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“Xuebijing Injection” (XBJ) is a traditional Chinesemedicine and has beenwildly used in the treatment of sepsis in China. However,
few studies have reported the use of XBJ in sepsis with acute lung injury (ALI). This study aimed to investigate the therapeutic
efficacy of XBJ against sepsis-induced ALI. Generally a total of 27 mice were equally randomized into three groups: a sham group
was given saline before sham operation. A sepsis group received the cecal ligation and puncture (CLP) operation only. A sepsis+XBJ
group, XBJ, was injected at 72, 48, and 24 h before CLP operation. The lung tissue was collected for UHPLC-Q-TOF/MS profiling
analysis, biomarker identification, and pathway analysis. With the analysis of principal component analysis (PCA) and partial
least squares discriminant analysis (PLS-DA), forty-five purine, amino acid, and sphingolipid metabolites in lung tissues were
identified as potential biomarkers of sepsis-induced ALI, among which 22 were reversed in the sepsis+XBJ group significantly.
Conclusively, our results suggest that purinemetabolic pathway, glutathionemetabolic pathway, sphingomyelinmetabolic pathway,
arachidonic acid metabolic pathway, and phospholipid metabolic pathway may be the potential therapeutic pathways to overcome
sepsis-induced acute lung injury and we provided the potential mechanisms of protective effects of XBJ against ALI.

1. Introduction

Sepsis, characterized by high morbidity and mortality rate,
has been the leading cause of critical illness worldwide [1, 2].
Among these patients, over 40% are at risk of progressing to
acute lung injury (ALI), a lung disease with high morbidity
[3, 4]. The treatments for sepsis-induced ALI include liquid
resuscitation, antibiotic therapy, blood purification, and stem
cell therapy. Despite the tremendous progress in the under-
standing of the mechanism of sepsis in the field of intensive
medicine and other basic sciences, the mortality rate remains
at a high level over the past few decades, especially in low- and
middle-income countries [5]. Xuebijing injection (XBJ), a
traditional Chinese herbal prescription, has been approved by
the State Food and Drug Administration (SFDA) and widely
used in the clinical treatment of severe sepsis. XBJ is made
up of more than 20 constituents including chlorogenic acid,
hydroxysafflor yellow A, rutin, and ferulic acid [6, 7]. It is an

anti-inflammatory drug and has beenwidely used inChina to
block the progression of sepsis and reduce the incidence and
mortality of sepsis [8]. In addition, XBJ can shorten themean
length of hospitalization, the Acute Physiology and Chronic
Health Evaluation-II score (APACHEII score), White Blood
Cell (WBC), C-Reactive Protein (CRP), Neutrophil (NEU),
and Temperature (T0) of patients with sepsis. Above all, XBJ
treatment can reduce the 28-day mortality of patients with
severe sepsis [9]. However, the mechanisms of “Xuebijing
injection” against sepsis-induced acute lung injury has is
still not clear, and comprehensive mechanisms remain to be
elucidated.

Metabolomics is a rapidly advancing field after the devel-
opment of genomics, transcriptomics, and proteomics and
can serve as a tool for the analysis of biological tissues [10].
Metabolomics can show us a better perspective to explore the
entire organisms [11]. This technology can be also used to
assess the holistic efficacy of traditional Chinese medicines
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and reveal the biomarkers of sepsis and sepsis-induced acute
lung injury [12, 13]. In this study, it is the first time to use a
metabonomic-based approach to explore the comprehensive
changes in lung tissues in a murine model of sepsis-induced
ALI and the therapeutic efficacy of XBJ against ALI.

2. Materials and Methods

2.1. Reagents. XBJ was purchased fromCHASE SUNCo., Ltd
(Tianjin, China). Formic acid (FA) (HPLC grade) was pur-
chased from the Fluka Chemical Corp (Buchs, Switzerland).
Methanol (HPLC grade) and acetonitrile (HPLC grade) were
purchased from Merck (Darmstadt, Germany). 2-Chloro-L-
phenylalanine (Sigma-Aldrich, St Louis, MO, USA) was used
as an internal standard. Chromatography mass spectrometry
(GC-MS) was performed using the Milli-Q system (Milli-
pore, Bedford, MA, USA) with ultrapure water.

2.2. Animals and Groups. Male specific-pathogen-free
C57B/L6 mice weighing 21-25g (Animal Lab Center of the
Navel Medical University, Shanghai, China) were housed
in a standard 12h light/dark cycle, constant temperature
condition with free access to food and water. All the
experiments were approved by the Animal Care and Use
Committee of Tongji University (Shanghai, China). Sepsis
was induced by cecal ligation and puncture (CLP) as
described before [14]. Twenty-seven equally randomized
into 3 groups: sham group, treated with sham operation, and
saline only; model group; and treatment group, treated with
4ml/kg XBJ injection (CHASE SUNCo., Ltd. Tianjin, China)
via the tail vein at 72, 48, and 24 h before CLP [15]. The lung
tissues were collected from each group and stored at -80∘C
for future study.

2.3. Histology and Immunohistochemistry Analysis. After the
experiments were finished, the lung tissues were perfused
with normal saline (NS), inflated with 1ml formalin and
removed en bloc after tracheal ligation. After that, the lung
tissues were fixed in 10% PBS buffered formalin for 24 h at
room temperature and embedded in paraffin. Hematoxylin
and eosin (H&E) staining was performed using the standard
protocol. For immunohistochemistry of ICAM and VCAM,
tissue sections or cells were incubated with the primary
rabbit anti-ICAM (1:2000; cell signal tech, Boston, USA)
and anti-VCAM (1:2000; cell signal tech, Boston, USA)
antibody, followed by the secondary goat anti-rabbit anti-
body (Beyotime Institute of Biotechnology, Shanghai, China).
Immunohistochemical images were captured with a digital
camera (Nikon, Tokyo, Japan).

2.4. Sample Preparation and Test. The frozen lung tissues
were thawed at room temperature, added with 0.3ml ice-cold
methanol containing 25𝜇g/ml 2-chloro-L-phenylalanine as
the internal standard to precipitate the protein and extract the
metabolites, and mixed by vortex 5 min. These samples were
tranquilized for 10min.After centrifugation at 13000rpm, 4∘C
for 15 min, the clear supernatant was transferred to a sampler
vial.

A quality control (QC) sample was used to monitor the
data acquisition performance during analysis.TheQC sample
was prepared by pooling aliquots from all lung samples
collected in our study.

2.5. UHPLC-Q-TOF MS Analysis. UHPLC-Q-TOF/MS pro-
filing analysis was performed using an Agilent 1290 Infinity
LC system equipped with an Agilent 6530 Accurate-Mass
Quadrupole Time-of-Flight (Q-TOF) mass spectrometer
(Agilent Technologies, USA). Chromatographic separations
were performed at 40∘C using an Acquity UPLC HSS T3
column (2.1 mm × 100 mm, 1.8 𝜇m; Waters, Milford, MA,
USA). The mobile phase was composed of 0.1% formic acid
(A) and ACN modified with 0.1% formic acid (B). The total
run time for one sample was 25 min including 6 min for
equilibration and the optimized UHPLC elution conditions
were set at: 5%B, 0-2 min; 5%-15%B, 2-10 min; 15%-30%B,
10-14 min; 30%-95%B, 14-17 min; and 95%B, 17-19 min. The
injection volume was 3 𝜇L and the flow rate was set to 0.4
ml/min, and the autosampler was maintained at 4∘C.

An electrospray ionization source (ESI) was operated
in both positive and negative ion modes of operation. The
optimized conditions used were as follows: capillary voltage,
4 kV for the positive mode and 3.5 kV for the negative mode;
drying gas flow, 11 L/min; gas temperature, 350∘C; fragment
or voltage, 120 V; nebulizer pressure, 45 psig; and skimmer
voltage, 60 V. Data were collected in the profile mode and the
mass range was set from 50 to 1,100m/z.The biomarkers were
further analyzed by MS/MS, and the collision energy was set
from 10 to 40 eV.

2.6. Statistical Analysis. The UHPLC-MS raw data in the
instrument specific format were converted to common
(mz.data) data format files using the Agilent Mass Hunter
Qualitative software (Agilent Technologies, USA), in which
the threshold was set to 0.1% and all isotope interferences
were excluded. The XCMS program [16] (https://xcmsonline
.scripps.edu) was used for peak extraction, retention time
correction, RT alignment, and integration, in order to
generate a visualization matrix. The ions were filtered to
an 80% concentration [17], and to correct the MS response
shift, all detected ions in each sample were normalized to
total intensity. The three-dimensional (3D) data, including
the sample names, RT, and m/z pairs, were imported
to SIMCA-P software (version 11.0, Umetrics, Umea,
Sweden) for principal component analysis (PCA) and partial
least squares discriminate analysis (PLS -DA). Variable
importance plot (VIP) with the threshold value of 1 was
used to select metabolites. Data are represented as mean ±
standard deviation (SD).The statistical significant differences
were analyzed by SPSS 17.0, using Student’s t-test and one-way
ANOVA. P < 0.05 was considered statistically significant.

2.7. Identification of Biomarkers and Pathway Analysis.
To identify the discovered biomarkers, the exact masses
of ion were input into databases such as Metlin (http://
metlin.scripps.edu), Human Metabolome Database (http://
www.hmdb.ca/) and PubChem (http://pubchem.ncbi.nlm
.nih.gov). The metabolic pathway was drawn by the

https://xcmsonline.scripps.edu
https://xcmsonline.scripps.edu
http://metlin.scripps.edu
http://metlin.scripps.edu
http://www.hmdb.ca/
http://www.hmdb.ca/
http://pubchem.ncbi.nlm.nih.gov
http://pubchem.ncbi.nlm.nih.gov
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Figure 1:XBJ ameliorates the acute lung injury induced by septic. Upper panel: hematoxylin and eosin staining of lung tissues. Magnifica-
tion, ×200. Middle panel: immunohistochemical staining of ICAM in lung tissues. Magnification, ×200. Lower panel: immunohistochemical
staining of VCAM in lung tissues. Magnification, ×200.

Smartdraw software (SmartDraw 7.5 Hemera Technologies
Inc) based on the biomarkers found in the experiment.

3. Results

3.1. Histopathology. To assess the protective effect of XBJ, the
lung tissue sections were observed under a light microscope.
As shown in Figure 1, after CLP, the lung tissues in the model
group displayed thick lung septa, vascular congestion, and
expansion and became congested by neutrophils. However,
the severity was ameliorated after XBJ treatment as compared
with the model group.

ICAM and VCAM are two types of proinflammatory
adhesion molecules. As shown Figure 1, the expression of
ICAM and VCAM in the treatment group was significantly
decreased as compared with the model group.

3.2. Metabolic Profiling Analysis of Lung Tissues. UHPLC-Q-
TOF/MS data of the lung tissues were acquired based on the
above methods. Figure 2 shows the representative total ion
chromatograms (TICs) in the positive mode and negative
mode.These two figures displayed the general information of
UHPLC-Q-TOF/MS detection. PCA score plot showed that
the QC samples gathered into groups tightly, indicating that
this system was stable. As shown in Figure 3, together with

PLS-DA scatter plot and variable importance plots (VIPs),
we defined different metabolites in the three groups. The
metabolites that we chose were the points far away from
the origin point in Figures 3(a) and 3(b). The metabolites
with VIPs > 1.0 were considered to be important differential
biomarkers. Then in Figures 3(c) and 3(d), the positive and
negative modes of supervised partial least squares discrim-
inate analysis (PLS-DA) plot were used to screen potential
metabolite biomarkers from the obtained data [18]. One-way
ANOVA and Tukey’s post hoc test were used to assess the
statistical significance.

3.3. Identification of Biomarkers. To identify biomarkers,
we used the extracted ion chromatogram (EIC) to con-
firm the ions and then put the accurate molecular mass
of ions into the Mass Bank (http://www.massbank.jp/),
Metlin (http://metlin.scripps.edu/) and Human Metabolome
Database (http://www.hmdb.ca/) to verify the structure that
we speculated [17, 19]. Then, detected the corresponding
quasi-molecular ion peak according to the retention time
(RT) in the extracted ion chromatogram (EIC) of m/z
137.0458 (Figure 4(b)). Measured by Agilent MassHunter
software, the accurate mass was 137.0458, and C

5
H
4
N
4
O

was calculated as the most probable molecular formula.
Then, the m/z of 137.0458 was identified as hypoxanthine

http://www.massbank.jp/
http://metlin.scripps.edu/
http://www.hmdb.ca/


4 Evidence-Based Complementary and Alternative Medicine

x107

x107

x106

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Counts vs. Acquisition Time (min)

1

1

1

1

1

1

+ESI TIC Scan Frag=120.0V C4.d

+ESI TIC Scan Frag=120.0V L4.d

+ESI TIC Scan Frag=120.0V LX4.d

1

0

5

0

1

0

(a)

x106

x106

x106

2

0

2

0

2

0

-ESI TIC Scan Frag=120.0V NEG-C4.d

-ESI TIC Scan Frag=120.0V NEG-L4.d

-ESI TIC Scan Frag=120.0V NEG-LX4.d

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Counts vs. Acquisition Time (min)

1

1

1

1

1

1

(b)

Figure 2:The representative TICs in the positive and negativemode. Representative total ion current (TIC) chromatograms of lung tissues
obtained from different group of rats in the (a) positive mode and (b) negative mode. Upper panel: sham group; middle panel: model group;
lower panel: treatment group.

by considering the elemental composition, fragmentation
pattern, and chromatographic retention behavior, which was
validated by a standard compound (Figure 4(c)). Similarly,
other biomarkers have been identified according to the above
method and are listed in Table 1 [20].

3.4. Evaluation of the Mechanism Underlying the Effect of XBJ
on Sepsis-Induced ALI. Finally, we identified 45 metabolites
in the lung tissues to be the potential biomarkers of sepsis-
induced ALI. These metabolites were valid to evaluate the
protective effect of XBJ on sepsis-induced ALI. According
to these statistics, we established a PCA model, R2X=0.544
and Q2=0.56, demonstrating that the model was reliable
and predictive. All identified different metabolites are listed
in Table 1, indicating that, among these 45 metabolites
identified, 22 metabolites were reversed in the treatment
group. Furthermore, the heatmap of these 45 metabolites was
presented in Figure 5 both in positive and negative mode. To
gain an insight intometabolic changes in different groups, we
put the data into Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway database (http://www.genome.jp/kegg/).

The pathways of the identified metabolites are shown in
Figure 6 by mainly focusing on fatty acid metabolism,
amino acid metabolism, purine metabolism, and phospho-
lipid metabolism.

4. Discussion

Sepsis is a common clinical condition associated with septic
shock and MODS in ICUs. More than 40% patients with
sepsis are at risk of progressing to ALI [4]. Previous studies
showed that Gram-negative bacterial infections still play a
central role in the pathogenesis of ALI and ARDS [21]. In this
study, we established the sepsis-inducedALImodel following
the method described previously [14]. It was found in our
study that the metabolites promoting oxidative stress were
reduced significantly and after XBJ treatment the symptoms
of ALI were alleviated, and the survival rate was improved.

No effective methods are currently available for the
clinical treatment of sepsis-induced ALI. The meta-analysis
performed by Shi H el al. showed that XBJ had a significant
clinical effect on patients with sepsis [9]. But the extract

http://www.genome.jp/kegg/
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Figure 3: PLS-DA and VIP-score plot in the positive and negative modes. The combination of S- and VIP-score plot in the (a) positive
and (b) negative modes showed that a greater number of values obtained from the lung tissues were further away from the origin. Score plots
of the principal component analysis performed on the HPLC/MS profile of rat lung tissues obtained from the sham group (black squares),
model group (red rounds), and treatment group (blue rhombus) in the (c) positive mode and (d) negative mode.

efficacy of XBJ remains unclear. Inflammatory mediators,
such as ICAM andVCAM, block themicrovessels and lead to
activation of leukocytes to release inflammatory mediators.
These mediators can also release a large amount of oxygen
free radicals [22, 23]. What is more, ICAM and VCAM
are the mediators after the stimulation of TNF-𝛼, IL-1, and
endotoxin, leading to adhesion, aggregation, rolling, and
exudation of leukocytes [24].

It was found in this study that less ICAM and VCAM
gathered in the XBJ treatment as compared with the model
group, indicating that XBJ was able to ameliorate sepsis-
induced ALI via reducing the production of ICAM and
VCAM.

Based on the results obtained from the lung tissues and
comparison with the information from the databases such
as HMDB, we finally identified a series of biomarkers and

related pathways in the treatment group versus the model
group. These pathways involved purine, glutathione, sphin-
gomyelin, arachidonic acid metabolisms, and phospholipid
metabolism.

Compared with the sham group, we observed that xan-
thine and hypoxanthine were downregulated, and uric acid
was upregulated, and XBJ treatment could reverse these
conditions.

Annette et al. [23] found that, in the process of oxidative
stress, the amount of xanthine oxidase would be enhanced
significantly. The xanthine oxidase (XO) could break down
hypoxanthine and xanthine to uric acid and release super-
oxide, which is consistent with our experimental result.
Previous studies [25] reported that the level of uric acid
in patients with infection was elevated significantly and
associated with poor prognosis. In our study, XBJ alleviated
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Figure 4: Identification of a selected marker (m/z=137.0458). (a) Extracted ion chromatogram (EIC) of a commercial standard
hypoxanthine (tR=0.996min); (b) EIC ofm/z 137.05 (tR=0.997min); (c)MS/MS spectrumof a commercial standard hypoxanthine; (d)MS/MS
spectrum of the ion. The collision energy was 10V.

oxidative stress in lung tissues after CLP. What is more, XBJ
suppressed the activation of xanthine oxidase, thus increasing
the level of xanthine and hypoxanthine and decreasing the
level of uric acid.These results imply that XBJ could favorably
affect sepsis-induced ALI via the purine metabolic pathway.

Mervyn et al. andNovelli et al. [26–28] demonstrated that
antioxidant depletion such as glutathione (GSH) was one of
the most important characteristics in septic patients, which
may ultimately lead to severe oxidative stress. Upregulation
and activation of GSH could final ameliorate inflammation

and histological injury of lung tissues [29]. In our study, we
also observed the same phenomenon that the quantity of
GSH was declined significantly, but the quantity of GSH was
enhanced after XBJ treatment, indicating that XBJ may be a
therapeutic option for sepsis-inducedALI through alleviating
oxidative stress.

Sphingosine is a kind of bioactive lipid present in cell
membranes. Previous studies [30] found that sphingosine
exerted a critical role in signal transduction and participated
in the process of growth, senescence, differentiation, and
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(a)

(b)

Figure 5: The heatmap showed the expression levels of differential metabolites. Heatmap visualization of the differential metabolites in
these three groups in positive (a) and negative ion mode (b). In this picture, each row represents a metabolite and each column represents
the expression level (red: upregulation; blue: downregulation).
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Figure 6:Ametabolic pathwaymap showed the changedmetabolites and their related pathway in model group or after XBJ treatment.
The metabolic pathway networks related to the different metabolites between sepsis-induced acute lung injury and XBJ treatment groups.
Red biomarkers in the networks are upregulated and the green ones are downregulated.

apoptosis. Published articles [26, 27, 29] showed that sph-
ingolipid metabolism also played a critical role in oxidative
stress. When sepsis occurs, it is in oxidative status, which
causes severe cell membrane damage and sphingolipid loss.
As a result, the body needs large amounts of sphingosine to
compensate for the sphingolipid loss. It was found in our
study that the amount of sphingosine in the model group
was reduced significantly as comparedwith the control group,
and XBJ treatment reversed this process, indicating that the
sphingolipid metabolic pathway is activated in the condition
of sepsis-induced ALI as the symbol of cell death.

Arachidonic acid is one of the important polyunsaturated
fatty acids (PUFA) and can be biosynthesized from linoleic
acid. Arachidonic acid plays a critical role in inflammatory
metabolic pathways [31]. The data presented in a pilot study
[32] showed that the activity of arachidonic acid metabo-
lites persisted for several days in septic patients. What is
more, arachidonic acid proved to activate anti-inflammatory
cytokines and inhibit proinflammatory cytokines to prevent
pulmonary injury [33].

Lysophosphatidylcholine (LPC) is a critical immunomo-
dulator and has been reported to reduce mortality in
septic mice [34]. Previous publication has shown that
LPC concentrations on day 7 were significantly lower in
nonsurvivors than in survivors and Smani et al. also reported
the significant effect of LPC in severe infections [35, 36].

Meanwhile, previous studies illustrated the therapeutic
effects of LPC in experimental sepsis, which included the
effects on cytokine levels, on enhancing bacterial clearance,
on neutrophil deactivation, and on increasing bactericidal
activity of neutrophils [34, 37]. In this study, we also observed
that most kind of LPC was increased in XBJ treatment group
when compared with CLP group.

In summary, the disturbance of purine, glutathione,
arachidonic acid, and sphingolipid metabolisms plays critical
roles in the progress of sepsis-induced ALI, and XBJ treat-
ment could reverse these metabolic disturbances in varying
degrees. These results demonstrate that XBJ injection could
relieve sepsis-induced acute lung injury via improving the
condition of these 5 metabolic pathways.
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However, Xuebijing injection consists of over 20 con-
stituents, and some drug monomers such as ferulic acid and
tanshinol can also eliminate oxygen free radicals and regulate
lung inflammation [33, 38], so further studies are necessary to
elucidate the detailed mechanism underlying the therapeutic
efficacy of XBJ.

5. Conclusions

Our study demonstrated a metabonomics approach based
on UHPLC/Q-TOF MS to profile the metabolic changes of
sepsis-induced acute lung injury in mice and demonstrated
that XBJ can alleviate sepsis-induced acute lung injury
via purine, glutathione, arachidonic acid, and sphingolipid
metabolisms.These pathways may be the potential therapeu-
tic pathways to overcome sepsis-induced acute lung injury
and we provided the potential mechanisms of protective
effects of XBJ against ALI. However, further studies are
needed for better understandings about which compounds of
XBJ are involved in this pathophysiological process.
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