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Abstract: Recently, vast investments have been made worldwide in developing Cyber-Physical
Systems (CPS) as solutions to key socio-economic challenges. The Internet-of-Things (IoT) has also
enjoyed widespread adoption, mostly for its ability to add “sensing” and “actuation” capabilities to
existing CPS infrastructures. However, attention must be paid to the impact of IoT protocols on the de-
pendability of CPS infrastructures. We address the issues of CPS dependability by using an epidemic
model of the underlying dynamics within the CPS’ IoT subsystem (CPS-IoT) and an interference-
aware routing reconfiguration. These help to efficiently monitor CPS infrastructure—avoiding
routing oscillation, while improving its safety. The contributions of this paper are threefold. Firstly,
a CPS orchestration model is proposed that relies upon: (i) Inbound surveillance and outbound
actuation to improve dependability and (ii) a novel information diffusion model that uses epidemic
states and diffusion sets to produce diffusion patterns across the CPS-IoT. Secondly, the proposed
CPS orchestration model is numerically analysed to show its dependability for both sensitive and
non-sensitive applications. Finally, a novel interference-aware clustering protocol called “INMP”,
which enables network reconfiguration through migration of nodes across clusters, is proposed. It
is then bench-marked against prominent IoT protocols to assess its impact on the dependability of
the CPS.

Keywords: collection tree protocols; cyber physical systems; dependability; epidemic modelling;
fourth industrial revolution (4IR); internet-of-things (IoT)

1. Introduction

Cyber Physical Systems (CPS) are a new generation of systems that play a key role
in interconnecting the physical and virtual worlds. Recently, vast investments have been
made globally in the development of CPS, as they have been identified as key technologies
that can boost the deployment of the Fourth Industrial Revolution (4IR). It is expected
that CPS will pave the way for solutions to key economic and societal challenges, such as:
Coping with an ageing population, improving issues of health and public safety, planning
for mega-cities, achieving sustainability and globalisation, as well as proffering solutions
to mobility challenges. Similarly, Internet-of-Things (IoT) principles are finding their way
into next generation CPS, enabling extended interactive functionality between the physical
and virtual environments through “sensing” and “actuation”.

By combining CPS and IoT, we gain the ability to infuse computing and communica-
tion capabilities into the dynamics of physical and engineered systems. This combination
is expected to provide different ways of interacting and manipulating physical systems,
through seamless network connectivity and refined user control over the actuation side.
CPS are key 4IR components whose dependability is paramount to the operation of to-
day’s critical infrastructures. As described in [1], the attributes of a dependable system
include: Availability—readiness for correct service, reliability—continuity of correct ser-
vice, safety—absence of catastrophic consequences on the user(s) and the environment,
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integrity—absence of improper system alteration, and maintainability—ease of mainte-
nance (repair). CPS dependability is therefore among one of the most desirable characteris-
tics of future CPS.

1.1. The Impacts of Emerging Trends on CPS-IoT

CPS-IoT systems are often a combination of diverse subsystems, including numerous
sensors from diverse manufacturers, varied gateways, and networking devices, as well as
multiple actuation systems, all of which might run different protocols. The relevance of a
dependable CPS-IoT system can therefore not be over-emphasised. However, serious con-
siderations must be paid to the impacts of complex emerging IoT platforms and standards
on CPS infrastructure. These impacts can be viewed from three dimensions, viz.:

1. The impact of complexity on CPS: By enabling information to be collected and com-
municated among everybody, everything, and from any where, CPS-IoT will usher in
a new era where the cyber, physical, and human knowledge, as well as social activities
are integrated into a unified platform. Though advantageous, the down side is that
the CPS system might become very complex with heterogeneous components, multi-
ple functionalities, rules, and feedback loops. These could lead to new kinds of risks
and vulnerabilities. For instance, the failure of a single component could cascade into
large-scale, system-wide failures as a result of the interconnection between the various
components. The management of such complexity will require accurate modelling in or-
der to guarantee the dependability of the CPS and the safety of the critical infrastructures
it controls;

2. The impact of IoT standards on CPS: Current generation CPS are often managed
by Orchestration Systems (OS), wherein physical processes are controlled by net-
works of sensors, actuators, and controllers. These networks are often built around
static topologies with pre-planned routing and scheduling mechanisms mandated
by standard wireless protocols such the WirelessHART [2]. Though these standards
provide real-time guarantees for delay-sensitive applications, they do not consider
performance-related tasks, such as management of resources at the physical layer,
scheduling of nodes at the link layer, and/or end-to-end network layer routing of
traffic. Next generation CPS will require performance-aware OS that are capable of
dynamically interacting with the underlying IoT subsystem for sensing and actua-
tion through IoT communication infrastructure as well as support lightweight CPS
protocols. Finally, they would be capable of providing varied services to users while
meeting the requirements of high throughput, high reliability, and energy efficiency
yet operating within bounded communication delays;

3. The impact of information collection on CPS: The CPS of the future will be designed
around a network infrastructure that interconnects islands of IoT networks, with in-
formation shared using a “m-to-1” network model from all the nodes connected to
unique sink(s) rooted at the gateway(s). Collection Tree Protocols (CTPs) [3–7] are
rapidly gaining ground in the IoT field and are predicted to dominate the CPS-IoT of
the future. They are protocols that rely on spanning tree structures for information
diffusion from sensor nodes to the sink through local structures referred to as diffusion
sets in [8]. Sink nodes often serve as sources of beacon messages, broadcasted to guide
routing updates. However, this raises the issue of a trade off between stability and
safety. Frequent/excessive updates may result in routing oscillation, leading to the
network wasting most of its resources in signalling instead of forwarding data to the
sink. Conversely, infrequent updates may result in premature and/or delayed actuation
and subsequent safety risks. This might result in sensitive portions of the IoT network
entering an unsafe mode, damaging the controlled system, and/or lead to losses as
illustrated in Figure 1.

As illustrated in Figure 1, two tree structures could be derived from the initial network,
which are: (i) A myopic structure that may lead to some nodes being overloaded (such as
node 3 carrying “10 children”) while other nodes are idle or underloaded (nodes 2 and 4
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for example carrying only one child each) and (ii) a balanced network, wherein all nodes
are comparatively evenly loaded.

Figure 1. Relevance of efficient Cyber-Physical Systems-Internet-of-Things (CPS-IoT) monitoring.

When applied to a CPS such as a Cyber Physical Healthcare System or a Smart
Building System, the collection tree structure may lead to the IoT network experiencing
performance issues, especially when the node carrying a high number of descendants (e.g.,
nodes 3, 6, 7, or 8) is a critical node within a neo-natal unit of a hospital or a fire/emergency
management unit of a smart building. This reveals the relevance of CPS-IoT dependability
and its impact on systems that are controlled by it.

1.2. Contributions and Outline

The epidemic modelling of the CPS-IoT can help solve the issue of oscillation of the
CPS-IoT during routing updates by (i) ensuring that routing updates are performed at the
right moment when the stability of the network has moved far from its optimal point and
(ii) providing a combination of epidemic states that may guarantee the safety of the CPS-
IoT. Dependability is a key issue of future CPS that may be solved by redesigning current
Collection Tree Protocols with enhanced safety features or proposing new dependability-
aware protocols for CPS-IoT subsystems. This paper addresses the issues of dependability
of CPS by building on (i) mathematical epidemiology to model the CPS-IoT as a dynamic
system and (ii) interference-aware CPS-IoT reconfiguration to improve CPS dependability.

The contributions of this paper are threefold. Firstly, we propose a unified framework
that builds upon a CPS orchestration model to efficiently manage and monitor the CPS. We
then present a diffusion model for such a framework. While many epidemic models are
based on a macro approach that consider only transitions between infectious groups, our
work extends the state-of-the-art by including micro structures. These micro structures,
called diffusion sets, reveal the propagation of information as defined by CTPs currently
used in emerging IoT networking architectures. Secondly, a numerical analysis and valida-
tion of the efficacy of the proposed diffusion model with respect to network information
flow and CPS dependability is presented. Finally, we propose a novel interference-aware
clustering protocol that uses node migration between clusters as an efficient reconfiguration
tool when the CPS-IoT has “drifted” from its safe operating state.

In this paper, CPS dependability is supported by (i) identifying a combination of
epidemic state transitions that are more suitable for sensitive and non-sensitive applications
and (ii) associating transition rates to these transition states and using them to re-optimise
the CPS-IoT. Mathematical epidemiology has been used to model wireless sensor networks,
mostly for mitigation against worm attacks. However, to the best of our knowledge,
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none of these models have addressed the issue of information dissemination based on the
structures of the collection trees and diffusion sets as presented in this paper.

The rest of this paper is organised as follows. After this current section, related
works are reviewed in Section 2. We then present the main components of the CPS
orchestration model, and its underlying inner feedback loop and features in Section 3,
thereafter, the epidemic dynamic model is proposed and its stability proven. The CPS
monitoring model is described in Section 4, while in Section 5 the corresponding numerical
results are presented. Section 6 then draws a conclusion and proposes some avenues for
future research.

2. Related Work

Research work has been done to study issues related to different aspects of depend-
ability of (i) Wireless Sensor Networks (WSN) as standalone systems or as components
of the CPS and (ii) CPS as a whole. Some of these studies rely on mathematical epidemic
models that describe population-level dynamics of infectious diseases.

2.1. Mathematical Epidemiology

The classic Susceptible-Infectious-Recovery (SIR) models were pioneered in 1927 [9].
They have been used to describe the interaction between individuals when a disease breaks
out within a given population [10]. They are built around a compartmental structure where
individuals are separated into compartments based on their infectious status. Each individ-
ual can only be in a single compartment at any given time but can transit between compart-
ments with time. Since its inception, the original SIR-type framework has been adapted and
used to solve problems in various domains including network problems [11–14]. More re-
cently, it has been used in the prediction of the evolution of the Covid-19 pandemic [15–18]
and the impact of vaccination to achieve herd immunity [19–21].

It has also been modified and extended into other models such as “E-SIRS”, “SIRS”,
and “SIR-M”. Some of these extended models such as [11,12,22] are compartmental models,
with their analysis being done using the basic reproduction number R0, computed from
a next generation matrix K [23,24]. In this paper, the basic SIR transition states have
been modified to mimic a CPS-IoT network to achieve three objectives. (i) To analyse the
evolution in time of the nodes of a CPS-IoT network, when considered as components
of a population that has been compartmentalised in three epidemic states (Susceptible,
Attacked (Infected), and Removed). (ii) Translating a combination of these states into
dependability requirements. (iii) Re-configuring the nodes to restore the safety of the
CPS-IoT whenever it operates outside its safety requirements. The SEIR, SIRS, and other
models could also be adapted to mimic different behaviours and target other dependability
requirements of the CPS-IoT, but these are beyond the scope of this work. These epidemic
models can have tremendous impacts on the stability of a network when used to guide the
routing updates and/or trigger network reconfiguration or re-optimisation when specific
events occur.

2.2. Wireless Sensor Networks Dependability

In [25], a general framework using epidemic theory is presented for the analysis of
vulnerability of broadcast protocols in WSN. The work assumes a form of vulnerability
where an attacker can originate a piece of malicious code and use the broadcast protocol
to gain control of sensor nodes or an important interrupt function. In [26], a microscopic
mathematical model is proposed to describe the propagation dynamics of the sensor
worm in Wireless Sensor and Actuator Networks (WSAN) in situations where actuator
mobility causes sensor worms to spread faster. The model proposes a two-step Local
Defending Strategy (LDS) with a mobile patcher designed for network recovery. In [27],
a model formulated by differential equations is proposed to explain the process of worm
propagation in WSNs. The model considers communication radius and area, nodal density,
and the spreading dynamics of worms. While presenting similarities with our work in
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terms of epidemic modelling, the focus of these works [25–27] were on the monitoring and
mitigation against attacks in a WSN. This paper goes beyond this and includes routing and
rerouting processes to restore dependability in a CPS-IoT network.

2.3. Cyber Physical Systems Dependability

In [28], the authors proposed a cyber-physical management that includes a holistic con-
troller that generates actuation signals for WSAN re-configuring for performance control.
In [29], a methodology that includes an analytical model of CPS dependability behaviour
and architecture is proposed. The model is applicable in environmental monitoring using
WSN, multi-agent, and cloud computing technologies. In [30], an overview of different
types of systems and the associated transition process from mechatronics to CPS and
cloud-based (IoT) systems is presented. The paper also advocates for a multi-disciplinary
CPS development process and presents challenges related to CPS design from various
perspectives The content of paper [31] includes: A review of research and innovations on
CPS reliability in Europe, procedures for evaluating the reliability of CPS sensors, and a
co-simulation framework for real-time interaction between virtual and real sensors. An out-
look of software and services supporting cyber physical systems with wireless sensor
networks is presented in [32]. The focus of these papers [28–31] lies on CPS but none of
them have addressed the dependability of CPS as presented in this paper.

2.4. Autonomic Computing

Autonomic computing provides the potential to transform the CPS of the future
into a computing environment that can manage itself through a feedback loop using the
MAPE structure initially proposed by IBM [33]. Using the MAPE structure, the CPS can be
monitored through sensing, analysed through different modelling processes, and execute
relevant mitigation processes through actuation when the CPS has moved away from its
optimal operation. A decision-making framework for dynamically adjusting a dynamic
IoT environment to changing requirements is proposed in [34]. The framework uses
a combination of a finite-state machine model and a game theoretic decision-making
method for extracting efficient strategies. The usability of the framework is demonstrated
through a smart greenhouse-based use case. A Hierarchical fog-assisted Computing
architecture (HiCH) is proposed in [35] for remote IoT-based patient monitoring systems
with autonomous data management and processing performed at the edge of a network.
Moving away from the conventional Observe-Decide-Act (ODA) control strategy [36],
HiCH exploits and customises MAPE-K autonomic computing with an adaptive control
loop that achieves monitoring in the sensor layer, analysis in the cloud layer, planning in the
fog layer, and execution in the fog layer. A cloud-based middleware framework is proposed
in [37] to provide a set of cloud services for self-adaptive IoT collaboration services in a
cloud environment. In such an environment, domain-dependent components are separated
from the layers that leverage existing middleware frameworks. Besides domain-dependent
components and operations, the framework includes support for MAPE cycles on Virtual
Machine and collaboration between multiple systems.

The literature surveyed above reveals a clear research gap in terms of traffic engineer-
ing techniques and models for CPS-IoT. It also points to the state-of-the-art in autonomic
computing models for CPS-IoT dependability, which is gaining momentum with a number
of papers applying self-configurable techniques to the IoT domain.

3. The CPS Dependability Model

The CPS considered in this paper is built around an enhanced network orchestration
model with inner feedback loop that reveals the different components and processes in-
volved in its management. As depicted by Figure 2, the model shows how (i) inbound
surveillance is performed on the network information collected from the IoT subsys-
tems and (ii) outbound actuation is used to control the operation of the CPS-IoT from a
safety perspective.
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Figure 2. CPS orchestration model.

3.1. The CPS Orchestration Model

In Figure 2 an inner feedback loop reveals the interactions between the cyber and
physical spaces and how the CPS is monitored through an inbound surveillance and
an outbound actuation process. The figure also reveals: (1) A physical-to-cyber flow of
information originating in the physical space and translated into services at higher levels in
the cyber space and (2) a cyber-to-physical flow of information, initiated by the processing
of information in the cyber space to achieve actuation, both within the sensor network and
on physical objects in the physical space. In essence, information flowing from the physical
to the cyber space includes: “Sensor data” obtained from the sensing of physical objects and
“sensor network monitoring data”, which are extracted from sensor network surveillance.
Information flowing from the cyber to the physical space on the other hand contain “control
signals” for actuating physical devices within the environment and “control messages”
required for re-optimisation and reconfiguration of the sensor network. In the proposed
CPS management model, the key processes are sequentially iterated in a loop as follows:

Sensing: This is initiated in the physical space to sense the environment for further
processing in the cyber space. It generates “sensing data”, which are routed over paths
created by CTPs. These sensing data are used to analyse the diffusion of information in the
CPS-IoT subsystem, for the purpose of monitoring the performance of the subsystem and
and anomaly detection.

Communication: The communication process is initiated at the physical space where
IoT protocols such as LoRa, ZigBee, and BLE are used to move data from sensors to sink
nodes and finally to gateways at the edge layer. Communication processes can also extend
to the cyber space where other protocols are used to move data from the gateways to the
fog layer for further processing.

Inbound surveillance: This is the first process initiated in the cyber space and is used to
assess the integrity and performance of the CPS’s IoT subsystem as well as detect anomalies
before and during data processing.

Data + Control: Filters data and control information and stores the information into
databases for batch or stream processing. In batch processing, data are stored in databases
for a longer period of time while streamed information are processed in real time to produce
data analytics for decision making.

Data processing: Here various analytics and simulations are applied to the data (both
batch and stream) to support decision systems.
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Observation center: The observation center is an entity of the CPS management
infrastructure where the results are observed by the operation specialists for decision-
making purposes (storage or actuation).

Outbound actuation: The outbound actuation is the last process implemented at the
cyber space. It involves adjusting the operating parameters of the IoT subsystem based on
the inbound surveillance to restore the CPS’s optimal settings whenever necessary.

Actuation: Initiated in the physical space to either restore the network to its optimal
operational level or perform actuation on physical objects in the environment as a result of
the data analytics or decision(s) made at the observation center.

As described above, the CPS orchestration model includes an adaptive control loop
similar to the MAPE-K structure [33–37] where (i) “Monitoring” is achieved through the
sensing process, (ii) the “Analysis” is done by the inbound surveillance, (iii) “Planing”
is performed through the Data processing process, (iv) the “Execute” is achieved by the
outbound actuation process, and (v) the “Knowledge” acquired in the observation center is
used to support decision making.

3.2. Epidemic Modelling of the CPS-IoT

As illustrated in Figure 3a, the states of the nodes of the CPS-IoT can be mapped
into epidemic states when considering: (i) The risks and levels of congestion associated
with the network collection tree topology and connectivity and (ii) the energy that can be
drawn from nodes as a result of such topology and connectivity. As IoT networking uses
CTPs, the number of “children” carried by a node (node interference), can be translated
into an epidemic state expressing the level of contamination of the node. In this paper,
two interference thresholds, T1 and T2, have been used to map epidemic states into IoT
networking states. Building around the SIR epidemic model, this paper considers the
SAR model that uses three epidemic states referred to as Susceptible (safe), Attacked, and
Removed statuses. These states are respectively the loose equivalent of the Susceptible,
Infected, and Removed states of the SIR model. We define the considered states as follows:

(a) Interference thresholds defining epidemic sets.

(b) Epidemic surveillance model. (c) Differential equations solution.

Figure 3. The epidemic modelling.
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Susceptible nodes: Are the least or non-interfering nodes in a network. Their total
number is denoted by S. Each susceptible node n is assumed to have weight (level of
interference) less than the threshold T1.

Attacked nodes: Are highly interfering but still operational nodes. The total number
of infected nodes in a network is denoted by A. An infected node is assumed to have
weight less than the threshold T2 but at least equal to the threshold T1.

Removed nodes: Are nodes that are no longer operational as a result of high levels of
interference between themselves. These nodes are also referred to as depleted and their
total number is denoted by R. A node is considered to be removed if its interference is at
least equal to the threshold T2.

Note that the transitions from Susceptible to Attacked (S-to-A) and from Attacked to
Removed (A-to-R), may determine the IoT’s safety level. From a CPS-IoT safety perspective,
high availability translates to a “healthy” or “uninfected” state, while reliability translates
to the ability of a node to accurately and safely carry out its function(s). An analysis of
dependability based on the epidemic model proposed in this paper may thus lead to four
potential cases depicted in Table 1. Higher migration rates from a state to another are
represented by binary values “1” while lower migration rates are represented by binary
numbers “0”.

• Higher transition rates from a susceptible to an attacked state is an indication of an
IoT network with low availability. This is because nodes will move faster from the
susceptible (safe) state to the attacked state;

• Lower transition rates from the susceptible to attacked state are an indication of an
IoT network with higher availability; that is nodes stay longer in the susceptible state;

• Higher transition rates from attacked to depleted state are an indication of a more
reliable IoT network. This is because the infected (attacked) nodes are quickly removed
to minimise potential risks to the IoT network;

• Lower transition rates from an attached to removed (depleted) state are an indication
of a less reliable IoT network. This is because nodes stay longer in an attacked state,
hence increasing the potential risks to the CPS and its IoT network sub-system.

Table 1. Safety perspective to CPS dependability.

Safety
S-to-A A-to-R

CaseAvailability Reliability

Low dependability
Low availability, low reliability 1 0 1

Average dependability
High availability, low reliability 0 0 2

Worse dependability
Low availability, high reliability 1 1 3

High dependability
High availability, high reliability 0 1 4

Note that as reported in Table 1, the best performance in terms of dependability
(safety) is achieved in Case 4. This applies to sensitive applications with hard real-time
constraints, which should be deployed with a low migration rate from susceptible to
attacked status ai and a high migration rate from attacked to removed status bi. Such
applications will require higher surveillance in terms of anomaly detection and quick
response/actuation. For instance, this can be implemented using interference-aware data
collection algorithms (such as Least Interference Beaconing Protocol (LIBP) [38]) that can
prevent IoT nodes from moving into the attacked state. Similarly, Table 1 reveals that
the average performance in terms of dependability is achieved in Case 2, when the IoT
nodes stay longer in the susceptible and attacked states before being removed. Case 1 and
Case 3 depict low dependability situations with the worst scenario being Case 3, where
the nodes spend less time in both the susceptible and attacked states. Case 2 applies to
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non-sensitive applications with soft real-time constraints that should be deployed with
low migration rates from susceptible to attacked status ai and from attacked to removed
state bi. Such applications will require less surveillance in terms of anomaly detection and
slower response/actuation by implementing cost aware data collection algorithms such
as Routing Protocol for Low-Power and Lossy Networks (RPL) [6]. The analysis of the
dependability/safety cases when triggered by transition rates adjustments is presented in
Section 5. The comparison between the CTPs in terms of epidemic status levels and their
relevance in CPS dependability will also be evaluated in Section 5.

In modelling these transitions epidemically, Figure 3b presents a finite state machine
of the epidemic model upon which the dependability of the CPS relies upon. It depicts a
network that has been partitioned into a number of diffusion sets, with nodes in the same
diffusion set assumed to be infectiously similar to each others. The figure reveals the states
of the diffusion sets and for each state its associated transitions as well as the actions that
trigger such state transitions. Susceptible nodes in the diffusion set Iı may be attacked at
the rate ai, while the attacked nodes from Iı are removed at rate ci. Susceptible nodes in
the diffusion set Iı may experience high interference, enough to move them directly to
the removed status without transiting through the attacked status. On the other hand,
removed nodes my cause some of the susceptible or attacked nodes to leave the network
because of the destruction of connection links. We consider bi to be the rate at which
susceptible nodes in Iı are removed. Susceptible nodes from diffusion set Iı migrate to
diffusion set I with rate λij, and attacked (or infected) nodes in Iı migrate to I at a rate
of ρij. In contrast to the classic SIR epidemic model, our model allows susceptible nodes
to move directly into the removed state. This reflects the case of nodes that are removed
from the system for reasons other than the infection/attack, such as component failure
or malfunction. The difference in equations resulting from these assumptions will be
presented as constraints of the CPS monitoring model proposed in Section 4. Using the
Euler method, this system of differential equations can be solved to produce three graphs
representing the evolution of the populations S(t), A(t), and R(t) over time as presented in
Figure 3c.

With regards to CPS safety, these cases may be translated into an objective optimisation
problem, consisting of maximising or minimising the surface below the curves S(t), A(t),
and R(t). This can be expressed by the integral of these curves over time and defined as:

f (t) = max
∫ T

0
Sı(t)±

∫ T

0
Aı(t)∓

∫ T

0
Rı(t) (1)

where T is the study period of the epidemic model and ± express a maximisation or
minimisation of the surface below the epidemic curve in relation to Table 1.

4. The CPS-IoT Monitoring Model

The diffusion sets are local data structures that reveal the impact of “data transporta-
tion” on IoT network nodes. Their structure can reveal which nodes will be more burdened
compared to others as well as the potential risk of transferring interference across nodes.
As stated earlier, in our diffusion model, nodes are grouped into diffusion sets with nodes
in the same diffusion set assumed to be infectiously similar, while those in different sets
are dissimilar. This section presents an analytical formulation of the inbound surveillance
and outbound actuation models and how these models are analytically solved.

4.1. The CPS Monitoring Problem

In our model, each diffusion set Dı comprises of subsets of nodes defined by Dı =
{Sı, Aı, Rı}. The subset Sı of susceptible nodes, which are working and uninfected nodes,
is of a size denoted by Si, while the subset of attacked nodes is of size Aı. Finally the subset
of removed nodes is of size Ri. When the diffusion set Dı includes both the attacked and
removed sets that are non empty (Ai 6= 0 or Ri 6= 0), it is said to be an infected set.
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The inbound surveillance problem consists of finding for each diffusion set Dı its
evolution function over time Iı(t) = {Si(t), Ai(t), Ri(t)}, while taking into account the
state transitions (Figure 3b) and the difference equations behind such transitions. On the
other hand, the outbound actuation problem consists of finding the right collection tree
protocol and applying that protocol to restore CPS dependability when its underlying CPS-
IoT subcomponent has moved away from its optimal/safe operating conditions. The CPS
monitoring problem is defined formally as follows:

max
∫ T

0 Sı(t)±
∫ T

0 Aı(t)∓
∫ T

0 Rı(t))

subject

to



∀x ∈ S ; → w(x) < T1 (2-1)
∀x ∈ A ; → T1 ≤ w(x) < T2 (2-2)
∀x ∈ R ; → w(x) ≥ T2 (2-3)
S
′
i = −aiSi + ∑

j 6=i
λjiSj − ∑

j 6=i
λijSi − biSi (2-4)

A
′
i = aiSi + ∑

j 6=i
ρji Aj − ∑

j 6=i
ρij Ai − ci Ai (2-5)

R
′
i = biSi + ci Ai (2-6).

(2)

∀Sı,A,R ∈ E where ai is the transmission rate between susceptible and attacked
nodes, bi is the migration rate from susceptible diffusion set Sı to attacked diffusion set
A, while ci is the migration rate from attacked diffusion set Aı to removed diffusion set
R. Note that the diffusion model does not express any dependability constraints. It only
expresses a set finding function and how it is mapped into: (i) A set finding problem ex-
pressed by the routing objective (1). Equations (2-1)–(2-3) express the network partitioning
into epidemic states: Susceptible: S , attacked: A, and removed: R. Equations (2-4)–(2-6)
are the set of differential equations representing the state diagram in Figure 3b showing
how the information and related interference is diffused from one set to another and reveal
the impact of moving nodes from the susceptible to infected states (attacked or removed) on
the network. These constraints reveal (i) that the migration rate from susceptible to attacked
reduces with an increase in the threshold T1 and vice versa, (ii) similarly, the migration rate
from attacked to removed decreases with an increase in threshold T2, and (iii) the network
impact depends on both thresholds T1 and T2. The parameter ai directly depends on the
number of susceptible nodes Si and the attacked ones Ai. It therefore makes sense to relate
ai with two other measures: (i) The susceptibility rate of each node in the diffusion set
Dı, denoted by βi and (ii) the infectiousness rate of nodes in the infected diffusion set Iı,
denoted by γi.

Conversely, the structure of a diffusion set clearly influences the attack ability, as the
effects of infections vary across different diffusion sets. We use the parameter ηi as a
measure of the impact on the network structure when a node gets infected (attacked or
removed). Therefore, ai can be computed using the following formula:

ai = βiγiηi
Ai
N

(3)

where Ai
N denotes the fraction of infected nodes in diffusion set Iı, and ηi is a parameter

revealing the impact of the diffusion on the network if a susceptible node in a diffusion set
Sı becomes infected (attacked or removed).

4.2. CPS Monitoring Implementation Model

An implementation of the CPS monitoring model is depicted by Figure 4, which
depicts the different processes involved in the solution to the CSP monitoring problem.
The figure reveals a network monitoring loop that contains: (1) A network engineering
module that computes the diffusion sets and uses RPL, LIBP, or Collection Tree Protocol
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(CTP) protocols to build collection trees; (2) collection of the transition rates parameters
in a live IoT network; (3) an epidemic modelling of the IoT network as a dynamic system;
(4) performance analysis of the dynamic system using analytics and visualisation of the
epidemic curves to detect performance degradation; and (5) network recovery by applying
the right collection tree protocol to re-optimise the CPS-IoT when it has moved far from its
safe state of operation.

Figure 4. CPS monitoring model.

4.3. Algorithmic Solutions

The solution to the inbound surveillance problem consists of applying the Euler
method to solve the systems of Equations (2-4)–(2-6). Actuation on the other hand is
achieved through: (i) Visualisation and analysis of the epidemic curves resulting from
the Euler solution, (ii) either adjusting the parameters bı and cı to restore the CPS-IoT
to its safe operating status and/or associating this parameters’ adjustment to a network
re-optimisation process performed in the routing process, or (iii) solely performing a
global network re-optimisation using an efficient (different) protocol to restore the CPS-IoT.
While the study of a network re-optimisation process using parameter optimisation is
beyond the scope of this study, a comparison between interference-aware and interference-
myopic algorithms in terms of the epidemic states reached by common CTPs is presented
in Section 5 to reveal the relative performance of these protocols in terms of CPS safety.
Furthermore, a novel interference-aware clustering protocol called Interference-aware
clustering with Node Migration (INMP) is proposed to restore the safety of the CPS.

4.4. Interference-Aware Clustering with Node Migration Protocol (INMP)

Interference-aware clustering with node migration (INMP) is an extension of the
IoT multi-sink protocol in [4] and is built around the concept of node migration/sharing
between clusters to improve the CPS-IoT performance (and safety).

4.4.1. The Node Migration Concept

Figure 5 illustrates the node migration paradigm for a network represented by a graph
of 15 nodes including three sink nodes S1, S2, and S3. The figure depicts a scenario where
the three initial clusters have 3, 8, and 3 nodes respectively, leading to an unbalanced
CPS-IoT network configuration with cluster 2 overburdened while the others are lightly
loaded. In such a scenario, much higher energy consumption will be experienced at the
sink node S2 compared to S1 and S3. The figure also reveals how through node migration,
clusters 1 and 3 each received two additional nodes from the overburdened cluster 2, thus
resulting in a more balanced CPS-IoT network environment. This migration of nodes
can be potentially beneficial in terms of energy consumption and network infrastructure
safety. In the figure, the initial network graph is shown on the top, with the green dashes
showing its partitioning into clusters before node migration, while the red dashes reveal
the partitioning after migration. The collection trees related to the different clusters are
represented in the lower part of the figure with the broken red lines revealing nodes that
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have been discarded from the initial tree while the full red lines reveal nodes that have
been added through node migration.

Figure 5. Node-sharing model.

Reorganising clusters for a load balancing purpose is an efficient strategy for self-
organising systems. The works presented in [39,40] reorganise clusters for load-balancing
with a focus on (i) balancing the processing load among fog nodes in [39] by having
compute nodes located in the corresponding fogs measuring the network proximity to each
other and self-organising into a hierarchical or a flat structure accordingly and (ii) providing
resilient distributed decision-making in large-scale situated systems by devising a process
of interconnecting edge devices into teams and applying a decentralised coordination
pattern for partitioned integration and coordination of these devices, which continuously
adapt to context change as proposed in [40]. The work presented in this paper applies a
clusters’ reorganisation model but with a focus on the CPS-IoT reconfiguration using a
balanced cluster membership based on node migration.

4.4.2. The INMP Protocol

The INMP protocol is based on the the following key features:

• The CPS-IoT is subdivided into n clusters, each cluster i ∈ n being of size k(i);
• Each cluster is organised into a m-to-1 model using a collection tree structure with the

root being a single sink node S(i);
• Clusters in an INMP map to collection sets;
• In contrast to the multi-sink structure proposed in [4], node migration can be performed

between clusters to restore the CPS-IoT safety and this is triggered by routing updates;
• The routing updates are triggered by either: (i) A beaconing message resulting from

visualising the epidemic model or computations using the epidemic curves or (ii) mon-
itoring of the diffusion sets, which reveals that nodes in the sensitive diffusion sets are
rapidly moving far from their prescribed epidemic states or that most of the nodes are
in an infected epidemic state. This step is carried out at the observation centre (steps 2
to 5 in Figure 2 or step 4 in Figure 4);
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• The number of nodes moving from one cluster to another may depend on many
parameters including: (i) The difference in sizes of clusters with the expectation of
balancing the load between clusters; (ii) the average and maximum energy consumed
by the sink nodes of the clusters; and (iii) the network epidemic state, which reveals
the level of attack on the network;

• The inbound surveillance is a two-steps process that starts with the physical environ-
ment where the CPS-IoT network performance is evaluated to reveal if some clusters
have sink nodes with energy levels above the cluster average. This is used in a second
step to trigger the computation of the SAR system of ordinary differential equations
in the cyber space to reveal the epidemic evolution in the diffusion sets;

• The outbound actuation is also a two-steps process that starts with a simulation of
the optimal/efficient configuration of the CPS-IoT clusters, which is followed by the
transfer of the new configuration into the CPS-IoT network in the physical space
through parameter adjustments.

The INMP protocol is an implementation of the Interference aware clustering with
Node Migration Algorithm (INMA) described in Figure 6.

Figure 6. The Interference aware clustering with Node Migration Algorithm (INMA) flowchart.

Note that as presented in this paper, the INMA algorithm contains a loop that includes
some steps of the MAPE-K control loop, introduced by IBM [33] and adopted in different
works on autonomic computing and self-organising networking [33–35]. It monitors
and collects details such as topology information, metrics (e.g., offered capacity and
throughput), configuration property settings, etc. from managed resources, then performs
complex data analysis and reasoning on the symptoms (information) collected.

5. Performance Evaluation

In this section, reports of the numerical analysis of the diffusion model in relation to
the diffusion and epidemic sets are presented.

5.1. The Performance Parameters

We conducted a number of experiments to analyse the performance of the compart-
mental epidemic model with the objective of revealing how they might be used to monitor
the CPS’s IoT subsystems. The first results presented in this section are related to the
difference equations expressed by (2-4)–(2-6) and solved using the Euler method described
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in [41]. The first set of experiments were conducted to evaluate the efficiency of the epi-
demic model in mimicking information diffusion in IoT networks. The second set were
designed to find the impact of CTPs on the CPS-IoT subsystem. For the first set of experi-
ments, the numerical computation and corresponding graphs were done using Python in
Jupyter notebook IDE, with Cooja running on Contiki OS [42] to produce the results of the
second experiment. Table 2 shows the initial conditions of the considered network and its
performance parameters.

Table 2. Diffusion model’s parameters.

Parameter Description Value

N Total number of nodes 100

m Number of diffusion sets 4

S0
i Initial number of susceptible nodes in set i S0

1 = 95, S0
2 = 70 , S0

3 = 60, S0
4 = 50

A0
i Initial number of attacked nodes in set i A0

1 = 5, A0
2 = 30 , A0

3 = 40, A0
4 = 50

R0
i Initial number of removed nodes in set i R0

1 = 0, R0
2 = 0 , R0

3 = 0, R0
4 = 0

λij Transmission rate from Si to Aj
λ12 = 0.04, λ21 = 0.03, λij = 0,
with i > 2 or j > 2

ρij Transmission rate from Ai to Rj
ρ12 = 0.01 = ρ21, ρij = 0, with i > 2 or
j > 2

bi Migration rate from Si to Ai gamma random distribution

ci Migration rate from Ai to i c1, c2, c3, c4 = 0.02

βi Susceptibility of a node in diffusion set i β1, β2, β3, β4 = 0.11

γi Infectiousness of a node in diffusion set i γ1, γ2, γ3, γ4 = 4.0

For this experiment a setup consisting of 10 {S, a, b...i} nodes was used. One node,
assigned the sink node S, was connected to a gateway and powered externally, while the
other nodes were battery powered and forwarded all data to S. We considered two key
performance metrics:

(i) Performance patterns [Si, Ai, Ri] are functions that show the evolution of routing
process over time. They reveal how nodes move from states to states and across diffusion
sets. (ii) State-to-state migration expresses the rate by which nodes change states in the
order: S, A, and R. It includes two parameters: The safe to attacked migration expressed by
s− 2− a and the attacked to removed migration expressed by a− 2− r.

5.2. Inbound Surveillance

We conducted a number of simulations to determine a performance pattern of the
diffusion sets under varied conditions. To study the effect of inbound surveillance, we
considered four experimental scenarios corresponding to four diffusion sets. In the first
I1 we set {S = 95, A = 5, R = 0}, this depicts an ideal initial condition where most of
the nodes are in the safe state and batteries are mostly fully charged. For I2, I3, and I4,
we set {S = 70, A = 30, R = 0}, {S = 60, A = 40, R = 0}, and {S = 50, A = 50, R = 0}
respectively representing a system with 70%, 60%, and 50% of their nodes in safe states.
The settings of I2 and I3 were similar, hence only that of I2 is reported for the purpose
of brevity. Figure 7 depicting three of these four scenarios reveal how inbound surveillance
can be achieved by tracking the evolution in time of the epidemic curves. Scenario I1 is
depicted by Figure 7a while Figure 7b illustrates scenario I2. Scenario I4 is depicted by
Figure 7c. Different other scenarios depicted by different epidemic curves can emerge
from the inbound surveillance to reveal different network conditions when monitoring the
CPS-IoT.

Susceptible states: In all three diffusion sets, a ’birth-decrease’ pattern was observed
where the number of susceptible nodes gradually reduces as nodes transit from the suscep-
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tible to infected (attacked or removed). In Figure 7a, it took about 60 s for all susceptible
nodes to be transited to other states, while it took about 35 s in scenario 2 and only 20 s in
the third scenario.

Attacked states: Across all scenarios, a ‘birth-growth-decrease’ was observed at the
attacked state. As the interference level on susceptible nodes increased (as a result of
accepting more child nodes), their numbers reduced until they reached the threshold (T1),
above which they migrated to the attacked state. In scenario 1, the number of susceptible
and attacked nodes were equal (50 each) after about 20 s, with the attack nodes peaking at
50 s. It is important to note that at its peak, there were only about 70 nodes in the attacked
state. This is because some nodes had migrated directly to the removed state.

Removed states: A ‘birth-growth-plateau’ pattern was observed in all scenarios. Here
the number of removed (battery depleted) nodes initially rose quickly until it equaled the
number of attacked, after which the growth rate reduced slightly. In scenarios 1 and 3,
not all nodes were removed, as some nodes remained in the attacked state at the end of
the experiment.

(a) S = 95, A = 5, R = 0. (b) S = 70, A = 30, R = 0. (c) S = 50, A = 50, R = 0.

Figure 7. Inbound surveillance scenarios.

5.3. Outbound Actuation

In this section, we study the effect of changing migration rates by mostly considering
the first scenario, where the number of nodes were set to {S = 95, A = 5, R = 0}. To achieve
this, we changed the migration rates and evaluated the impact of such adjustment on the
dependability of the CPS-IoT subsystem. These changes were based on Table 1 and with
respect to: Availability—when there is the need to keep the nodes in the susceptible
states for longer duration before migrating to the infected states and reliability—where
the focus is to avoid nodes staying too long in the attacked state but instead migrate
quickly to the removed state, in order to avoid compromising the system’s overall integrity.
The experimental results are reported in Figure 8 which depicts three scenarios revealing
how outbound actuation will impact the CPS-IoT.

(a) Scenario: (0, 0). (b) Scenario: (0, 1). (c) Scenario: (1, 0).

Figure 8. Outbound actuation scenarios: (s− 2− a, a− 2− r).
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5.3.1. s− 2− a = 0, a− 2− r = 0

Setting s− 2− a = 0 translates to nodes staying longer in the susceptible states, thus
being highly available while a− 2− r = 0 implies low reliability, as nodes stay longer in
the attacked state. By setting both values to zero, migrations across states were cancelled
out. These implies that nodes remained in their initial states throughout the duration of
the experiment. The result is as depicted in Figure 8a where all the lines remained flat and
unchanged throughout with no migration across states.

5.3.2. s− 2− a = 0, a− 2− r = 1

For this, the migration rate from susceptible to attacked was set to 0, in a bid to keep
nodes longer in the susceptible state while encouraging faster migration to the removed
state. This translates to high availability and high reliability. In order to better show the im-
pact of migration from attacked to removed, we used scenario 2: {S = 70, A = 30, R = 0}
as there were more nodes in the attacked state at the beginning of the experiment. Figure 8b,
showed that the number of susceptible nodes remained unchanged, this is expected as the
migration rate s− 2− a was set to zero. Compared to Figure 7b, the attack curve shows a
‘birth-decrease’ instead of a ‘birth-growth-decrease’. There was no ‘growth’ in the number
of attacked nodes because there was no migration from susceptible to the attacked state,
only from the attacked to the removed. This also accounts for the inverse but equal growth
rate observed with the removed curve.

5.3.3. s− 2− a = 1, a− 2− r = 0

Here the migration rates from susceptible to attacked was set to 1, while the migration
from attacked to removed was set to 0. This was done to target low availability and low
dependability, where the nodes move quickly out of the susceptible state but stay longer in
the attacked state. Figure 8c, shows that the removed curved remained flat as there was no
migration to the removed state (since a− 2− r was set to 0). The susceptible curve dropped
rapidly, reaching 0 at about 75 s, while the attacked curve grew rapidly from 5 nodes and
plateauing at 100 nodes after 75 s. All the nodes ended up in the attacked state state at the
end of the experiment.

5.3.4. s− 2− a = 1, a− 2− r = 1

When the migration rates were both set to 1 that is quick migration across states.
This translates to low availability and high reliability. Obtained results were similar to
those in Figure 7a, with nodes rapidly migrating out of the susceptible state to other states.
Similarly, the attacked curve grew rapidly as nodes migrated from the susceptible into the
attacked state until a peak was reach. It then rapidly dropped towards 0, as nodes migrated
out of the attacked to the removed state.

5.4. The Impact of CTP, RPL, and LIBP on CPS Dependability

As suggested earlier, the existing CTPs may have a varied impact on CPS dependability
of sensitive or non-sensitive applications. While non-sensitive applications can support
an extended operation with nodes in the attacked status, sensitive applications will rather
favour an extended operation with nodes in the susceptible states and tolerate only a
minimised operation with nodes in the attacked state to avoid putting the CPS safety at
risk. The impact of such protocols on the dependability of the CPS has been evaluated in
this section by conducting experiments to evaluate the epidemic status levels reached by IoT
nodes when data collection is guided by three CTPs (CTP, RPL, and LIBP) under the similar
threshold values T1 and T2. The experiments were conducted on an emulated Tmote sky
mote on the Contiki platform running on Cooja. UDGM (Distance Loss) was considered as
the radio medium of choice. The default implementations of CTP [5] and RPL [6] protocols
on Contiki were used, while LIBP was forked from the Contiki implementation of the
CTP protocol. This was done by disabling the trickle algorithm and modifying the code
to meet the requirements expressed by the compartmental routing problem formulation.
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In our experiments, the RPL protocol was run as two experimental instances using various
Objective Functions (OF) referred to as RPL-0 or RPL-ETX. For this work, Cooja parameters
were set similar to those of LIBP [4,38]. The experiment runtime was based on the following
key features:

• Upon starting up, 2 min were given to allow each network “settle”, thereafter the
network ran for 8 min, giving a total simulation runtime of 10 min;

• Each node periodically sent a packet containing the string “Hello from node” as its
packet data (payload). The payloads were sent at a 30 s time interval over the 8 min
duration. This resulted in each node sending 16 packets data to be collected by the sink;

• For the various experiments, Cooja’s existing profiling tools were used. For time
sensitive experiments, both the simulation timers and node real-time timers were
used to ensure accuracy;

• To distinguish between control and data plane traffic, packets were tagged. Counters
were updated when specific packets types were received;

• All experimental results are presented with epidemic colours—blue, red, and green,
linked to the amount of nodes in a specific epidemic state (susceptible, attacked, or
removed). This was applied to all three routing protocols (LIBP, CTP, and RPL) tested
to reveal their suitability for the safety of the CPS. This helps putting these results into
the context of the CPS dependability under study.

5.4.1. Energy Profile

A comparison of the average power consumption of each node for the various pro-
tocols is shown in Figure 9a. The graph shows that RPL is on average significantly more
power hungry than CTP and LIBP as most of its nodes were in the removed state with
battery depleted after the simulation period. This could be due to the fact that the in RPL,
sink node’s is always on and that RPL is built upon a heavyweight communication protocol.
The standard deviation of power consumption describes how well distributed the energy
consumption within a topology is. It is a metric that gives insights to the running time of
a network and how long it can run before its nodes’ batteries are depleted. Low energy
usage and low standard deviation shows that the protocol is energy efficient both in its
distribution and implementation. Figure 9b shows that RPL-0 has the highest deviation for
attacked nodes, while removed nodes have the highest deviation for RPL-ETX.

(a) Average power consumption (mW). (b) Standard deviation.

Figure 9. Energy profile: Average power consumption.

5.4.2. Routing Profile

LIBP’s main routing metric consists of the interference defined by the number of
supporting children per node. It is also an important parameter that defines not only the
reliability of the routing topology resulting from a routing protocol but also the diffusion
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process. The path length is a performance parameter that reveals how efficiently a sensor
network has been engineered.

Figure 10a shows the average path interference in terms of the average number of
children supported per node. It was obtained by averaging the number of times each node
referenced its parent. Smaller values are desirable and indicate balanced load distribution.
A balanced load implies a fair and efficient energy distribution in the network and longer
lifetime for the entire sensor networks, as all the nodes would most likely have equal
battery utilisation. On the other hand, higher interference values are undesirable, as they
are indications of congestion that may lead to a higher rate of packet loss across the network.
The results presented in the figure show that LIBP does better in this experiment compared
to CTP and RPL.

(a) Average path interference. (b) Average path length.

Figure 10. Routing profile: Interference and path length.

Depending on the application, a high average path length (leading to a deeper routing
tree) may be desirable for better energy distribution. Conversely, a lower average path
length (shallow routing tree) can result in lower latency between leaf nodes and sink nodes.
The average path lengths depicted in Figure 10b were obtained by computing a Time To
Live (TTL)-like attribute within the protocol’s control plane packets. LIBP and RPL use
TTL, while CTP uses “Time has lived” (which is TTL_MAX − TTL). Once the number
of hops was obtained they were averaged to give an average path length metric for each
protocol. These results show that on the average, LIBP expands its routing tree by 2 hops
compared to the other protocols.

5.4.3. Epidemic Profile

The interference thresholds determine the severity of the routing process in terms
of migration of nodes from one epidemic group to another. Looser severity might lead
to more IoT nodes staying longer in the susceptible state, while coarser severity may
move more nodes into the removed states. The results depicted by Figure 11 represent
the average states of the network nodes after the simulation period. Two severity levels
were considered in our experiment, a loose severity S1 = (T1 = 4, T2 = 6) in Figure 11a
and a coarse severity S2 = (T1 = 2, T2 = 5) in Figure 11b. From the figures, it can be
seen that LIBP performs better for both severity levels as it was the only protocol that had
the majority of its nodes in the ‘susceptible’ state after the simulation ended. On average,
the CTP protocol also showed some stability as most of its nodes remained in the ‘attacked’
state for both severity levels. For both severity levels, we observed that using the RPL-ETX
protocol, nodes were in the ‘removed’ state after the simulation, while RPL-0 moved nodes
from the ‘attacked’ to the ‘removed’ state only under coarser severity. This means for the
same operation time, a network running the LIBP protocol would have its nodes mostly
fully charged. Comparatively, for a CTP network, the nodes would be averagely charged
while nodes in a RPL operated network would have their batteries fully depleted. This



Sensors 2021, 21, 2761 19 of 23

is in agreement with previous works [3,4,38], which revealed the energy frugality of the
LIBP protocol. In this context, the sink node is not considered as one of the nodes as it
is assumed that it is connected to an external power source and hence does not run on
batteries like the others.

(a) Looser severity: T1 = 4, T2 = 6. (b) Coarser severity: T1 = 2, T2 = 5.

Figure 11. Epidemic profile: Interference and path length.

5.4.4. Summary

The results presented above reveal that the LIBP protocol leads to more nodes re-
maining in the susceptible state compared to other protocols on different performance
profiles. This shows that it is more suitable for sensitive applications than RPL and CTP.
RPL and CTP are cost-aware (using ETX metric) protocols and are more suitable for non-
sensitive applications. These results reveal that a hybrid network engineering model that
can combine interference-aware routing using LIBP and cost-aware routing using RPL or
CTP might be an alternative to parameters adjustment and can provide a good trade-off
between dependability in terms of safety and network overheads.

5.5. The Impact of INMP on the CPS Dependability

Using Cooja, we extended the multi-sink protocol in [4] to add migration capabilities
to the nodes and assessed the impact of this on the CPS’ dependability. Using a novel
protocol referred to as “INMP”, we conducted a number of experiments to evaluate the
impact on CPS safety in terms of energy consumption and nodal interference which can be
translated into epidemic states.

5.5.1. Impact of Clustering on Energy Consumption

A first set of experiments was conducted to evaluate the energy consumption of a
single IoT network compared to a partitioned network using clustering. The key per-
formance parameter considered was the energy consumed by the sink node. Being the
collection point of all data collected by other nodes, the sink node is one of the most energy-
consuming nodes in an IoT network. The results in Table 3 revealed that the maximum
energies consumed by the sink nodes when the network was partitioned into 2, 3, 4, and 5
clusters were respectively 5.86%, 6.0%, 5.71%, and 5.84% of the total energy consumed by
the entire IoT network while on the average, it consumed 5.07%, 4.38%, 3.92%, and 4.23%
of the total IoT network’s energy. A higher sink energy consumption of 6.60% was recorded
when the IoT network was designed with a single sink. This revealed the relevance of
using network partitioning as an efficient network reconfiguration strategy to lower the
energy consumption of the CPS-IoT subsystem.
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Table 3. Impact of clustering on energy consumption.

5 Clusters 4 Clusters 3 Clusters 2 Clusters 1 Cluster

Sink1: 4.55% 5.71% 3.18% 5.86% 6.60%
Sink2: 5.84% 3.86% 6.00% 4.27% none
Sink3: 3.48% 3.40% 3.96% none none
Sink4: 3.35% 3.28% none none none
Sink5: 3.93% none none none none

Average: 4.23% 3.92% 4.38% 5.07% 6.6%

5.5.2. Impact of Node Migration

A second set of experiments was conducted to evaluate the benefits of moving nodes
from one cluster to another in a multi-sink clustered configuration. An initial cluster
configuration Configuration 1: (10, 21, and 17) was designed with each of the three clusters
containing 10, 21, and 17 nodes respectively.

This reflected a network with high variance in terms of number of nodes in the respec-
tive clusters. Thereafter, the initial configuration was adjusted by moving 5 nodes from
the cluster 2 to cluster 1, thus leading to the second clustering: Configuration 2: (15, 16,
and 17). A third and balanced configuration, Configuration 3: (15, 15, and 15) with equal
number of nodes in each cluster was then built from Configuration 2 by moving a node
from cluster 3 to cluster 1. The impacts of node migration are reported on Tables 4 and 5 in
terms of energy consumption and nodes’ interference respectively. As reported in Table 4,
the energy consumption resulting from these network re-configurations reveals a balance in
energy consumption due to node migration. A reduction in energy consumption variances
of sink nodes was observed as we moved from an unbalanced network (Configuration 1,
maximum energy variance of 0.4657) to a more balanced network (Configuration 3, maxi-
mum energy variance of 0.0009). Similarly, Table 5 reveals that besides energy conservation,
the CPS-IoT reconfiguration using node migration also leads to a balanced profile in terms
of interference. This in turn translates to a higher probability of prolonging the lifetime of
the CPS-IoT.

Table 4. Node migration: Energy consumption.

Configuration 1 Configuration 2 Configuration 3

Energy Highest Average Highest Average Highest Average
Sink1 4.18% 2.09% 4.77% 2.51% 4.77% 2.58%
Sink2 5.54% 2.89% 4.83% 2.66% 4.83% 2.66%
Sink3 4.96% 2.44% 4.85% 2.71% 4.79% 2.61%
Variance 0.4657 0.1608 0.0017 0.0108 0.0009 0.0016

Table 5. Node migration: Node interference.

Configuration 1 Configuration 2 Configuration 3

0 1 2 0 1 2 0 1 2
Sink1 4 4 2 6 6 3 7 6 3
Sink2 10 7 4 7 6 3 7 6 3
Sink3 7 7 3 7 7 3 6 7 3

Variance 4.33 3 1 0.33 0.33 0 0.33 0.33 0

To test the scalability of our solution, we setup a bigger IoT network consisting of 86
nodes. We partitioned this into two clustering configurations—an unbalanced Configu-
ration4: (49, 37) and a balanced Configuration5: (43, 43). Tables 6 and 7 further confirm
previous results and reveal that node migration between clusters can increase the safety of
the CPS-IoT by reducing energy consumption and can lead to a more balanced CPS-IoT in
terms of an interference profile.
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Table 6. Node migration: Energy consumption (86-nodes).

Configuration 4 Configuration 5

Highest Average Highest Average
Sink4 6.6% 3.9% 6.48% 3.88%
Sink5 6.3% 3.79% 6.55% 3.92%

Variance 0.045. 0.0162 0.00245 0.0008

Table 7. Node migration: Node interference (86-nodes).

Configuration 4 Configuration 5

0 1 2 3 0 1 2 3
Sink4 25 12 8 4 22 10 7 4
Sink5 19 9 6 3 20 11 8 4

Variance 18 4.5 2 0.5 1.414 0.707 0.5 0

6. Conclusions

This paper addressed the issue of the dependability of CPS by using mathematical
epidemiology to model the CPS-IoT monitoring process and proposed a new reconfiguration
protocol that uses network partitioning through clustering and nodes migration between
clusters to restore the safety of CPS-IoT subsystems. A CPS-IoT monitoring model was
proposed as a key component of a CPS orchestration system that uses a closed loop to affect
inbound surveillance of the physical space and outbound actuation (based on epidemic
curves visualised and analysed in the cyber space of the CPS). The model employs state
transitions to identify the combination of parameters best suited for both sensitive and
non-sensitive applications. Numerical analysis of the proposed model revealed that: (i) The
transmission between diffusion sets could indeed be used to quantify energy usage in the CPS-
IoT subsystem by showing that an increase in interference could cause nodes to move across
states. (ii) By adjusting the migration rates based on the networking needs, high availability
and/or fault tolerance/resilience, could be achieved. (iii) With predictable migration time,
the proposed model could mitigate the destructive effect of interference on the network,
especially when deployed in an autonomous mode. Finally, the experimental results of the
proposed interference-aware clustering protocol with node migration revealed the relevance
of the partitioning of the network in terms of energy consumption and interference as well as
the beneficial impact of balancing nodes across the CPS-IoT network.

Amending CTPs algorithms to track the diffusion sets occupancy in order to move the
path selection towards a given application specific behaviour is an avenue for future work.
Achieving Quality of Service (QoS) in the CPS-IoT subsystem through service differentiation
as done in [43] can also be addressed as extensions to this work. Finally, network reconfigu-
ration through parameters optimisation could also be another possible direction for further
research work. The extension of the work done in [44,45] with the techniques proposed in
this paper when viewing teams of drones as cyber physical systems is another avenue for
future work.

Author Contributions: Conceptualisation, A.B.; methodology, A.B.; software, O.A. and H.M.; val-
idation, O.A. and A.B.; formal analysis, A.B.; investigation, O.A.; data curation, O.A. and H.M.;
writing—original draft preparation, A.B.; writing—review and editing, O.A.; visualisation, H.M.;
supervision, A.B. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Sensors 2021, 21, 2761 22 of 23

References
1. Avizienis, A.; Laprie, J.; Randell, B.; Landwehr, C. Basic concepts and taxonomy of dependable and secure computing. IEEE Trans.

Dependable Secure Comput. 2004, 1, 11–33. [CrossRef]
2. Song, J.; Han, S.; Mok, A.; Chen, D.; Lucas, M.; Nixon, M.; Pratt, W. WirelessHART: Applying wireless technology in real-time

industrial process control. In Proceedings of the 2008 IEEE Real-Time and Embedded Technology and Applications Symposium,
St. Louis, MO, USA, 22–24 April 2008; pp. 377–386.

3. Bagula, A.; Djenouri, D.; Karbab, E. Ubiquitous sensor network management: The least interference beaconing model. In Proceed-
ings of the 2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC),
London, UK, 8–11 September 2013.

4. Bagula, A.; Erasmus, Z. IoT emulation with cooja. In Proceedings of the ICTP-IoT Workshop, Trieste, Italy, 16–27 March 2015.
5. Gnawali, O.; Fonseca, R.; Jamieson, K.; Moss, D.; Levis, P. Collection Tree Protocol. In Proceedings of the ACM SenSys09, Berkeley,

CA, USA, 4–6 November 2009.
6. Winter, T.; Thubert, P.; Brandt, A.; Hui, J.W.; Kelsey, R.; Levis, P.; Pister, K.; Struik, R.; Vasseur, J.P.; Alexander, R.K. RPL: IPv6

Routing protocol for Low-Power and Lossy Networks. RFC 2012, 6550, 1–157.
7. Anthéa Mayzaud, R.; Badonnel, I.; Chrisment, A. Taxonomy of Attacks in RPL-based Internet of Things. Int. J. Netw. Secur. 2016,

18, 459–473. [CrossRef]
8. Tuyishimire, E.; Bagula, A. A novel management model for dynamic sensor networks using diffusion sets. In Proceedings of the

2020 Conference on Information Communications Technology and Society (ICTAS), Durban, South Africa, 11–12 March 2020;
pp. 1–6.

9. Kermack, W.; McKendrick, A. A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. Ser. A 1927, 115, 700–721.
10. Kermack, W.; McKendrick, A. Contributions to the mathematical theory of epidemics—I. 1927. Bull. Math. Biol. 1991, 53, 33–55.

[PubMed]
11. Mishra, B.; Ansari, G. Differential epidemic model of virus and worms in computer network. IJ Netw. Secur. 2012, 14, 149–155.
12. Sotoodeh, H.; Safaei, F.; Sanei, A.; Daei, E. A general stochastic information diffusion model in social networks based on epidemic

diseases. arXiv 2013, arXiv:1309.7289.
13. Tang, S.; Mark, B. Analysis of virus spread in wireless sensor networks: An epidemic model. In Proceedings of the 2009 7th

International Workshop on Design of Reliable Communication Networks, Washington, DC, USA, 25–28 October 2009; pp. 86–91.
14. Zhang, X.; Neglia, G.; Kurose, J.; Towsley, D. Performance modelling of epidemic routing. Comput. Netw. 2007, 51, 2867–2891.

[CrossRef]
15. Arino, J.; Portet, S. A simple model for COVID-19. Infect. Dis. Model. 2020, 5, 309–315. [CrossRef]
16. Giordano, G.; Blanchini, F.; Bruno, R.; Colaneri, P.; Di Filippo, A.; Di Matteo, A.; Colaneri, M. Modelling the COVID-19 epidemic

and implementation of population-wide interventions in Italy. Nat. Med. 2020, 26, 855–860. [CrossRef]
17. Yang, Z.; Zeng, Z.; Wang, K.; Wong, S.-S.; Liang, W.; Zanin, M.; Liu, P.; Cao, X.; Gao, Z.; Mai, Z.; et al. Modified SEIR and AI

prediction of the epidemics trend of COVID-19 in China under public health interventions. J. Thorac. Dis. 2020, 12, 165–174.
[CrossRef] [PubMed]

18. Yang, C.Y.; Wang, J. A mathematical model for the novel coronavirus epidemic in Wuhan, China. Math. Biosci. Eng. 2020,
17, 2708–2724. [CrossRef] [PubMed]

19. De la Sen, M.; Ibeas, A. On an SE(Is)(Ih)AR epidemic model with combined vaccination and antiviral controls for COVID-19
pandemic. Adv. Differ. Equ. 2021, 2021, 92. [CrossRef]

20. Jiang, S.; Li, Q.; Li, C.; Liu, S.; He, X.; Wang, T.; Li, H.; Corpe, C.; Zhang, X.; Xu, J.; et al. Mathematical models for devising the
optimal SARS CoV 2 strategy for eradication in China, South Korea, and Italy. J.Transl. Med. 2020, 18, 345. [CrossRef] [PubMed]

21. Etxeberria-Etxaniz, M.; Alonso-Quesada, S.; de la Sen, M. On an SEIR Epidemic Model with Vaccination of Newborns and
Periodic Impulsive Vaccination with Eventual On-Line Adapted Vaccination Strategies to the Varying Levels of the Susceptible
Subpopulation. Appl. Sci. 2020, 10, 8296. [CrossRef]

22. Hyman, J.M.; Li, J. Differential susceptibility epidemic models. J. Math. Biol. 2005, 50, 626–644. [CrossRef]
23. Diekmann, O.; Heesterbeek, J.; Roberts, M. The construction of next-generation matrices for compartmental epidemic models.

J. R. Soc. Interface 2010, 7, 873–885. [CrossRef]
24. Hellernan, J.; Smith, R.; Wahl, L. Perspectives on the basic reproductive ratio. J. R. Soc. Interface 2005, 2, 281–293.
25. De, P.; Liu, Y.; Das, S. An Epidemic Theoretic Framework for Vulnerability Analysis of Broadcast Protocols in Wireless Sensor

Networks. IEEE Trans. Mobile Comput. 2009, 8, 413–425. [CrossRef]
26. Wang, T.; Wu, Q.; Wen, S.; Cai, Y.; Tian, H.; Chen, Y.; Wang, B. Propagation Modeling and Defending of a Mobile Sensor Worm in

Wireless Sensor and Actuator Networks. Sensors 2017, 17, 139. [CrossRef]
27. Ojha, R.; Sanyal, G.; Srivastava, P.; Sharma, K. Design and Analysis of Modified SIQRS Model for Performance Study of Wireless

Sensor Network. Scalable Comput. Pract. Exp. 2017, 18, 229–241. [CrossRef]
28. Ma, Y.; Gunatilaka, D.; Li, B.; Gonzalez, H.; Lu, C. Holistic Cyber-Physical Management for Dependable Wireless Control Systems.

ACM Trans. Cyber-Phys. Syst. 2018, 3, 1–25. [CrossRef]
29. Sanislav, T.; Mois, G.; Miclea, L. An approach to model dependability of cyber-physical systems. Microprocess. Microsyst. 2016,

41, 67–76. [CrossRef]

http://doi.org/10.1109/TDSC.2004.2
http://dx.doi.org/10.6633/IJNS.201605.18(3).07
http://www.ncbi.nlm.nih.gov/pubmed/2059741
http://dx.doi.org/10.1016/j.comnet.2006.11.028
http://dx.doi.org/10.1016/j.idm.2020.04.002
http://dx.doi.org/10.1038/s41591-020-0883-7
http://dx.doi.org/10.21037/jtd.2020.02.64
http://www.ncbi.nlm.nih.gov/pubmed/32274081
http://dx.doi.org/10.3934/mbe.2020148
http://www.ncbi.nlm.nih.gov/pubmed/32233562
http://dx.doi.org/10.1186/s13662-021-03248-5
http://dx.doi.org/10.1186/s12967-020-02513-7
http://www.ncbi.nlm.nih.gov/pubmed/32891155
http://dx.doi.org/10.3390/app10228296
http://dx.doi.org/10.1007/s00285-004-0301-7
http://dx.doi.org/10.1098/rsif.2009.0386
http://dx.doi.org/10.1109/TMC.2008.115
http://dx.doi.org/10.3390/s17010139
http://dx.doi.org/10.12694/scpe.v18i3.1303
http://dx.doi.org/10.1145/3185510
http://dx.doi.org/10.1016/j.micpro.2015.11.021


Sensors 2021, 21, 2761 23 of 23

30. Hehenbergera, P.; Vogel-Heuserb, B.; Bradleyc, D.; Eynardd, B.; Tomiyamae, T.; Achichef, S. Design, modelling, simulation and
integration of cyber physical systems: Methods and applications. Comput. Comput. Ind. 2016, 82, 273–289. [CrossRef]

31. Castaño, F.; Strzelczak, S.; Villalonga, A.; Haber, R.E.; Kossakowska, J. Sensor Reliability in Cyber-Physical Systems Using
Internet-of-Things Data: A Review and Case Study. Remote Sens. 2019, 11, 2252. [CrossRef]

32. Misra, P.K.; Mottola, L.; Raza, S.; Duquennoy, S.; Tsiftes, N.; Hoglund, J.; Voigt, T. Supporting Cyber-Physical Systems with
Wireless Sensor Networks: An Outlook of software and services. J. Indian Inst. Sci. 2013, 93, 463–486.

33. IBM Corporation. An Architectural Blueprint for Autonomic Computing, 3rd ed.; IBM White Paper; IBM: Armonk, NY, USA,
June 2005.

34. Lee, E.; Seo, Y.D.; Kim, Y.G. Self-Adaptive Framework Based on MAPE Loop for Internet of Things. Sensors 2019, 19, 2996.
[CrossRef] [PubMed]

35. Azimi, I.; Anzanpour, A.; Rahmani, A.M.; Pahikkala, T.; Levorato, M.; Liljeberg, P.; Dutt, N. HiCH: Hierarchical Fog-Assisted
Computing Architecture for Healthcare IoT. ACM Trans. Embed. Comput. Syst. 2017, 16, 174. [CrossRef]

36. Lee, E. Cyber physical systems: Design challenges. In Proceedings of the 2008 11th IEEE International Symposium on Object and
Component-Oriented Real-Time Distributed Computing (ISORC), Orlando, FL, USA, 5–7 May 2008; pp. 363–369.

37. Park, S.; Park, S. A Cloud-based Middleware for Self-Adaptive IoT-Collaboration Services. Sensors 2019, 19, 4559. [CrossRef]
38. Bagula, A.; Djenouri, E.; Karbab, D. On the relevance of using interference and service differentiation routing in the internet-

of-things. In Internet of Things, Smart Spaces, and Next Generation Networking; Springer: Berlin/Heidelberg, Germany, 2013;
pp. 25–35.

39. Karagiannis, V.; Schulte, S. Distributed algorithms based on proximity for self-organizing fog computing systems. Pervasive Mob.
Comput. 2021, 71, 101316. [CrossRef]

40. Pianini, D.; Casadei, R.; Viroli, M.; Natali, A. Partitioned integration and coordination via the self-organising coordination regions
pattern. Future Gener. Comput. Syst. 2021, 114, 44–68. [CrossRef]

41. Hu, J.; Tang, H. Numerical Methods for Differential Equations; City University: Hong Kong, China, 2003.
42. Dunkels, A.; Gronvall, B.; Voigt, T. Contiki—A lightweight and flexible operating system for tiny networked sensors. In Proceedings

of the 29th Annual IEEE International Conference on Local Computer Networks, Tampa, FL, USA, 16–18 November 2004;
pp. 455–462.

43. Bagula, A.; Abidoye, A.P.; Zodi, G.L. Service-aware clustering: An energy-efficient model for the internet-of-things. Sensors 2016,
16, 9. [CrossRef] [PubMed]

44. Han, J. Cyber-Physical Systems with Multi-Unmanned Aerial Vehicle-Based Cooperative Source Seeking and Contour Mapping.
Ph.D. Thesis, Utah State University, Logan, UT, USA, 2014.

45. Tuyishimire, E.; Bagula, A.; Rekhis, S.; Boudriga, N. Cooperative data muling from ground sensors to base stations using UAVs.
In Proceedings of the 2017 IEEE Symposium on Computers and Communications (ISCC), Heraklion, Greece, 3–6 July 2017;
pp. 35–41.

http://dx.doi.org/10.1016/j.compind.2016.05.006
http://dx.doi.org/10.3390/rs11192252
http://dx.doi.org/10.3390/s19132996
http://www.ncbi.nlm.nih.gov/pubmed/31284655
http://dx.doi.org/10.1145/3126501
http://dx.doi.org/10.3390/s19204559
http://dx.doi.org/10.1016/j.pmcj.2020.101316
http://dx.doi.org/10.1016/j.future.2020.07.032
http://dx.doi.org/10.3390/s16010009
http://www.ncbi.nlm.nih.gov/pubmed/26703619

	Introduction
	The Impacts of Emerging Trends on CPS-IoT
	Contributions and Outline

	Related Work
	Mathematical Epidemiology
	Wireless Sensor Networks Dependability
	Cyber Physical Systems Dependability
	Autonomic Computing

	The CPS Dependability Model
	The CPS Orchestration Model
	Epidemic Modelling of the CPS-IoT

	The CPS-IoT Monitoring Model
	The CPS Monitoring Problem
	CPS Monitoring Implementation Model
	Algorithmic Solutions
	Interference-Aware Clustering with Node Migration Protocol (INMP)
	The Node Migration Concept
	The INMP Protocol


	Performance Evaluation
	The Performance Parameters
	Inbound Surveillance
	Outbound Actuation
	s-2-a=0, a-2-r=0
	s-2-a=0, a-2-r=1
	s-2-a=1, a-2-r=0
	s-2-a=1, a-2-r=1

	The Impact of CTP, RPL, and LIBP on CPS Dependability
	Energy Profile
	Routing Profile
	Epidemic Profile
	Summary

	The Impact of INMP on the CPS Dependability
	Impact of Clustering on Energy Consumption
	Impact of Node Migration


	Conclusions
	References

