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A B S T R A C T

Objectives: This study maps the lipid distributions based on magnetic resonance imaging (MRI) in-and opposed-
phase (IOP) sequence and correlates the findings generated from lipid map to histological grading of glioma.
Methods: Forty histologically proven glioma patients underwent a standard MRI tumour protocol with the ad-
dition of IOP sequence. The regions of tumour (solid enhancing, solid non-enhancing, and cystic regions) were
delineated using snake model (ITK-SNAP) with reference to structural and diffusion MRI images. The lipid
distribution map was constructed based on signal loss ratio (SLR) obtained from the IOP imaging. The mean SLR
values of the regions were computed and compared across the different glioma grades.
Results: The solid enhancing region of glioma had the highest SLR for both Grade II and III. The mean SLR of
solid non-enhancing region of tumour demonstrated statistically significant difference between the WHO grades
(grades II, III & IV) (mean SLRII = 0.04, mean SLRIII = 0.06, mean SLRIV= 0.08, & p < .01). A strong positive
correlation was seen between WHO grades with mean SLR on lipid map of solid non-enhancing (ρ=0.68,
p < .01).
Conclusion: Lipid quantification via lipid map provides useful information on lipid landscape in tumour het-
erogeneity characterisation of glioma. This technique adds to the surgical diagnostic yield by identifying biopsy
targets. It can also be used as an adjunct grading tool for glioma as well as to provide information about lipi-
domics landscape in glioma development.

1. Introduction

Gliomas comprise 27% of all brain tumours and 80% of all malig-
nant brain tumours (Hess et al., 2004). The World Health Organisation
(WHO) glioma classification system dichotomises the tumours to low-
grade glioma (LGG) comprising of histological grades I and II tumours
and high-grade glioma (HGG) comprising of histological grades III and
IV tumours (Kleihues et al., 2002; Louis et al., 2016). Recent revision of
the WHO guidelines incorporates molecular parameters alongside the
histology in the classification of tumour entities (Louis et al., 2016). The
complexity of the disease is often aggravated by tumour proliferation,
localized invasion, metastasis, resistance to therapy (Swanson et al.,
2003), and different responses to treatments among patients due to
variation in genetic profiles of the tumours (Gupta et al., 2015; Pope
et al., 2009).

Magnetic resonance imaging (MRI) is the generally preferred

modality for brain imaging as it offers valuable information on overall
tumour structure, composition, physiology and function (Guzman-De-
Villoria et al., 2014). Tumour characteristics such as intensity dis-
tribution, enhancement, size, shape, structure, location, volume,
border, focality, subventricular zone involvement, cystic changes, per-
centage of necrosis, and tumour volume are the conventional imaging
parameters investigated for glioma characterisation (Lambin et al.,
2012; Upadhyay and Waldman, 2011; Gutman et al., 2013;
Nicolasjilwan et al., 2015; Ellingson, 2014). However, clinical transla-
tion using only conventional imaging assessments is difficult due to the
heterogeneous nature of the tumours.

The detection and staging of glioma at an early stage are essential
for early intervention to improve prognosis and minimize neurocogni-
tive risks. Heterogeneity in neuroimaging, pathologic and molecular
features had been the main existing problem for glioma diagnosis
(Gutman et al., 2013). The determination of the grades and subtypes
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are challenging due to diverse characteristics, even within a single tu-
mour. Tumour heterogeneity further complicates histopathological
observations and interferes with treatment decisions and clinical
management. Histopathology tests serve as the gold standard for glioma
diagnosis but its usefulness is limited by several drawbacks such as high
invasiveness, risk of infection and bleeding, subjected to inter- and
intra-pathologists variability, and possibility of sampling error. Thus,
there is a need for fast and non-invasive imaging biomarkers that could
elucidate the underlying inter- and intra-tumoural histopathological
changes.

An increased rate of lipid synthesis has long been recognised as an
important characteristic in tumorigenesis. However, the contribution of
lipids to the transformation, development, and progression of tumour
are still not yet fully understood (Baenke et al., 2013). Lipids such as
mobile fatty acids, triglycerides, phospholipids, cholesterol esters,
sphingolipid, prostaglandins and steroid hormones serve as important
components in necrosis (Fan, 2006), cellular membrane breakdown, (Li
et al., 2002) and signal transduction. Lipogenesis is one of the main
metabolism pathways regulated to sustain rapid tumour growth. Ele-
vated lipid levels had been found to correspond with higher tumour
grades and aggressiveness in characterisation of brain tumours (Guo
et al., 2013; Ramli et al., 2015; Lim et al., 2011). The alteration in lipid
levels of the brain is postulated to be due to the cell membrane per-
turbation induced by apoptosis and necrosis (Ramli et al., 2015; Van
Cauter et al., 2014; Bieza and Krumina, 2013).

In-and opposed-phase (IOP) imaging is another alternative for lipid
quantification other than magnetic resonance spectroscopy (MRS). The
mechanism behind IOP imaging is the difference in resonance fre-
quency between proton nuclei from water and fat content of the tissues.
Water and fat experienced a slight difference in magnetic field strengths
due to different chemical environments and surrounding electron
density. IOP imaging has been used clinically for lipid detection in
disorders such as adrenal adenoma, renal angiomyolipoma, and bone
marrow pathology (Israel et al., 2005; Outwater et al., 1998; Seiderer
et al., 1999; Namimoto et al., 2001). Recent usage is seen for detection
of mobile lipids in intracranial lesions, including glioma (Ramli et al.,
2015; Lim et al., 2011). The advantage of IOP imaging is that it pro-
vides an overall evaluation of lipid quantification of the tumour as
compared to the smaller sampling area provided by MRS.

In this work, we aim to understand the lipid landscape of glioma.
Different tumour regions were delineated using semi-automatic seg-
mentation method. By providing the lipid map, we relate with con-
ventional imaging components to advance our understanding of glioma
heterogeneity.

2. Materials and methods

2.1. MRI data retrieval and review

This was a retrospective study of a prospectively collected pre-op-
erative imaging data from 40 histologically proven glioma cases treated
at our centre between December 2010 and October 2017. This study
was approved by our institutional ethics board and all patients provided
written informed consent. The glioma patients were subjected to MRI
scanning using a 3 T MRI scanner (Signa HDx, General Electric, USA).
All of them underwent brain tumour protocol, including T1-weighted
(T1), T2-weighted (T2), post-contrast T1-weighted, diffusion-weighted
imaging (DWI) with derived apparent diffusion coefficient (ADC), and
additional chemical shift IOP sequence. The IOP imaging parameters
were: 150ms repetition time, 2.4ms echo time for the in-phase, 5.8ms
echo time for the opposed-phase, flip angle of 80°, the number of
averages is 1, 250mm×250mm field of view, the matrix size was
256×256 and 5mm slice thickness. The inclusion criteria for the study
were: 1) histologically proven glioma (grade II-IV), and 2) availability
of MRI images in IOP.

2.2. Delineation of tumour regions

The regions of tumour (solid enhancing, solid non-enhancing, and
cystic) were delineated on post-contrast T1 images using a semi-auto-
mated segmentation approach, i.e. snake model implemented in ITK-
SNAP (Yushkevich and Gerig, 2011) with reference to structural MRI
images (pre- and post-contrast T1, T2, and FLAIR) and diffusion images
(ADC and DWI). The definition of the tumoural regions are described in
Table 1 and the examples of the MRI images used for identification of
tumoural regions are shown in Fig. 1. The tumour regions was seg-
mented by a single user (PS) and the tumoural region masks was then
verified by an experienced neuroradiologist (NR).

2.3. Image post-processing of the lipid maps and tumour region masks

The presence of lipid or percentages of fat is reflected by the
quantification of relative signal loss in the in-phase and opposed-phase
images, also termed the signal loss ratio (SLR) as defined in the fol-
lowing Eq. (26):

=

−

SLR
signal signal

signal
in opp

in

where signalin is the in-phase signal while signalopp is the opposed-
phase signal. The lipid map is a two-dimensional visualization of the
SLR.

Image processing of the images and masks was performed using
SPM12 (Statistical Parametric Software) (Wellcome Trust Centre for
Neuroimaging, 2014) implemented in MATLAB (MathWorks, 2017).
The lipid maps were first skull-stripped for brain extraction followed by
the registration of the structural T1, lipid maps, and tumour region
masks to standard MNI152 space (MNI152 is a template brain/space
from Montreal Neurological Institute, stored within FSL (FMRIB Soft-
ware Library) (FMRIB, 2012) (Fig. 2). The T1 images were then co-
registered to in- and opposed-phase images. Blood vessels and capil-
laries were subtracted from the lipid map as they affect signal in-
tensities. The mean SLR values of the regions were obtained by over-
laying the region masks onto the lipid maps with reference to the co-
registered T1 images.

2.4. Statistical analysis

Kruskal-Wallis test was carried out to establish significant differ-
ences in SLR of the tumour regions across the WHO grades. The sta-
tistical significant difference was declared at p < .05. The Spearman
correlation test was performed to test the correlation between the mean
SLR values and the tumour regions.

3. Results

Table 2 shows the demographics of the glioma patients across the
WHO tumour grades. The distribution of the SLR of solid non-

Table 1
The definition of the tumoural regions in different MRI sequences in reference
to grey matter.

Tumour regions MRI sequences Signal comparison

Solid-enhancing T1 Iso to hypointense
post-contrast T1 Hyperintense

Solid non-enhancing T1 Iso to hypointense
T2 Iso to hyperintense
ADC Iso to hypointense

Cystic T1 Hypointense
T2 Homogenous hyperintense areas
DWI & ADC Isointense to CSF

CSF: cerebrospinal fluid.
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enhancing region of the tumour demonstrated significant difference
across the three grades (p < .01; Table 3) where increased SLR values
were seen with increasing tumour grades (Fig. 3). Multiple comparisons
between the different grades with correction showed significant dif-
ference between grade II and IV (p < .001) (Table 4). The lipid map in
grade IV (GBM) showed higher extent of morphologic heterogeneity
whereas lipid maps of low-grade gliomas were more homogeneous
(Fig. 4). Increased heterogeneity was shown as positive skewness of all
the grades in solid non-enhancing regions (skewness: GII= 0.98,
GIII = 0.16 & GIV= 0.24). The solid enhancing and cystic regions
showed negative skewness in grade III. A higher SLR value was seen
from the lipid map in high-grade glioma, as shown as regions indicated
in red. The lipid maps with tumour regions overlaid onto them were
shown in Fig. 4 for different WHO grades. A strong positive correlation
was seen between WHO grades with mean SLR on lipid map of solid
non-enhancing region (ρ=0.68, p < .001).

4. Discussion

In this study, we performed lipid mapping based on IOP MRI
images, to landscape the lipid distribution of different grades of glioma.
We postulated that the alteration of the structural lipid quantification
obtained from lipid mapping could be attributed to the topographical
distribution of the lipid molecules resulting from reprogramming of
lipid metabolism. Our work is an initial attempt to understand the
multifaceted landscape in terms of lipid distribution and micro-
environment heterogeneity in gliomatous tumours. This work presents
an improvement and extension of our earlier study on lipid quantifi-
cation and glioma grading (Ramli et al., 2015). The improvement was
carried out in three areas. Firstly, the current 3D ROI construction of
the tumour regions implemented using a semi-automatic segmentation
approach offers a more objective and consistent acquisition of the mean
SLR values. Second, lipid quantification was evaluated in a more de-
tailed manner by separating the solid region of the tumour into en-
hancing and non-enhancing regions. Finally, the SLR is presented in a
2D distribution (i.e. the lipid map) to better visualise lipid distribution

Fig. 1. The identification of tumour regions using different MRI sequences of a GBM patient. a) The pre-contrast T1 image, b) post-contrast T1 image where the solid
enhancing region is the enhancing rim, c) T2 image, d) apparent diffusion coefficient (ADC) image with the blue arrow in ADC showed the cystic region while orange
arrows depicted the solid non-enhancing region of the tumour and, f) diffusion-weighted image (DWI).

Fig. 2. The pre-processed images of a GBM patient. a) The raw T1 MRI image, b) in-phase sequence, c) opposed-phase sequence, d) skull stripped and co-registered
lipid map, the co-registered masks (delineated in red) of e) solid enhancing region, f) solid non-enhancing region, and g) cystic region of the tumour.
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in relation to the tumour morphology and glioma grades.
Our study showed that mean SLR of the solid non-enhancing region

of the tumour is useful for discrimination of the tumour grades com-
pared to solid-enhancing and cystic regions. The solid non-enhancing
region of the tumour is more homogeneous than the solid enhancing
and cystic regions. This region has more blood vessels (likely a com-
bination of normal and newly formed vessels from neovascularization)
where extravasation of blood plasma and contrast agents into the ex-
travascular extracellular space occur due to blood-brain barrier (BBB)
breakdown (Ahn et al., 2014; Jia et al., 2012); resulting in both in-
travascular enhancement and extravasation-related enhancement. The
non-enhancing region of the tumour may harbour extracellular lipids
from broken cellular membranes secondary to deficient blood perfu-
sion, i.e. the opposite situation with the enhancing region. The lipid
distribution at the non-enhancing region is better at differentiating
glioma grades and may reflect the true aggressiveness of the tumoural
tissues. Although lipid distributions (percentage of fat) are highest in
the solid enhancing regions, they do not show any discriminating

ability in this study as shown as the closeness of the mean SLR values
across the grades. The lipid map outcome shows that the solid non-
enhancing region of the tumour has the highest yield in the differ-
entiation of glioma grading and therefore provides the best site for
biopsy.

The SLR values in the lipid map reflect lipids fraction that arise from
the lipid components in brain tissues. The lipid composition of the brain
tissues offers insights about histological cell type, state of cellular
growth, maturation, and differentiation (Eberlin et al., 2012), thus
providing useful information for diagnosis and prognosis. The increase
in lipid biosynthesis has been long recognised as an essential element of
the metabolic reprogramming in cancer cells aside from glucose and
glutamine metabolism (Baenke et al., 2013; Guo et al., 2013; Schulze
and Harris, 2012). The metabolite reprogramming supports rapid pro-
liferation of cancer cells to fulfill the increased demand for energy and
nutrients. The alteration of visible lipids has been attributed to cellular
processes such as proliferation, inflammation, malignancy, growth ar-
rest, necrosis, apoptosis, migration, and invasion (Baenke et al., 2013;
Griffin and Kauppinen, 2007). High expression of lipids is contributed
by the prompt release from storage for cell growth and biological
membranes generation, the breakdown of cellular membrane structure
in response to growth stimuli resulting from malignant cell transfor-
mation, and increased numbers of cytoplasmic vesicles (Baenke et al.,
2013; Guo et al., 2013; Griffin and Kauppinen, 2007).

The delineation of the brain tumour by manual segmentation pro-
vides essential distinction between lesions and normal tissues. Manual
delineation of tumour is not only tedious and time-consuming but also
subjected to intra- and inter-observer variability. This potentially leads

Table 2
Patients demographics across the tumour grades.

Clinical
parameters

WHO grade (n=40)

GII

(n=14)
GIII

(n=8)
GIV

(n=18)

Age (mean,
(range))

37.36
(16–63)

46.13
(25–71)

51.78
(10–73)

Gender Male 7 (50%) 5 (62.5%) 10 (55.6%)
Female 7 (50%) 3 (37.5%) 8 (44.4%)

Histology type Diffuse astrocytoma 5 0 0
Pilomyxoid astrocytoma 1 0 0
Pleomorphic
xanthoastrocytoma

1 0 0

Gemistocystic
astrocytoma

1 0 0

Fibrillary astrocytoma 1 0 0
Oligoastrocytoma 1 0 0
Oligodendroglioma 4 1 0
Anaplastic
oligodendroglioma

0 5 0

Anaplastic astrocytoma 0 2 0
Glioblastoma
multiforme (GBM)

0 0 17

Pontine GBM 0 0 1
Tissue

sampling
Total / partial resection 12 8 14
Stereotactic biopsy 2 0 4

Tumour
regions

With solid enhancing
region

12
(85.7%)

4 (50%) 18 (100%)

With solid non-
enhancing region

13
(92.9%)

8 (100%) 17 (94.4%)

With cystic region 9 (64.3%) 5 (62.5%) 14 (77.8%)

Table 3
Descriptive data presented as the mean and standard deviation (SD) of the SLR
values across WHO tumour grades.

Markers WHO grade Kruskal-Wallis
test

Mean (SD)

SLR GII (n=12) GIII (n= 4) GIV (n= 18)
Solid enhancing 0.074

(0.058)
0.073
(0.021)

0.075
(0.015)

0.131

SLR GII (n=13) GIII (n= 8) GIV (n=17)
Solid NE 0.043

(0.017)
0.061
(0.028)

0.080
(0.019)

< 0.01⁎

SLR GII (n=9) GIII (n=5) GIV (n= 14)
Cystic 0.080

(0.092)
0.059
(0.022)

0.061
(0.018)

0.469

NE: non-enhancing.
⁎ p-values< .01.

Fig. 3. The SLR distributions across the WHO grades. The boxplots showing
distributions of SLR in the solid non-enhancing region of the tumour across the
WHO grades. NE: non-enhancing.

Table 4
The multiple comparisons between the grades (II, III, & IV) for solid non-en-
hancing region of tumour.

Group
comparison

Test statistic Standard
error

Standard
Test
statistic

Significance Adjusted
significance

II-III −6.43 4.99 −1.29 0.198 0.593
II-IV −16.66 4.09 −4.07 > 0.001⁎ >0.001⁎
III-IV −10.23 4.77 −2.15 0.032 0.095

⁎ Asymptotic significances (2-sided tests) are displayed. The significance
level is 0.05. Significance values have been adjusted by the Bonferroni cor-
rection for multiple tests.
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to substantial inconsistency in the delineation of the region of interest
(ROI). Furthermore, manual segmentation is limited by reproducibility
and feasibility in labelling large cohorts of patients in clinical en-
vironment. These problems can be addressed by engaging automatic
segmentation methods. The semi-automatic approach used in this study
is a better way for delineation of the tumour regions as it is less time
consuming and less dependent to observer's judgement. This method is
applicable to the clinical practice where user interaction only requires
the placement of the initial contour at the area of tumour regions.

Few limitations of this study include small sample size due to re-
latively quick progression of grade III to grade IV tumour and acqui-
sition artefacts especially lesions near the air and bone interface. The
IOP imaging clinically available in our study, is also known as Dixon
method, and the measurement of SLR in this study is related to the two-
point Dixon method used to separate fat and water signals (Dixon,
1984; Jingfei, 2008). Unfortunately, this approach is also sensitive to
off-resonance effects that arise from magnetic field inhomogeneity
(Jingfei, 2008). The magnetic susceptibility effects are pronounced
especially in near air tissue-boundaries, implants, and iron depositions
(Outwater et al., 1998). The three-point Dixon method acquires three
imaging phases so that each acquisition occurs at a different phase
between the water and fat signals (Pokharel et al., 2013). It has ad-
vantage of taking into account for magnetic field inhomogeneities but
requires longer acquisition time compared to two-point Dixon method.
Future work can be extended into the application of Iterative Decom-
position with Echo Asymmetry and Least Squares Estimation (IDEAL), a
robust reconstruction algorithm generalised from Dixon method that
takes into account the transverse relaxation and intra-voxel dephasing
effects (Bernard et al., 2008; Hu et al., 2010). IDEAL combines asym-
metrically acquired echoes with an iterative least-squares decomposi-
tion algorithm to achieve maximum signal noise ratio in addressing
issues related to magnetic field inhomogeneities (Takasu et al.,
2015). Other factors that might affect the SLR values include blood
flow, blood volume, haemorrhage, and susceptibility artefacts.

5. Conclusion

Lipid quantification using lipid distribution mapping with use of
conventional imaging showed potential as a diagnostic tool, by pro-
viding sites for maximal differentiation in the grading of glioma. SLR
value obtained from the lipid map is also a feasible imaging biomarker
that can be used to reflect the lipid landscape of the glioma micro-
environment. The knowledge accrued provides the basis for under-
standing the underlying tumoral histopathological changes that occur
in the tumour regions and tumour development.
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