverse cytokines that represent virtually all branches of
innate and adaptive immunity, including innate inflammatory
cytokines [e.g., TNF (tumor necrosis factor) and IL-1β], Th1
cytokines [e.g., IFN-γ (interferon gamma)], Th2 cytokines
(e.g., IL-13), Th17 cytokines (e.g., IL-17A), and tolerogenic
cytokines [e.g., TGF-β (transforming growth factor beta)]
(7, 9, 15, 16). In turn, stromal cells can be prodigious
producers of other cytokines and chemokines, such as IL-6
(1, 2, 7, 9). In recent years, cytokines of the IL-6 family
have gained increasing attention for their roles in various
homeostatic and pathological processes, which in many cases
can be attributed to their ability to co-ordinate immune-
stroma crosstalk. This review aims to provide a focused update
on the contributions of IL-6 family members to immune-
stromal interactions.

AN OVERVIEW OF THE IL-6 CYTOKINE
FAMILY

The IL-6 family includes IL-6, IL-11, IL-27, IL-31, oncostatin
M (OSM), leukemia inhibitory factor (LIF), ciliary neurotrophic
factor (CNTF), cardiotrophin 1 (CT-1), and cardiotrophin-
like cytokine factor 1 (CLCF1) (17, 18). With the exception
of IL-27, which is a heterodimeric protein comprised of IL-
27p28 and EBI3 (Epstein-Barr virus-induced gene 3) (19), IL-6
family members are compact 4-helix bundle cytokines made
from a single polypeptide. Glycoprotein 130 (gp130, encoded
by the IL6ST gene) is a crucial receptor subunit utilized by
all members of the IL-6 family except IL-31. While gp130
expression is relatively ubiquitous in a wide variety of tissues and
organs, cell-type specificity for different IL-6 family members is
bestowed by the more restricted expression patterns of ligand-
specific co-receptors, including IL-6R (IL-6 receptor), IL-11R
(IL-11 receptor), IL-27Rα (IL-27 receptor alpha), OSMR (OSM
receptor), LIFR (LIF receptor), and CNTFRα (CNTF receptor
alpha). Three distinct forms of receptor-ligand complexes have
been described (Figure 1). First characterized was that of
IL-6, which engages IL-6R along with two subunits of gp130.
Intriguingly, although this implies the formation of a trimeric
complex, a series of cooperative interactions can ultimately
produce an interlocked hexamer comprised of two subunits
each of IL-6, IL-6R, and gp130 (20). A similar structure is
likely formed in response to IL-11/IL-11R interaction (21, 22).
In this arrangement, only gp130 drives signal transduction,
due to an absence of intracellular signaling motifs in IL-6R
and IL-11R. In contrast, OSMR, LIFR, and IL-27Rα form
heterodimers with gp130 in the presence of their cognate
ligands (23–28). Unlike IL-6R and IL-11R, OSMR, LIFR, and
IL-27Rα are capable of driving signal transduction via their
own suite of signaling motifs. Finally, CNTF and CLCF1
drive formation of a trimeric complex that includes gp130,
LIFR, and CNTFRα (29–31). The gp130-independent outlier
of the family, IL-31, engages a heterodimeric complex of IL-
31Rα (previously known as gp130-like receptor) and OSMR
(18). Notably, while mouse OSM binds with high affinity only
to the gp130/OSMR heterodimer, human and rat OSM can
bind with high affinity to either gp130/OSMR or gp130/LIFR
heterodimers (32–34). Thus, in rats and humans, manipulation
of LIFR would be expected to affect both OSM and LIF signaling
(as well as CLCF1, CT-1, and CNTF), while manipulation
of OSMR would influence OSM and IL-31 signaling. As a
corollary, changes in human or rat OSM bioavailability would
influence cells that express OSMR and/or LIFR, while changes
in LIF or IL-31 would affect only LIFR- or IL-31Rα-expressing
cells, respectively.

All members of the IL-6 family drive signal transduction via
receptor-associated Janus kinases (primarily JAK1 and JAK2),
which phosphorylate a variety of conserved tyrosine residues in
the cytoplasmic domains of signaling receptor subunits (gp130,
OSMR, LIFR, IL-27Rα, and IL-31Rα) (17, 18, 35). Several
downstream signaling pathways are activated in response,
including signal transducer and activator of transcription
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FIGURE 1 | Receptor usage of IL-6 family cytokines. With the exception of IL-31, IL-6 family cytokines transduce signals via receptor complexes that include gp130

and one or more additional ligand-specific subunits. IL-6 and IL-11 signaling requires IL-6R and IL-11R, respectively. The cytoplasmic domains of these receptor are

short and lack signaling motifs, making gp130 the sole source of signal transduction downstream of IL-6 and IL-11. The heterodimeric cytokine IL-27 (comprised of

IL-27p28 and EBI3) requires a complex of gp130 and IL-27RA. LIF and CT-1 use a heterodimeric complex of gp130 and LIFR, while CNTF and CLCF1 signal via a

trimeric complex of gp130, LIFR, and CNTFRα, a GPI-anchored protein that does not directly contribute to signaling beyond facilitation of ligand binding. OSM

displays species-specific receptor usage. In humans and rats, OSM signals via either gp130/OSMR or gp130/LIFR complexes, while in mice OSM is primarily

recognized by OSMR. IL-31 does not require gp130, and instead uses a complex of OSMR and IL-31R. Aside from IL-6R, IL-11R, and CNTFRα, all receptors in the

IL-6 family are capable of directly activating signal transduction in response to ligand binding. IL-6 family cytokines employ classical JAK-mediated signaling. Major

downstream mediators include STAT3 (the main STAT for all except IL-27), STAT1 (activated preferentially by IL-27 and to a lesser extent by other IL-6 family

members), additional STATs that depend on cell type and physiological context (including STATs 4, 5, and 6), the MAPK cascade, PI3K/Akt/mTOR signaling, and

SRC/YAP/NOTCH signaling. Akt, protein kinase B; CLCF1, cardiotrophin-like cytokine factor 1; CNTF, ciliary neurotrophic factor; CT-1, cardiotrophin 1; EBI3,

Epstein-Barr virus induced 3; ERK, extracellular signal-regulated kinase; gp130, glycoprotein 130, also known as IL-6 signal transducer; IL, interleukin; IL-6R, IL-6

receptor; IL-11R, IL-11 receptor; IL-27RA, IL-27 receptor; CNTFRα, CNTF receptor; LIF, leukemia inhibitory factor; LIFR, LIF receptor; MAPK, mitogen activated

protein kinase; JAK, janus kinase; JNK, c-jun n-terminal kinase; mTOR, mammalian target of rapamycin; OSM, oncostatin M; OSMR, OSM receptor; PI3K,

phosphatidylinositol-3-kinase; STAT, signal transducer and activator of transcription; SRC, Proto-oncogene tyrosine-protein kinase Src; YAP, yes-associated protein.

(STAT) proteins (including STAT1, STAT3, STAT4, STAT5,
and STAT6), the mitogen-activated protein kinase (MAPK)
cascade, the phosphatidylinositol-3-kinase (PI3K)/Akt pathway,
and the SRC/YAP/NOTCH pathway (Figure 1). While signal
transduction by individual IL-6 family members is broadly
similar, the relative strength of activation of specific pathways
can differ depending on the cytokine, cell type, and physiological
context. For example, unlike gp130, OSMR efficiently recruits
the adapter protein SHC, allowing OSM to drive more potent
activation of the MAPK pathway than IL-6, which signals via
SHP-2 bound to gp130 (35, 36). Similarly, although STAT3
is generally considered to be the dominant STAT protein
activated by the IL-6 family, IL-27 preferentially activates
STAT1 (37). Further complexity is provided by the capacity
of IL-6, IL-11, and CNTF to signal via soluble receptor forms
in a process known as trans signaling. In this process, soluble
versions of IL-6R, IL-11R, or CNTFRα are produced either
through proteolytic cleavage of membrane-bound receptors,

or via expression of alternatively spliced mRNA; in either
case, the soluble receptor form can dimerize with its cognate
ligand in solution, and subsequently produce a functional
signaling complex in association with membrane-bound gp130
(18, 38–40). Cells thus require only gp130 to be sensitive
to trans signaling, which allows many cell types that lack
IL-6R, IL-11R, or CNTFRα to respond to these cytokines.
In the case of IL-6, trans signaling is thought to be a critical
mechanism by which IL-6 promotes disease pathogenesis,
particularly arthritis and colorectal cancer (18, 41, 42). Thus,
while many similarities exist between IL-6 family cytokines,
differences in their receptor usage, signal transduction
profiles, and patterns of receptor expression collectively
foster a substantial degree of functional pleiotropy. Indeed,
IL-6 family members influence cell survival, proliferation,
differentiation, metabolism, and migration, thus contributing to
a plethora of physiological processes that are critical for both
homeostasis and pathology.
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EXPRESSION OF IL-6 FAMILY CYTOKINES
BY STROMAL CELLS

Although some members of the IL-6 family are produced
primarily by hematopoietic cells (notably OSM and IL-27),
stromal cells can be important sources of several others,
including IL-6, IL-11, and LIF. Diverse factors appear to regulate
the expression of these cytokines by stromal cells, including
microbial sensing, detection of endogenous alarmins, stimulation
by other cytokines (including those within the IL-6 family
itself), and cell stress (Figure 2). Although these inputs are
known drivers of cytokine production, the critical drivers in
vivo, particularly under physiological conditions, are rarely
well defined.

In response to infection or an inflammatory challenge, IL-6
production is rapidly increased by stromal cells. Depending
on their location and the nature of the challenge, this could
be due to direct sensing of danger signals, responses to other
inflammatory cytokines, or both. As an NF-κB (nuclear factor
kappa B) response gene (43), IL-6 is induced by stromal cells
downstream of several pattern recognition receptors including,
but probably not limited to, toll-like receptor (TLR)2, TLR4, and
NOD2 (nucleotide binding oligomerization domain 2) (44–46).

The NF-κB activating cytokines IL-1β, IL-17A, and TNF (tumor
necrosis factor alpha) are also potent inducers of stromal IL-6
production, and can do so in synergy with one another (43, 47–
54). Although NF-κB is thought to be the dominant driver of
IL-6 production downstream of these cytokines, contributions
by MAPK signaling have also been observed. Indeed, signaling
by alternative pathways such as the MAPK and PI3K cascades
may underlie the ability of cytokines like OSM (55, 56), IL-4 (49),
and TGF-β (54, 57) to promote stromal IL-6 expression, since
these are not classical activators of NF-κB. Beyond cytokines and
danger signals, cadherin-11 (CDH11), a mesenchymal cadherin
that engages in homophilic interactions between adjacent cells,
has also been shown to drive IL-6 production via NF-κB and
MAPK signaling (53). Indeed, blockade of CDH11 attenuates
inflammation in mouse models of arthritis, an effect that may
be due in part to reduced IL-6 production by CDH11+ synovial
fibroblasts (53). Finally, IL-6 is a well-known product of the
senescence-associated secretory phenotype (SASP) in fibroblasts,
a feature associated with aging and cancer (58). Indeed, IL-6
produced by prostate tumor fibroblasts in response to metabolic
stress has been proposed to mediate malignant progression (59).

Less is known about the regulation of LIF and IL-11 expression
by stromal cells, but the mechanisms involved may be similar

FIGURE 2 | IL-6 family cytokine production by stromal cells and their biological effects. Stromal cells are important contributors to production of three members of the

IL-6 family: IL-6, LIF, and IL-11. Expression of these cytokines is regulated by various stimuli including recognition of bacterial products via TLR2, TLR4, or NOD2, and

diverse cytokines that drive activation of NF-κB, MAPK, PI3K, and STAT3. LIF has been shown to promote IL-6 expression via STAT4 signaling, while IL-4 and IL-13

can suppress LIF and IL-11 expression through activation of STAT6. Following production by stromal cells, IL-6, LIF, and IL-11 can influence diverse biological

processes including CD4+ T cell polarization, regulation of chemokine production, promotion of alternative macrophage differentiation, and tissue remodeling through

effects on stromal and epithelial cells. In this figure, arrows indicate stimulatory effects, and capped lines indicate inhibitory effects. All processes illustrated are

described further in the main text. CCL, C-C motif chemokine ligand; ECM, extracellular matrix; IL, interleukin; LIF, leukemia inhibitor factor; MAPK, mitogen activated

protein kinase; NF-κB, nuclear factor kappa B; NOD2, nucleotide-binding oligomerization domain-containing protein 2; OSM, oncostatin M; PI3K,

phosphatidylinositol-3-kinase; STAT, signal transducer and activator of transcription; TFH, T follicular helper cell; TGFβ, transforming growth factor beta; Th, T helper;

TLR, toll-like receptor; Treg, regulatory T cell.
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to those of IL-6. Like IL-6, LIF and IL-11 expression by stromal
cells can be induced by IL-1β, TNF, and TGF-β (60–64). Notably,
induction of both IL-11 and LIF in response to TGF-β stimulation
of cancer-associated fibroblasts is thought to promote tumor
progression (61, 62). Intriguingly, IL-4 and IL-13 were shown
to counteract TNF and IL-1β-induced expression of LIF and
IL-11, but not IL-6, by gingival fibroblasts (64). This effect was
dependent on STAT6, and provides a potential mechanism for
selective modulation of individual IL-6 family members.

RESPONSIVENESS OF STROMAL CELLS
TO IL-6 FAMILY CYTOKINES

Stromal cells express the necessary receptor subunits to respond
to the majority of gp130-dependent IL-6 family cytokines. In
general, gp130 and OSMR are ubiquitously expressed by stromal
cells from essentially all anatomical locations studied thus far.
OSM is therefore a major activating factor of stromal cells,
as well as various other mesenchymal populations including
endothelial cells, muscle cells, adipocytes, and osteoblasts (34,
56, 65). Expression of other ligand-specific receptor subunits
is more variable and depends on the cell type, anatomical
location, and physiological context. IL-6R, for example, tends
to be expressed at relatively low levels, and stromal cells are
correspondingly less sensitive to classical IL-6 signaling than
OSM. Indeed, expression of OSMR mRNA in human colon
fibroblasts is roughly 10x higher than that of IL-6R (55).
However, inflammatory conditions that yield soluble IL-6R can
increase stromal cell sensitivity to IL-6 due to trans signaling.
Responsiveness of stromal cells to LIF appears to vary widely
depending on anatomical location. For example, LIF induces
contractile and inflammatory phenotypes in dermal and synovial
fibroblasts, respectively, but has little effect on colon fibroblasts
(55, 62, 63, 66). Sensitivity of stromal cells to IL-11 and IL-27
has also been documented (67–73). In contrast, IL-31Rα does
not seem to be expressed by most stromal cells at physiologically
relevant levels (74, 75).

CONTROL OF INFLAMMATION AND
ADAPTIVE IMMUNITY BY THE
IL-6-STROMA AXIS

Exposure of stromal cells to factors such as microbial ligands or
inflammatory cytokines can drive IL-6 production during both
acute and chronic inflammation. Following infection of mice
by Toxoplasma gondii, for example, IL-6 expression was shown
to be elevated in a population of bone marrow stromal cells
characterized by high VCAM-1 and low CD146 expression, and
stroma-derived IL-6 was required for the increased myelopoiesis
that occurs as part of the host response to infection (76).
Bone marrow stromal cells also induce IL-6 in response to
viral infections such as CMV (cytomegalovirus) (77). During
Helicobacter hepaticus-driven colitis in mice, non-hematopoietic
stromal cells are the dominant intestinal producers of IL-6, with
expression levels that substantially exceed those of MHC-II+

myeloid cells (55). Interestingly, IL-6 expression may be a feature

of specific intestinal stromal cell subsets with distinct ontogeny
or activation states. For example, human OSMRhigh intestinal
stromal cells were found to be enriched in IL-6 expression
relative to their OSMRlow counterparts (55), consistent with
the well-established ability of OSM to induce IL-6 expression
in mesenchymal cells (78–86). Single-cell RNA-sequencing has
similarly revealed substantial heterogeneity in the intestinal
stromal cell compartment. High IL-6 expression is enriched
in a stromal cell subset that is rare in healthy individuals,
but dramatically expanded in patients with inflammatory bowel
disease (IBD) (87). Notably, these cells were further characterized
by expression of a variety of additional immunostimulatory
molecules, including IL-33 and the FRC-associated chemokines
CCL19 and CCL21, implying a specialized role in immune
regulation (87). Notably, a disease-associated single nucleotide
polymorphism (SNP) in the human IL6 promoter was shown
to control production of IL-6 by fibroblasts, but had no effect
on IL-6 expression by CD14+ monocytes, suggesting that host
genetics can also play an important role in determining stromal
IL-6 output (88).

Following initiation of acute inflammation, IL-6 can act on
several cell types to shape the quality of the ensuing immune
response. For example, IL-6 controls the balance between
inducible regulatory T cell (Treg) and Th17 differentiation
following activation of naïve CD4+ T cells (41). Although stromal
cells have not conclusively been demonstrated to contribute to
this process, FRC-derived IL-6 has been suggested to support
the development and maintenance of B cell responses. Medullary
FRC were shown to be important regulators of plasma cell
homeostasis, in part by producing the plasma cell survival factor
IL-6 (89, 90). IL-6 is also necessary for the differentiation of
follicular helper T cells (TFH), which drive the maturation of B
cells and the generation of protective antibody responses (91, 92).
Importantly, IL-6 induces production of IL-21 by TFH cells,
which is critical for both TFH maintenance and plasma cell
differentiation in germinal centers (93, 94). Publicly available data
provided by the ImmGen project suggest that FRC constitutively
express IL-6, and do so at levels that far exceed those of other
lymph node-resident cell types (95). Thus, FRC-derived IL-6 is
likely to be a central linchpin in the regulation of both T cell and
B cell responses in secondary lymphoid organs.

In inflamed peripheral tissues, IL-6 controls the temporal
switch from recruitment of granulocytes to preferential
recruitment of mononuclear cells by modulating chemokine and
cytokine production in local mesenchymal cells, including the
suppression of TNF and IL-1β production, possibly via STAT3-
mediated repression of NF-κB signaling (96, 97). IL-6 promotes
the differentiation of monocytes into macrophages rather than
dendritic cells in vitro, but genetic IL-6 deficiency does not
affect dendritic cell frequencies in vivo (98–101). However,
IL-6 appears to mediate alternative macrophage differentiation
in vivo and inhibits inflammatory cytokine production and
microbicidal activity by macrophages (102–105). IL-6 can also
promote survival and regeneration of damaged epithelia during
inflammatory challenges, a feature that can be subverted to
promote cancer progression (106). Thus, while IL-6 is important
for initiation of immune responses, it also promotes resolution
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of inflammation and tissue repair (54, 62). Notably, IL-6 protects
mice from the lethal inflammatory effects of Staphylococcal
enterotoxin B (SEB; a model of toxic shock), in direct contrast
with TNF (107).

Although IL-6 is an important regulator of physiological
immune responses, excess or chronic IL-6 production can
promote inflammatory or fibrotic pathology. IL-6 has been
implicated in a variety of inflammatory diseases, but is perhaps
best studied in the context of arthritis, a condition that can be
effectively treated via blockade of IL-6 signaling (42). Synovial
fibroblasts in inflamed joints are thought to be the major
source of IL-6, which is likely produced in response to a
variety of inflammatory factors including TNF, IL-1β, LIF, and
CDH11 (47, 53, 63). IL-6 is necessary for pathology in pre-
clinical models of antigen-induced and spontaneous arthritis,
in which it orchestrates a variety of inflammatory processes
including activation of CCL2 production by synovial fibroblasts,
differentiation of autoinflammatory Th17 cells, and bone erosion
via increased osteoclastogenesis (108–111). IL-6 has also been
shown to promote CCL20 production by fibroblasts, which may
further promote recruitment of inflammatory Th17 cells (112).
IL-6 appears to promote arthritis primarily via trans signaling,
likely because synovial fibroblasts and activated CD4+ T cells do
not express sufficient IL-6R to respond to IL-6 alone (108, 109).
Indeed, CCL2 production following IL-6 stimulation of synovial
fibroblasts requires the presence of soluble IL-6R, or a chimeric
IL-6/IL-6R protein known as “hyper-IL-6” (108). IL-6 has also
been shown to mediate fibrosis in the skin, lung, and heart (113–
116). Notably, in a phase 2 clinical trial of patients with systemic
sclerosis, a disease characterized by skin fibrosis, treatment with
actemra (tocilizumab; anti-IL6R) dramatically attenuated fibrotic
behavior and transcriptional signatures in dermal fibroblasts,
along with significant attenuation of disease severity (113).

REGULATION OF INFLAMMATION AND
HEMATOPOIESIS BY THE OSM-STROMAL
CELL AXIS

OSM is a pleiotropic cytokine with roles reported in a plethora
of homeostatic and disease settings (34, 56, 65). Unlike IL-6,
OSM is not generally produced at significant levels by stromal
cells, but is instead a product of various hematopoietic cell types,
including monocytes, macrophages, dendritic cells, neutrophils,
eosinophils, mast cells, and T cells (34, 56, 65). OSM is further
distinguished from IL-6 by the cellular distribution of its specific
receptors (OSMR and LIFR in humans; OSMR in mice), which
are largely restricted to non-hematopoietic cell types, notably
epithelial cells, fibroblasts, endothelial cells, adipocytes, and
neurons (34, 56, 65). OSM thus provides a means for leukocytes
to deliver information to non-hematopoietic cells in inflamed or
damaged tissues.

While little is known about the role of OSM in infectious
disease or other host-defense settings, OSM can clearly
influence hematopoietic homeostasis. OSM is necessary
for the maintenance of granulocyte-macrophage, erythroid,
megakaryocyte, and multipotential hematopoietic progenitor

populations in the bone marrow, an effect that likely involves
stimulation of bone marrow stromal cells by OSM (117–120).
The ability of OSM to drive expression of CXCL12 (SDF1) in
stromal cells may partly explain its effects on hematopoiesis
(119, 121–123). However, aging studies have shown that OSM-
deficient mice develop progressive hematological defects that
include reduced numbers of circulating leukocytes, erythrocytes,
and platelets, along with pronounced bone marrow adiposity.
OSM was shown to suppress adipose differentiation of murine
PDGFRα+ Sca1+ mesenchymal stem cells, thereby preventing
the development of “fatty” marrow and safeguarding the
hematopoietic niche (120). Several additional studies have
confirmed that OSM acts on stromal progenitors to suppress
adipocyte differentiation in favor of osteoblast development
(124–130), suggesting that OSM plays a fundamental role
in regulating the bone marrow microenvironment. Notably,
overexpression of OSM in bone marrow stromal cells promotes
the development of lethal myeloproliferative neoplasms and
bone marrow fibrosis in mice (131, 132).

Numerous studies have implicated OSM in the pathogenesis
of inflammatory conditions, including arthritis, inflammatory
bowel disease, psoriasis, and allergic airway inflammation.
Intra-articular adenoviral delivery of OSM causes arthritis-
like pathology characterized by robust leukocyte infiltration,
synovial hyperplasia, and erosion of bone and cartilage (133–
135). Consistent with these findings, antibody blockade of OSM
can reduce pathology in the collagen-induced and pristane-
challenge pre-clinical models of inflammatory arthritis (136).
Synovial fibroblasts respond to OSM by producing a wide
variety of inflammatory factors including cytokines (e.g., IL-
6), chemokines, (e.g., CCL2, CCL13, CXCL1), and leukocyte
adhesion factors such as ICAM-1 (78, 82, 83, 134, 137–139).
Furthermore, cytokine receptors such as IL1R1 (IL-1 receptor,
type 1), gp130, and OSMR are induced by OSM, suggesting that
OSM can sensitize synovial fibroblasts to additional cytokine
stimulation. OSM can synergize with TNF and IL-1β to promote
increased cytokine and chemokine expression, as well as high
MMP (matrix metalloprotease) to TIMP1 (tissue inhibitor of
metalloproteases) ratios to promote tissue damage. Remarkably,
OSM alone drives high TIMP1 expression (134, 135, 138, 140,
141), and OSM only promotes net tissue degradation when
acting in synergy with TNF, IL-1β, or IL-17A, suggesting that its
pathogenicitymay depend on the presence of other inflammatory
factors (135, 137, 138, 142).

Emerging data suggest an important role for OSM-stromal cell
interactions in barrier tissues, such as skin and intestinal mucosa.
Dermal fibroblasts express extracellular matrix components such
as collagens and glycosaminoglycans in response to OSM, and
display an interferon-like response featuring upregulation of
the viral RNA sensors RIG-I and MDA5 (143–146). While
sufficient to induce skin inflammation, OSM may not be
required for psoriasis-like pathology, as it is dispensable in
the aldara (imiquimod) challenge model of psoriasis (55, 147,
148). OSM and OSMR are also overexpressed in the lesional
skin of patients with atopic dermatitis, but whether OSM
signaling is required for pathogenesis of this condition is
unclear (147). A potentially non-redundant inflammatory role
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for OSM has been described for IBD, however. Unlike other
barrier tissues such as the skin, normal epithelial cells do not
express appreciable amounts of OSMR in either the mouse or
human intestine (55). Intestinal fibroblasts, however, are highly
sensitive to OSM and express a range of inflammatory factors in
response to OSM stimulation, including IL-6, CCL2, CXCL10,
and ICAM1. Like synovial fibroblasts, intestinal stromal cells
show a synergistic inflammatory response to combined OSM
and TNF treatment (55). Notably, genetic OSM deficiency or
OSM blockade using an OSMR-gp130 fusion protein attenuates
colitis in a dysbiosis-driven model of IBD that is refractory
to anti-TNF therapy. Furthermore, OSM, OSMR, and stromal
OSM response genes are highly predictive of resistance to
anti-TNF therapy (e.g., infliximab and golimumab) in IBD
patient cohorts, suggesting that high OSM expression drives
an inflammatory axis that is mechanistically distinct from that
of TNF (55). Intriguingly, OSM was not found to affect the
early acute kinetics of colitis induction, but instead interfered
with the resolution of inflammation, thereby contributing to
disease chronicity and cumulative tissue damage. Experiments
involving adenoviral overexpression of OSM in models of
acute chemically induced colitis have yielded conflicting results,
suggesting that the impact of OSM in these systems may be
context dependent (149).

Consistent with data from studies of skin and joint
inflammation, exogenous OSM promotes a robust inflammatory
and tissue remodeling response in the lung (150–153), and
blockade of OSM reduces disease severity in a mouse model
of asthmatic airway inflammation (154). OSM stimulation of
lung tissue induces a pronounced eosinophilia driven by OSM-
induced expression of eotaxin (CCL11) in lung fibroblasts
(152, 155). Unusually for an IL-6 family cytokine, OSM was
shown to activate STAT6 in lung fibroblasts and activate
CCL11 expression in synergy with IL-4 (155). OSM can
also synergize with IL-4 to promote VCAM-1 expression by
lung fibroblasts, which may promote increased eosinophil
adhesion (156). Interestingly, the OSM-induced response in
mouse lung tissue appears to differ between inbred strains.
While intratracheal OSM promoted similar fibrotic changes
in the lungs of BALB/c and C57BL/6 mice, only C57BL/6
animals induced an inflammatory Th2 response (151). Strain-
dependent effects are known to occur in other inflammatory
disease settings such models of colitis, in which C57BL/6
mice often display differing disease susceptibility compared to
animals from the BALB/c, 129.SvEv, or C3H/HeJBir backgrounds
(157–165). This demonstrates the importance of considering
strain-dependent effects when interpreting in vivo studies

of OSM or other IL-6 family cytokines. Furthermore, such

findings emphasize the challenges inherent in predicting

the biology of humans (an outbred population) based on
mouse model data. It is noteworthy that single nucleotide

polymorphisms in the OSM and OSMR genetic loci are

associated with risk of developing IBD (OSM and OSMR) and
the IgA nephropathy form of glomerulonephritis (OSM), but
the functional significance of these risk variants is not yet
understood (166–168).

LIF AND IL-11: STROMAL FACTORS WITH
IMMUNOREGULATORY AND FIBROTIC
PROPERTIES

Unlike OSM, stromal cells appear to be important physiological
sources of LIF and IL-11, both of which are produced in response
to TGFβ stimulation (62, 66, 68, 169). While some studies have
suggested pro-inflammatory roles for these cytokines (63, 170,
171), substantial evidence suggests that they also exert important
anti-inflammatory effects. Treatment with recombinant LIF
was demonstrated over 20 years ago to protect mice from
mortality and to reduce systemic TNF production in models
of endotoxin-induced septic shock (172). Similar findings were
later reported in LIF-deficient (Lif−/−) mice. Compared to wild
type mice, Lif−/− animals had significantly greater mortality
after endotoxin challenge, with dramatically increased levels of
circulating TNF and IL-6 and reduced levels of IL-10, suggesting
a potent anti-inflammatory effect (173). Treatment of mice
and rats with recombinant IL-11 similarly reduced mortality,
organ damage, and systemic cytokine production (TNF, IL-
1β, and IFN-γ) in models of acute endotoxemia (174, 175).
Recombinant IL-11 treatment likewise prevented T cell-driven
liver injury in response to concanavalin-A, and protected mice
from necrotizing pancreatitis following challenge with cerulein
(176, 177).

Both LIF and IL-11 are reported to influence CD4+ T
cell differentiation, favoring Treg development and Th2
development, respectively. Whereas IL-6 suppresses Treg
development and promotes Th17 differentiation in synergy with
TGFβ, LIF appears to have the opposite effect and can directly
oppose the pro-Th17 activity of IL-6, possibly through induction
of the negative regulatory factor SOCS3 (178, 179). Notably,
LIF and IL-6 were identified as factors in human ovarian cancer
ascites fluid that promoted differentiation of monocytes into
anti-inflammatory macrophages with low IL-12 and high IL-10
production (100). In vitro culture models of human and mouse
CD4+ T cells have demonstrated that IL-11 represses Th1
polarization and promotes expression of IL-4, IL-5, and IL-10,
which are associated with Th2 immunity (180, 181). IL-11 was
also shown to inhibit IL-12 production from monocytes, which
likely further attenuates Th1 development (180). IL-11 treatment
was highly effective for preventing mortality in a mouse model
of graft-vs.-host disease, in which it blocked expression of
Th1-related cytokines (IL-12, IL-2, and IFN-γ), and induced
production of IL-4 (182). Consistent with this Th2-promoting
effect, IL-11 signaling is necessary for airway inflammation
in mice challenged with inhaled OVA antigen or transgenic
animals that overexpress IL-13 in the lung (170, 183). Following
OVA challenge, Il11ra−/− mice showed dramatic reductions in
lung-infiltrating Th2 cells, IL-13 expression, IgE production,
and eosinophilia (170). Thus, while IL-11 can attenuate acute
inflammation and Th1 responses, it may be pathogenic in
conditions driven by Th2-polarized immunity.

Although LIF and IL-11 appear to have host-protective anti-
inflammatory properties in the context of acute inflammatory
challenges, they may be deleterious in setting of chronic
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inflammation and tissue remodeling. Like IL-6, IL-11 can drive
a STAT3-mediated regenerative program in epithelial cells, a
function that promotes malignancy in cancers of the intestine,
stomach, and mammary gland (61, 184–187). A recent study
made the surprising observation that synovial fibroblasts express
LIF in response to inflammatory cytokines such as TNF and IL-
17A, and autocrine LIF signaling drives STAT4, which synergizes
with TNF/IL-17A-derived signals (NF-κB and C/EBPβ) to
promote potent expression of IL-6 (63). LIF may therefore be
an important driver of pathogenic IL-6 production in patients
with rheumatoid arthritis. In cancer, LIF has been shown to
activate cancer-associated fibroblasts to promote contractility,
extracellular matrix remodeling, and cancer cell invasiveness (62,
66). Several studies have examined developmental abnormalities
in transgenic mice that express either LIF or bovine OSM
(a LIFR ligand in mice) downstream of the Lck promoter.
These mice display a dramatic re-organization of lymph node
structure, extrathymic T cell development, and myelosclerosis,
suggesting that chronic overproduction of LIF in hematopoietic
organs can have profound consequences on hematopoiesis (188–
194). Transgenic overexpression of IL-11 in mouse lung tissue
provokes lymphocyte and myeloid infiltration and considerable
subepithelial fibrosis (171). IL-11 was also shown to be mitogenic
for lung fibroblasts isolated from either healthy donors or those
with idiopathic pulmonary fibrosis (IPF). More recently, two
studies that incorporated both human cell culture systems and
pre-clinical mouse models highlighted the importance of IL-11
for fibrosis in the lung, heart, and kidney (68, 169). Intriguingly,
IL-11 production in primary fibroblasts was shown to be induced
by various pro-fibrotic stimuli (including PDGF, TGFβ, IL-13,
and OSM), and was critical for the adoption of a fibrogenic
phenotype, suggesting that IL-11 mediates fibrosis in response to
a wide variety of upstream stimuli (68, 169).

STROMAL CONNECTIONS WITH IL-27

As noted above, IL-27 differs structurally from other IL-6 family
members, being a heterodimer comprised of IL-27p28 and EBI3
(19). IL-27 can be thought of as an IL-6 family member primarily
because it depends on gp130 as a receptor component (28, 37,
195). However, the structure of IL-27 is more comparable to that
of IL-12 family members, all of which are similarly composed of
heterodimers; IL-12 is comprised of IL-12p35 and IL-12p40, IL-
23 of IL-12p40 and IL-23p19, and IL-35 of IL-12p35 and EBI3
(37, 195). Compared to its siblings in the IL-6 family, relatively
little is known about the physiological interactions between IL-
27 and stromal cells. In general, IL-27 has been studied in
the context of communication between leukocyte populations,
in which IL-27 can act in either an immunostimulatory or
immunoregulatory capacity (37). For example, IL-27 synergizes
with IL-12 to promote T-bet and IFN-γ expression by CD4+ T
cells, thus promoting Th1 polarization (19, 196–199). However,
IL-27 can also drive differentiation of T-bet expressing regulatory
T cells (200), an effect that is in direct contrast to IL-6, which
suppresses Treg differentiation. In both mice and humans, IL-27
is also thought to be a key driver of the immunoregulatory Tr1

subset of CD4+ T cells, which specializes in IL-10 production
to suppress inflammation (201–204). Because the well-studied
hematopoietic effects of IL-27 are beyond the scope of this
discussion, the reader is referred to recent reviews of the subject
(37, 195).

IL-27 can directly influence stromal cells, although studies of
this process are scarce. Like OSM, IL-27 can induce cytokine
and chemokine production by fibroblasts from the synovium
and lung, and does so in synergy with TNF or IL-1β (70, 71).
Factors induced in this manner include IL-6, CCL2, CXCL10,
and ICAM-1 (70, 71). IL-27 has also been shown to enhance
the sensitivity of pulmonary fibroblasts to lipopolysaccharide by
promoting TLR4 expression (73). Finally, high circulating IL-27
concentrations are observed in patients with systemic sclerosis,
and IL-27 stimulation of skin fibroblasts induced proliferation
and collagen synthesis, implying a possible role for IL-27 in
the fibrotic pathology of this disease (72). Thus, although
IL-27 is best studied in the context of leukocyte-leukocyte
interactions, it has the potential to regulate processes beyond
those of the hematopoietic system through direct effects on
stromal populations. A key challenge of future studies will be to
determine whether IL-27 signaling in the stroma is functionally
important in vivo.

EFFECTS OF IL-6 FAMILY CYTOKINES ON
OTHER NON-HEMATOPOIETIC CELL
TYPES

This review has dealt specifically with the impact of IL-6
family cytokines on a narrow group of mesenchymal cells that
collectively include various phenotypes of fibroblasts. However,
it should be noted that several other non-hematopoietic cell
types can respond strongly to IL-6 family members and
likely mediate at least some of their effects in vivo. Such
populations include endothelial cells, adipocytes, muscle cells,
chondrocytes, epithelial cells, and glial cells. Importantly, the
functional effects of IL-6 family cytokines on fibroblasts overlap
broadly with those reported for other cell types, suggesting a
degree of functional conservation between non-hematopoietic
populations. For example, both OSM and IL-6 are implicated
as potent drivers of endothelial activation; in response to these
cytokines, endothelial cells upregulate expression of chemokines
and cytokines that include CCL2 and IL-6, as well as adhesion
factors such as ICAM-1, VCAM-1, P-selectin, and E-selectin
(79, 205–208). In this fashion, OSM and IL-6 are thought
to promote leukocyte recruitment to inflamed tissues via
stimulation of the endothelium. Because OSM and IL-6 exert
similar effects on stromal cells, it is possible that these cytokines
control the duration and intensity of inflammatory responses
through coordinated action on multiple non-hematopoietic
cell types. OSM similarly induces chemokine and cytokine
production in chondrocytes, osteoblasts, and smoothmuscle cells
(80, 85, 86, 209, 210).

The relative importance of these different cell populations
for the execution of IL-6 family effects is poorly understood
and probably context-dependent. For example, OSMR is highly
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expressed only by stromal cells in the intestinal mucosa, and it
appears likely that these are the major mediators of OSM biology
in this tissue (55). In contrast, OSMR is expressed broadly in
many other tissues, making the identification of cell-type specific
roles for OSM in these sites more challenging (34, 56, 65, 211).
The ability of IL-6 and IL-11 to signal via both classical and trans
mechanisms adds further complexity, since potential responder
cells require only the ubiquitously expressed gp130 to recognize
the trans forms of these cytokines. As such, we know little
about the cell type requirements for IL-6/IL-11 functions in vivo,
particularly under conditions of inflammatory pathology (18, 41).
Finally, the ability of IL-6 family cytokines to modulate responses
to other inflammatory mediators (e.g., TNF, IL-1β, IL-17A, IL-4)
means that their effects in vivo likely depend on the composition
of the broader cytokine milieu, as well as the relative abundance

of cell types capable of receiving signals from both IL-6 family
members and their synergy partners. Beyond characterizing the
“receivers” of IL-6 family cytokines, we are similarly limited in
our understanding of their in vivo sources. For example, IL-6
has traditionally been thought of as a primarily leukocyte-derived
factor, but this concept is challenged by our growing awareness of
non-hematopoietic cell types as sources of this cytokine (as well
as factors such as LIF and IL-11). There is thus a clear need for
carefully constructed in vivo studies that abrogate expression of
individual IL-6 family receptors or ligands in specific cell types.
This is increasingly feasible due to the growing availability of
transgenic mice with floxed alleles of IL-6 family members and
cell type-restricted Cre recombinase. Single-cell RNA-sequencing
technology will also be a powerful tool to deconvolute the IL-6
family network in vivo.

FIGURE 3 | Regulation of inflammation and tissue repair processes via cross-talk between leukocytes, the IL-6 family, and stromal cells. Dysregulation of IL-6 family

cytokine expression can promote chronic inflammation, tissue remodeling, and fibrosis. In a hypothetical scenario of acute inflammation, an initial inflammatory insult

(e.g., microbial sensing) triggers leukocyte activation and production of inflammatory mediators, including OSM, IL-6, and IL-27 (step 1). These cytokines can act

alone or in synergy with other inflammatory mediators (e.g., TNF, IL-1β, IL-17A, etc.) to activate tissue-resident stromal cells (step 2a) and the local vasculature (step

2b). Stromal cells stimulated by IL-6 family members produce a wide array of additional inflammatory mediators and adhesion molecules, including IL-6, CCL2,

CXCL10, and ICAM-1. These stroma-derived factors collectively promote leukocyte recruitment and retention (step 3), to potentiate the inflammatory response.

Stromal cells stimulated by leukocyte-derived IL-6, OSM, or IL-27 (particularly in combination with other inflammatory cytokines) can produce IL-6 family cytokines in

turn, including IL-6, LIF, and IL-11, which can further stimulate stromal cells through autocrine feedback or act on additional cell types to modulate leukocyte behavior

(e.g., T cell polarization), tissue remodeling (e.g., matrix deposition), and tissue regeneration (step 4). When appropriately regulated, these processes constitute

beneficial responses to tissue injury or infectious challenge. When dysregulated, however, these processes can become self-sustaining, leading to chronic

inflammation and associated pathology. CCL, C-C motif chemokine ligand; CXCL10, C-X-C motif chemokine ligand 10; IL, interleukin; ICAM-1, intercellular adhesion

molecule 1; LIF, leukemia inhibitor factor; OSM, oncostatin M; VCAM-1, vascular cell adhesion molecule 1.
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TARGETING IL-6 FAMILY CYTOKINES IN
THE CLINIC

IL-6 is well established as a valuable clinical target, and
antibodies that block either IL-6 (e.g., siltuximab) or IL-
6R (e.g., tocilizumab or sarilumab) are routinely used for
treatment of inflammatory arthritis, juvenile idiopathic
arthritis, multi-centric Castleman disease, cytokine release
syndrome (commonly encountered in the setting of tumor
immunotherapy), and giant cell arteritis (212–217). Despite
these successes, clinical development of agents that target
other members of the IL-6 family has been modest [reviewed
here (18)]. A humanized anti-OSM monoclonal antibody
(GSK315234) was tested in a phase II trial of rheumatoid
arthritis and found to be well tolerated, but without significant
clinical activity (218). However, the limited efficacy of this
antibody was ascribed to its relatively weak target affinity
when compared to the native OSM receptor complex, and
clinical studies with a next-generation high-affinity anti-OSM
antibody are currently underway, focused this time on systemic
sclerosis (ClinicalTrials.gov Identifier: NCT03041 025). Based
on its immunoregulatory properties, a trial of recombinant
IL-11 in rheumatoid arthritis was also conducted, but without
success (219).

A concept that emerges from the previous sections of this
review is the substantial degree of functional similarity and cross-
regulation between IL-6 family members. As such, targeting a
single member of the IL-6 family for treatment of aetiologically
complex diseases may be insufficient to fully engage the biology
of interest. For example, although many patients with arthritis
benefit from anti-IL6R therapy, this benefit is usually restricted
to an incomplete decrease in disease activity, suggesting that
other inflammatory pathways are in play (213, 216). Indeed,
virtually all members of the IL-6 family (IL-6, OSM, LIF, IL-
11, and IL-27) have been implicated as drivers of fibrosis.
This raises the possibility that combinatorial blockade of two
or more factors may be necessary to effectively neutralize IL-
6 family biology in a given disease setting. Although clinical
experience with JAK inhibitors (which block signaling from
broad spectra of cytokines) demonstrates that simultaneous
targeting of multiple cytokine pathways can be achieved
(220), the efficacy of targeting multiple IL-6 family members
would nevertheless require careful balancing against potential

unexpected toxicities, particularly in the case of antibodies with
slow rates of systemic clearance. The probability of success with
such approaches will likely be increased by a combination of
biomarker-guided patient stratification [e.g., OSM expression
in IBD (55)] and the careful selection of combination
candidates based on gene expression patterns in human tissues
and mechanistic insights derived from carefully conducted
pre-clinical studies.

CONCLUDING REMARKS

Increasing evidence indicates that stromal cells are integral to the
biology of IL-6 family cytokines, both in healthy and pathological
scenarios. Stromal cells both produce and sense IL-6 family
cytokines, and can therefore not only respond to leukocyte-
derived signals (e.g., OSM or IL-27), but also instruct leukocyte
behavior (e.g., by producing IL-6, IL-11, or LIF) to influence
the course of immunological processes (Figure 3). Although it
is clear that IL-6 family cytokines play diverse roles in vivo,
it is rare to identify specific cell types that are responsible
for either cytokine production or cytokine responses. As such,
although it is apparent that interactions between IL-6 family
cytokines and stromal cells occur, whether these interactions
are necessary in vivo is generally unclear. For example, while
stromal cells appear to be important sources of IL-6 in models
of inflammatory disease, whether they are indispensable sources
of IL-6 has not been formally demonstrated. Similarly, while it
is likely that stromal cells are key mediators of OSM biology
in the intestine, the possibility that other mesenchymal cell
types (or a hitherto unknown hematopoietic cell population)
are involved cannot be ruled out. Greater use of genetic
tools in animal studies, such as cell-type specific deletion of
specific cytokine or cytokine receptor genes, is required to
draw a more accurate roadmap of the functional connections
between IL-6 family cytokines, individual cell types, and distinct
biological processes. Rendering this map in greater detail will
be critical for translating our knowledge of IL-6 family biology
into clinical benefit.
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