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Background Nearly half of muscle-invasive bladder cancer patients succumb to their disease following cystectomy. Selecting 
candidates for adjuvant therapy is currently based on clinical parameters with limited predictive power. This study 
aimed to develop and validate genomic-based signatures that can better identify patients at risk for recurrence 
than clinical models alone.

Methods  Transcriptome-wide expression profiles were generated using 1.4 million feature-arrays on archival tumors from 
225 patients who underwent radical cystectomy and had muscle-invasive and/or node-positive bladder cancer. 
Genomic (GC) and clinical (CC) classifiers for predicting recurrence were developed on a discovery set (n = 133). 
Performances of GC, CC, an independent clinical nomogram (IBCNC), and genomic-clinicopathologic classifiers 
(G-CC, G-IBCNC) were assessed in the discovery and independent validation (n = 66) sets. GC was further vali-
dated on four external datasets (n = 341). Discrimination and prognostic abilities of classifiers were compared 
using area under receiver-operating characteristic curves (AUCs). All statistical tests were two-sided.

Results  A 15-feature GC was developed on the discovery set with area under curve (AUC) of 0.77 in the validation set. This 
was higher than individual clinical variables, IBCNC (AUC = 0.73), and comparable to CC (AUC = 0.78). Performance 
was improved upon combining GC with clinical nomograms (G-IBCNC, AUC = 0.82; G-CC, AUC = 0.86). G-CC high-
risk patients had elevated recurrence probabilities (P < .001), with GC being the best predictor by multivariable 
analysis (P =  .005). Genomic-clinicopathologic classifiers outperformed clinical nomograms by decision curve 
and reclassification analyses. GC performed the best in validation compared with seven prior signatures. GC 
markers remained prognostic across four independent datasets.

Conclusions  The validated genomic-based classifiers outperform clinical models for predicting postcystectomy bladder can-
cer recurrence. This may be used to better identify patients who need more aggressive management.

  JNCI J Natl Cancer Inst (2014) 106(11): dju290 doi:10.1093/jnci/dju290

Of the 386,300 urinary bladder cancer cases diagnosed annually world-
wide, nearly 30% present with disease invading the muscle layer of the 
bladder (1). Although radical cystectomy can improve cancer-specific 
outcomes, long-term prognosis continues to be compromised by the 
high risk for recurrence, which occurs in 40% to 50% of patients (2,3). 
Postcystectomy recurrence of urothelial carcinoma of the bladder 
(UCB) is ultimately fatal in 85% to 95% of patients (4,5).

Contemporary adjuvant chemotherapy shows modest success 
in delaying or preventing UCB recurrence and is associated with 
substantial toxicity (6). Identification of candidates at high risk for 
recurrence who may benefit most from adjuvant chemotherapy 
is currently based on standard clinicopathologic criteria (7). Even 
when combined as multivariable nomograms, these metrics do not 
fully account for the diverse clinical behavior of muscle-invasive 

UCB (8,9). It is now recognized that biomarker panels that reflect 
the biological heterogeneity of UCB can better identify patients who 
need aggressive therapy than single molecular markers alone (10,11). 
Unbiased and pathway-specific approaches have been previously 
used to identify prognostic molecular signatures in UCB (12–19). 
However, such panels have not been implemented clinically because 
of several shortcomings: signature development on underpowered 
and clinically heterogeneous cohorts thereby potentially resulting 
in data overfitting, short follow-up and use of non-disease-specific 
 endpoints, reliance on fresh tumor tissues, and limited validation.

To address the clinical need for accurate and reproducible iden-
tification of patients with aggressive disease postcystectomy, we 
performed unbiased transcriptome-wide expression profiling on 
a cohort of uniformly-treated patients with muscle-invasive and/
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or pathologically node-positive (hereafter referred to as clinically 
high-risk) UCB, the largest such effort in this disease stage to date. 
This resulted in the discovery of a 15-marker genomic signature 
that robustly identifies patients at greatest risk for recurrence. The 
performance of this signature was improved by addition of clinico-
pathologic variables. The prognostic potential of the locked sig-
nature was confirmed by blinded independent validation, and was 
shown to outperform previously reported gene signatures.

Methods
Patient Population and Specimen Processing
The study cohort was composed of 225 patients with organ-con-
fined, muscle-invasive (pT2N0M0), extravesical (pT3-4aN0M0), 
and node-positive (pTanyN1-3M0) UCB who underwent radical 
cystectomy at the University of Southern California between 1998 
and 2004 (2). Each patient had a minimum two-year follow-up 
postcystectomy unless they recurred prior to that date. Patients 
receiving neoadjuvant chemotherapy, and those with clinical evi-
dence of lymphadenopathy or distant metastasis at diagnosis were 
excluded. Patients underwent extended pelvic lymphadenectomy 
and urinary diversion. Tumor staging was standardized to American 
Joint Committee on Cancer recommendations (20). Ninety-eight 
(43.6%) patients received adjuvant chemotherapy per physician 
and patient preference. Postoperative follow-up was at four-month 
intervals in year one, six-month intervals in year two, and annually 
thereafter (4).

With bioinformaticians who generated the prognostic classi-
fiers remaining blinded to clinical data, two-thirds of the cohort 
was assigned to a discovery set and one-third to a validation set, 
with clinicopathologic characteristics balanced between both sets. 
Clinical endpoint for biomarker discovery was cancer recurrence. 
Recurrence-free survival (RFS) duration was defined as time from 
cystectomy to cancer recurrence at local or distant soft tissue sites; 
patients who were recurrence-free at end of the study were cen-
sored at death or last follow-up. De novo urothelial carcinoma in 
upper tract or urethra was not considered as recurrence. RFS was 
preferred as the endpoint over cancer-specific survival because 
most patients who die of UCB have documentation of disease 
recurrence (3); this also avoided censoring patients with aggressive 
disease who recurred but died of other comorbidities.

Formalin-fixed paraffin-embedded (FFPE) primary tumor speci-
mens underwent histopathological rereview, RNA extraction and pro-
filing using GeneChip Human Exon 1.0 ST microarrays (Affymetrix, 
Santa Clara, CA). These arrays profile coding and noncoding regions 
of the entire human transcriptome using probe selection regions, 
hereinafter referred to as features. Specimen and microarray process-
ing are detailed in the Supplementary Methods (available online). 
Samples from 199 (88.4%) patients passed microarray quality con-
trol; relative patient proportions in discovery (n = 133) and validation 
(n = 66) sets were maintained (Table 1). The University of Southern 
California Institutional Review Board approved this study and all 
patients consented to analysis of their tumor tissues.

Classifier Development and Application
Features most predictive of RFS were identified and combined 
as a signature to produce a genomic classifier (GC) (see the 

Supplementary Methods, available online). Prognostic ability of 
GC was benchmarked against two clinical nomograms for pre-
dicting postcystectomy recurrence risk: the International Bladder 
Cancer Nomogram Consortium (IBCNC) (8), and an in-house 
“clinical-only” classifier (CC). The latter incorporated age, gen-
der, pathological stage, and lymphovascular invasion status into 
a logistic regression model. Additionally, to evaluate the joint 
prognostic value of genomic and clinicopathologic variables, GC 
was integrated with IBCNC and CC into G-IBCNC and G-CC, 
respectively (collectively referred to as genomic-clinicopathologic 
classifiers) by logistic regression. All classifiers output a continuous 
score between 0 and 1, with higher scores indicating higher prob-
ability of recurrence. Locked classifiers were then applied to the 
validation set in a blinded fashion. Supplementary Figure 1 (avail-
able online) provides an overview of the study design.

GC performance was compared with prior prognostic genomic 
signatures for muscle-invasive or node-positive UCB (13-15,21,22). 
Prognostic ability of GC was also independently validated on four 
external UCB datasets (see the Supplementary Methods, available 
online).

Statistical and Biological Analyses
Discrimination and prognostic abilities of classifiers were compared 
using area under receiver-operating characteristic (ROC) curves 
(AUCs) for binary and time-to-event outcomes, and other methods. 
Cumulative incidence curves for RFS were constructed using Fine-
Gray competing risk analyses (23). Decision curve and reclassifica-
tion analyses were used to determine the clinical value of classifiers. 
Where categorized, classifier scores of greater than or equal to 0.5 
and less than 0.5 were grouped as high-risk and low-risk, respectively.

Biological interactions of GC components with their first-
degree partners were extracted using Human Signaling Network 
v5 (24–27). Processes were grouped using Enrichment Map, with 
nodes and links representing Gene Ontology (GO) terms and 
degree of overlap between them, respectively (28). Analyses are 
further detailed in the Supplementary Methods (available online).

results
Discovery and Initial Performance of Genomic-Based 
Classifiers
To test the hypothesis that risk-prediction models incorporating 
genomic signatures can better characterize the biology that deter-
mines propensity of UCB to recur postcystectomy than clinical 
variables alone, a genomic classifier (GC) was developed and tested 
on the discovery set. Patient characteristics are listed in Table 1. 
Median age was 68.5 years (interquartile range [IQR] = 63.6–75.6). 
Median follow-up was 9.3 years; 68 (51.1%) patients recurred, and 
77 (57.9%) patients were dead at last follow-up.

Expression of nearly 1.4 × 106 RNA features in tumors of 
patients who recurred was compared with those who remained 
recurrence-free at last follow-up (Supplementary Figure 2, avail-
able online). Following normalization and feature selection, 15 
markers were identified corresponding to RNAs from protein-cod-
ing and noncoding regions of the genome that were differentially 
expressed based on recurrence (Supplementary Table 1, available 
online). A  random forest machine-learning algorithm assembled 

http://jnci.oxfordjournals.org/lookup/suppl/doi:10.1093/jnci/dju290/-/DC1
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these markers into a GC, and this locked classifier assigned a 
score to each patient. The feature associated with MECOM was 
determined to be the most important variable (Supplementary 
Figure 3, available online). GC performance was compared with 

individual clinicopathologic variables, the IBCNC postoperative 
nomogram (8), and a clinical-only classifier (CC) that represented 
an optimized clinicopathologic prognostic model developed on the 
discovery set.

A B

C D

Figure  2. Performance of individual clinicopathologic variables and 
classifiers in the validation set for predicting cancer recurrence. A) 
Survival ROC curves show that GC outperforms individual clinico-
pathologic variables for predicting postcystectomy recurrence. In 
addition, B) G-IBCNC had higher AUC compared to IBCNC, and C) 
G-CC had higher AUC compared to CC by survival-ROC analysis. 
AUCs and associated 95% confidence intervals are shown at the bot-
tom right of each ROC curve panel. D) Cumulative incidence plot for 
recurrence-free survival comparing patients with high versus low 
G-CC scores as determined by majority rule (cutoff = 0.5) indicate a 

statistically significantly elevated recurrence probability for patients 
with high G-CC scores (log-rank P < .001). Death from non-bladder-
cancer causes was considered a competing risk. Probabilities of 
disease recurrence at 2 and 4 years postcystectomy are shown. All sta-
tistical tests were two-sided. ROC = receiver-operating characteristic; 
AUC = area under ROC curve; GC = genomic classifier; IBCNC = post-
cystectomy recurrence nomogram from the International Bladder 
Cancer Nomogram Consortium; G-IBCNC  =  integrated genomic-
IBCNC classifier; CC  =  “clinical-only” classifier; G-CC  =  integrated 
genomic-CC classifier.

Figure  1. Performance of classifiers and individual clinicopathologic 
variables as assessed by standard-ROC analysis in the discovery and 
validation sets for predicting postcystectomy recurrence. GC had the 
highest AUC compared to single clinicopathologic variables. Its AUC 
increased when combined with IBCNC and CC. Circles and whiskers rep-
resent AUC and associated 95% confidence intervals, respectively. AUCs 

for variables are also listed under the respective sets. ROC = receiver-
operating characteristic; AUC = area under ROC curve; GC = genomic 
classifier; IBCNC  =  postcystectomy recurrence nomogram from the 
International Bladder Cancer Nomogram Consortium; G-IBCNC = inte-
grated genomic-IBCNC classifier; CC  =  “clinical-only” classifier; 
G-CC = integrated genomic-CC classifier.

http://jnci.oxfordjournals.org/lookup/suppl/doi:10.1093/jnci/dju290/-/DC1
http://jnci.oxfordjournals.org/lookup/suppl/doi:10.1093/jnci/dju290/-/DC1
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GC had an AUC of 0.88 (95% confidence interval [CI] = 0.81 
to 0.93) in the discovery set (Figure 1). As GC was optimized in 
the discovery set, it could not be compared with individual clinico-
pathologic variables. However, we could assess the prognostic value 
of adding genomic information to clinical risk prediction models. 
When GC was added to IBCNC (G-IBCNC), the AUC increased 
from 0.73 to 0.89 (95% CI = 0.84 to 0.95). When GC was added to 
CC (G-CC), the AUC increased from 0.81 to 0.93 (95% CI = 0.88 
to 0.97). This suggested that combined genomic-clinicopathologic 
classifiers could achieve superior prognostic performance than 
either alone.

Independent Validation of Genomic-Based Classifiers
Prognostic performance of the locked classifiers was then assessed 
(with bioinformaticians blinded to clinical variables) on an inde-
pendent validation set of 66 UCB patients. Characteristics of 
patients in validation and discovery sets were comparable (Table 1). 

Median age was 69.8 years (IQR = 63.1–74.3). Median follow-up 
was 10.8 years; 33 (50%) patients recurred, and 45 (68.2%) patients 
were dead at last follow-up. By univariate analysis, GC (P = .003), 
nodal status (P  =  .006) and lymphovascular invasion (P  =  .005) 
were prognostic for RFS, with GC having the highest hazard ratio 
(1.23 for every 10% score increment) (Table 2). GC performance 
as measured by standard ROC analysis was superior to single clin-
icopathologic variables (Figure 1). This was confirmed by survival 
ROC analysis where AUC for GC (0.77; 95% CI = 0.65 to 0.91) was 
higher than any individual clinicopathologic variable (Figure 2A).

Prognostic performance of IBCNC and CC were comparable 
(standard-ROC AUC = 0.74 and 0.77, respectively) with GC in the 
validation set. Again, performance of the combined genomic-clin-
icopathologic classifiers measured the highest of all models tested 
(Figure  1). Furthermore, AUCs by survival ROC analysis that 
consider time to recurrence showed marked boost in performance 
for combined models (IBCNC vs G-IBCNC, 0.73 vs 0.82; CC vs 

A B

Figure 3. Reclassification of IBCNC score categories by genomic-clinico-
pathologic classifier scores for patients in the validation set. After cat-
egorizing based on their IBCNC scores, patients were reclassified based 
on their A) G-IBCNC and B) G-CC scores. Individual patients are repre-
sented as dots colored by recurrence event; sizes of dots represent path-
ological stage as indicated. Gray quadrants represent situations where 
the genomic-clinicopathologic classifier reclassifies patients compared 

to IBCNC. Patients who did not recur (blue dots) in the top-left quad-
rant and patients who recurred (red dots) in the bottom-right quadrant 
are reclassified correctly by the genomic-clinicopathologic classifier. 
Of patients who were reclassified, a majority were done so correctly. 
IBCNC = postcystectomy recurrence nomogram from the International 
Bladder Cancer Nomogram Consortium; G-IBCNC = integrated genomic-
IBCNC classifier; G-CC = integrated genomic-clinical classifier.

Table 2. Univariate associations of genomic and clinicopathologic features with risk of postcystectomy bladder cancer recurrence in the 
validation set*

Predictor 

Relative risk of recurrence

Hazard ratio (95% CI) P

GC 1.23 (1.07 to 1.42) .003
Age <70 years 1.00 (0.99 to 1.01) .72
Male sex 0.97 (0.89 to 1.06) .46
Caucasian race 0.95 (0.85 to 1.05) .29
Tumor stage [reference: pT2]
 pT1 1.02 (0.83 to 1.26) .87
 pT3 1.23 (0.50 to 3.05) .66
 pT4a 3.37 (1.27 to 8.93) .015
Nodal status N1–3 1.10 (1.03 to 1.19) .006
Lymphovascular invasion present 1.12 (1.03 to 1.20) .005
Adjuvant chemotherapy administered 1.03 (0.96 to 1.11) .35

* CI = confidence interval; GC = genomic classifier. HR estimated by Cox proportional hazards regression. All statistical tests were two-sided.
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G-CC, 0.78 vs 0.86). Combined genomic-clinicopathologic clas-
sifiers had the highest specificity and sensitivity across the widest 
range of cutoffs (Figure 2, B and C). G-CC had the highest AUC 
among the combined genomic-clinicopathologic classifiers tested.

Multivariable analyses showed the independent prognostic 
significance of combined genomic-clinicopathologic classifiers 
compared with clinical models (Supplementary Table 2, available 
online). Decision curve analysis showed a higher overall net benefit 
for genomic-based classifiers, thereby highlighting their value as 
better tools for planning patient management compared to clini-
cal-only risk models based on risk for recurrence (Supplementary 
Figure  4, available online). Discrimination plots confirmed that 

while GC identified patients who recurred better than clini-
cal models alone, the combined G-IBCNC and G-CC models 
were superior, with G-CC performing the best (P  =  5.55 × 10–7) 
(Supplementary Figure  5, available online). G-CC was therefore 
considered the benchmark genomic-clinicopathologic classifier for 
further evaluation.

When survival-ROC AUCs were measured across a range of 
postcystectomy intervals, G-CC showed consistently superior 
performance compared with CC and GC alone, indicating that 
the former was most prognostic for RFS at any point in time fol-
lowing cystectomy (Supplementary Figure  6A, available online). 
Validation set patients were then categorized as high-risk (G-CC 
score ≥0.5) or low-risk (G-CC score <0.5). Accounting for compet-
ing risk, high-risk patients had elevated cumulative incidence of 
recurrence compared with low-risk patients (four-year probability: 
81.5% vs 20.6%, respectively; P < .001) (Figure 2D). Patients were 
similarly risk-stratified by IBCNC and G-IBCNC scores, and cate-
gorization by the “clinical-only” IBCNC nomogram was compared 
with genomic-clinicopathologic classifiers (Figure 3). Addition of 
genomic features to the IBCNC nomogram (as G-IBCNC) reclas-
sified 18 validation set patients into different predicted risk cat-
egories than those classified by IBCNC, of which 12 (66.7%) were 
reclassified correctly based on outcome. Similarly, G-CC reclassi-
fied 12 patients originally risk stratified by IBCNC, of which 10 
(83.3%) were reclassified correctly.

Nodal Status and Performance of Genomic-Based 
Classifier
When categorized by pathological stage, median GC scores 
were consistently higher in validation set patients who recurred 
(Supplementary Figure 7, available online). By multivariable analy-
sis, after adjusting for demographic, clinicopathologic and treat-
ment covariates, GC remained prognostic for recurrence (P = .005) 
(Table 3). In this analysis, a statistically significant interaction was 
noted between GC and nodal status (P = .030) that prompted fur-
ther exploration of GC score distribution based on nodal stage. 
When categorized by nodal status, GC scores were able to better 
discriminate validation set patients based on recurrence status as 
evidenced by nonoverlapping 95% CIs of medians compared with 
CC (Supplementary Figure 8, available online) (29).

A subset analysis was then conducted on node-negative patients. 
These represent subjects who may not routinely receive adjuvant 
therapy. Assuming that higher-risk patients may gain more from 
therapy intensification, improved identification of such candidates 
using more accurate risk-prediction models could be beneficial. CC 
showed a trend towards significance in separating node-negative 
patients into risk groups (P = .051). However, GC statistically sig-
nificantly stratified these patients based on recurrence (four-year 
probabilities: high 56.2% vs low 13%; P = .004) (Figure 4). When 
measured across time, AUCs for genomic-based classifiers were 
consistently higher compared with CC in node-negative patients 
(Supplementary Figure 6B, available online).

Analysis of Biological Processes and Prior Signatures
To analyze the biological relevance of features within GC, a network-
based enrichment analysis of GO terms and biological pathways 
related to the markers and their 86 first-degree partners was performed 

A

B

Figure  4. Cumulative incidence plots for recurrence-free survival for 
node-negative patients in the validation set. Patients were stratified 
based on their A) CC and B) GC scores into high-risk and low-risk groups 
as determined by majority rule (cutoff = 0.5). Risk stratification based 
on GC scores was statistically significant (P  =  .004) while that based 
on CC scores showed a trend towards statistical significance (P = .051). 
Death from non-bladder-cancer causes was considered a competing 
risk. Probabilities of disease recurrence at 2 and 4 years postcystectomy 
are shown. P values were determined by the log-rank test and are two-
sided. CC = “clinical-only” classifier; GC = genomic classifier.
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(Supplementary Figure 9, available online). Functional analysis revealed 
enrichment of pathways associated with cellular signaling including 
MAPK, WNT, and other cancer-associated processes. Additional GO 
clusters associated with cell movement and adhesion suggested roles in 
cell-cell interaction and tumor cell migration. This indicated that GC 
components likely reflect the pathobiology behind UCB development 
and progression beyond mere statistical associations.

Comparison with genes associated with UCB revealed that four 
markers within GC were identified in prior studies (Supplementary 

Results, available online). The transcriptome-wide coverage of 
Human Exon arrays also allowed evaluation of previously reported 
prognostic signatures for muscle-invasive or node-positive UCB. 
Performances of seven genomic signatures were optimized in the 
discovery set and compared with GC (Supplementary Table 3) (13-
15,21,22). As expected, nearly all prior signatures demonstrated 
high survival-ROC AUCs in the discovery set, as observed with GC. 
However, when these locked signatures were applied to the valida-
tion set with bioinformaticians being blinded to clinical variables, 

A B

C D

Figure  5. Kaplan-Meier survival plots showing independent external 
validation of GC performance. Bladder cancer patients from four exter-
nal datasets including A) TCGA bladder urothelial carcinoma database 
(P =  .016), B) NCBI–GEO GSE13507 (P < .001), C) NCBI–GEO GSE5287 
(P < .001), and D) NCBI–GEO GSE31684 (P =  .013) were stratified into 

low-risk (green) and high-risk (red) groups as determined by median 
split rule. Stratification was based on the prognostic index, which 
was calculated using all available markers related to the 15-feature 
GC. P values were determined by the log-rank test and are two-sided. 
GC = genomic classifier.

Table 3. Multivariable associations of genomic and clinicopathologic features with risk of postcystectomy bladder cancer recurrence in 
the validation set*

Predictor and interaction terms

Relative risk of recurrence

Hazard ratio (95% CI) P

GC 1.42 (1.11 to 1.81) .005
Age <70 years 0.90 (0.78 to 1.03) .12
Male sex 0.00 (0.00 to 3.03) .084
Caucasian race 0.36 (0.11 to 1.20) .097
Tumor stage [reference: pT2]
 pT1 2.06 (0.15 to 27.73) .59
 pT3 1.82 (0.61 to 5.42) .29
 pT4a 1.83 (0.50 to 6.69) .36
Nodal status N1–3 9.80 (1.50 to 64.04) .017
Lymphovascular invasion present 2.74 (1.02 to 7.33) .045
Adjuvant chemotherapy administered 0.94 (0.41 to 2.13) .88
GC × nodal status † 0.03 (0.00 to 0.72) .030
Sex × age † 1.12 (0.98 to 1.29) .098

* CI = confidence interval; GC = genomic classifier. HR estimated by Cox proportional hazards regression. All statistical tests were two-sided. 

† Interaction term
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the survival-ROC AUC for each model decreased, with GC having 
the best validated performance (Supplementary Figure  10, avail-
able online). A previously reported 61-feature panel for postcystec-
tomy survival had the next-best performance in the validation set 
(AUC = 0.72; 95% CI = 0.60 to 0.87) (21).

External Validation of Genomic Classifier
Performance of the 15-feature GC was independently validated 
on 341 UCB patients from four external datasets sourced through 
TCGA and NCBI-GEO (13,21,30,31). When stratified based on 
the combined expression of GC markers, high-risk patients had 
statistically significantly poorer survival probabilities in all datasets 
(P ≤ .016) (Figure  5). Concordance indices ranged from 0.65 to 
0.80, and hazard ratios ranged from 2.23 to 7.57 across all available 
endpoints (Supplementary Table 4, available online).

Discussion
Patients with muscle-invasive or node-positive UCB at cystectomy 
are at higher risk for recurrence, although a substantial proportion 
remains recurrence-free after meticulous surgery and lymphad-
enectomy (2,32). Identification of candidates at highest risk for 
recurrence who may need adjuvant therapy is currently based on 
clinical criteria that may not reflect the entire biology of the disease 
(8). We hypothesized that an unbiased transcriptome-wide profil-
ing approach of primary UCBs from clinically high-risk patients 
could be employed to accurately stratify the risk of postcystectomy 
recurrence. To our knowledge, this represents the largest effort to 
discover and validate a prognostic genomic signature for clinically 
high-risk UCB to date. The 15-feature GC surpassed the prognos-
tic potential of standard clinical variables and previously reported 
genomic signatures for muscle-invasive UCB. Blinded and external 
validations confirmed the prognostic performance of genomic-
based signatures. Such a tool can improve patient counseling after 
cystectomy and can better identify candidates who need more 
aggressive management.

Although patients with muscle-invasive UCB at cystectomy 
are considered to be at higher risk for recurrence clinically, 
most prior prognostic genomic profiling investigations have 
analyzed all UCB stages as part of their discovery effort, includ-
ing  non-muscle-invasive disease (13-15,21). Clinically high-risk 
patients in prior studies did not always receive consistent surgi-
cal management, and prognostic signatures were often generated 
towards non-disease-specific outcomes such as overall survival 
(Supplementary Table  3, available online). Further, prior efforts 
were limited to scarce frozen tumor specimens and employed low-
density platforms that would only profile select protein-coding 
transcripts. The current study focused exclusively on identifying 
patients with muscle-invasive and/or node-positive UCB on final 
pathology who, based on expression profiles of their tumors, need 
intensified management to prevent recurrence. Patients were 
neoadjuvant chemotherapy-naïve, received consistent surgical 
management and had long follow-up. Performance of genomic 
signatures and clinical nomograms were measured against RFS, a 
highly disease-specific endpoint in this group of patients. Profiles 
were generated from FFPE tumors that represent an abundant 
and practical tissue source using technologies that reliably and 

reproducibly assess differential expression from archival specimens 
similar to unfixed tissues (33). The high-density profiling arrays 
in this investigation provide comprehensive whole-genome-scale 
coverage, including empirically supported and predicted tran-
scribed sequences, enabling the discovery of previously unidenti-
fied events (34). This helped leverage the added value of noncoding 
transcripts that represent majority of the transcriptome, promote 
neoplastic transformation, and are potentially prognostic (35–37).

Addition of clinical information in the form of established 
(IBCNC) or novel (CC) nomograms to GC improved its per-
formance, thereby suggesting that clinical and genomic variables 
provide independent and complementary prognostic informa-
tion. Genomic-clinicopathologic classifiers had the highest net 
clinical benefit by decision curve analysis across a range of recur-
rence probabilities. When applied to node-negative patients, the 
subgroup where postcystectomy risk stratification is most critical 
(38), GC identified patients at risk for recurrence better than clin-
icopathologic metrics and remained statistically significant after 
adjusting for adjuvant chemotherapy administration. GC com-
ponents include transcripts involved in cell proliferation and dif-
ferentiation, apoptosis, cell-cycle and transcriptional regulation, 
and signal transduction—processes that are associated with UCB 
development and progression (39).

When benchmarked against previously reported gene signatures 
for clinically high-risk UCB, GC performance was superior when 
applied in a blinded manner on the validation set. This comparison 
was possible because of the transcriptome-wide profiling platform 
that allowed prior signatures to be modeled on our cohort. Of prior 
signatures’ AUCs in the validation set, lower bounds of 95% CIs 
of 5/7 signatures were greater than 0.50, suggesting a statistically 
significant ability to predict recurrence beyond chance. This indi-
cated that while some prior signatures were prognostic for clini-
cally high-risk UCB, GC provides the highest relative performance 
that improved when combined with clinicopathologic metrics.

Study limitations include the inability to further evaluate GC 
because of the absence of public, clinically-annotated Human 
Exon array-profiled UCB datasets. However, its constituent mark-
ers could be mapped to other profiling platforms for assessment 
of performance. This exercise across four external datasets showed 
that GC could statistically significantly predict outcomes, thereby 
further validating its prognostic potential. Patients at elevated risk 
for recurrence may benefit from adjuvant therapy, although the 
efficacy of such therapy in patients with high GC or G-CC scores 
needs further investigation.

In conclusion, we document the discovery and validation of a 
15-feature genomic classifier composed of biologically-relevant 
RNA sequences that can stratify patients with pathologically-con-
firmed muscle-invasive and/or node-positive UCB postcystectomy 
based on their risk for recurrence, especially when combined with 
clinicopathologic variables. Classifier performance was superior to 
clinical metrics and prior genomic signatures for such patients, and 
was validated in external datasets. This may be attributable to the 
use of a large cohort, clinically relevant endpoint, and high-density 
transcriptome-wide expression profiling approach. The standard-
ized patient management and use of FFPE tissues for profiling 
also make this signature more clinically applicable. While addi-
tional analysis is warranted to better characterize the classifiers’ 
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prognostic potential, our results suggest that the combination of 
these markers and clinicopathologic parameters may be prognostic 
for clinically high-risk UCB.
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