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Abstract

Prostate cancer incidence is increasing in younger men. We investigated whether men diag-

nosed with Gleason 7 (3+4) T2 prostate cancer at younger ages (� 45 years, young cohort)

had different mRNA and miRNA expression profiles than men diagnosed at older ages (71–

74 years, older cohort). We identified differentially expressed genes (DEGs) related to

tumor-normal differences between the cohorts. Subsequent pathway analysis of DEGs

revealed that the young cohort had significantly more pronounced inflammatory and

immune responses to tumor development compared to the older cohort. Further supporting

a role of inflammation-induced immune-suppression in the development of early-onset pros-

tate cancer, we observed significant up-regulation of CTLA4 and IDO1/TDO2 pathways in

tumors of the young cohort. Moreover, over-expression of CTLA4 and IDO1 was signifi-

cantly associated with biochemical recurrence. Our results provide clues on the mecha-

nisms of tumor development and point to potential biomarkers for early detection and

treatment for prostate cancer in young men.

Author Summary

The incidence of prostate cancer is increasing in young men, and young men are more

likely to develop more aggressive prostate cancers than older men. These findings suggest

biological differences between prostate cancers that develop in young men and in older

men; yet little data and few studies on men diagnosed under age 50 years exist. In this

study, we investigated whether men diagnosed with prostate cancer at young ages (� age

45 years) had different gene expression profiles than men diagnosed at older ages (71–74

years). We found that inflammatory and immune-related pathways were up-regulated in

the young group as compared to the older group, suggesting fundamental differences in

tumor development. Moreover, 21% of the young group, compared to 8% of the older

group, had biochemical recurrence of prostate cancer–a surprising result given that both
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groups were diagnosed in early stages of disease (all T2, Gleason 7 (3+4). The recurrence

in the young group was associated with over-expression of two genes involved in immune

regulation. After validation in a larger dataset, these may provide clues for potential bio-

markers to test for monitoring which young patients are likely to progress.

Introduction

Prostate cancer (PC) is widely recognized as a disease of older men. Only four percent of men

diagnosed with PC are younger than 50 years old, and only ten percent are diagnosed under

age 55 years[1]. However, PC incidence is increasing in younger men [2], with an increasing

proportion having poorly differentiated cancers at diagnosis [3]. Moreover, young men with

high-grade PC have worse cancer-specific survival than older men with similar grade and

stage PCs [4,5]. These findings suggest biological differences between PCs developing in

young men and in older men; and these differences may have implications for early detection

and treatment of early-onset PC. Prior literature on the differences in gene expression between

early- and late-onset PC is limited. There has been one report of a small study comparing 11

patients diagnosed under age 50 years and 7 patients diagnosed between 57 to 69 years (mean

age of 65 years)[6]. Additionally, The Cancer Genome Atlas (TCGA) only has matched tumor

and normal data from four patients diagnosed with PC under age 50 years. In this study, we

selected tumor and matched normal samples from a relatively common and homogenous

tumor subtype of grade T2 (T2a or T2c) and Gleason score 7 (3+4) and compared differences

in gene expression between PC that developed in 24 young men (� 45 years) and 25 older

men (71–74 years). We asked two questions: 1) between the two age groups, are there differ-

ences in prostate tumor-induced changes in gene expression that may explain differences in

the etiology of early- and late-onset PC?; and 2) do genes that may underlie prostrate tumor

properties, such as growth and invasiveness, differ in young men compared to older men?

Results

Identification and validation of differentially expressed genes (DEGs)

In this study, we selected tumor samples from a common and homogenous tumor subtype of

grade T2 (T2a or T2c) and Gleason score of 7 (3+4) and compared differences in gene expres-

sion between PC that developed in young men (� 45 years) and in older men (71–74 years).

Clinical characteristics of 49 patients and their tumors are shown in Table 1.

Gene expression data were generated using the Illumina Human Whole-Genome DASL

(cDNA-mediated annealing, selection, extension, and ligation) microarray chips (details in

Materials and Methods). After removing batch effects of processing date using the Combat

function in the sva package(S1 Fig), we conducted three age-related comparisons using limma

(linear models for microarray data analysis; details in Materials and Methods) and identified

differentially expressed genes (DEGs) with absolute fold change (|FC|) greater than 1.5 and

false discovery rate (FDR) less than 0.25 in each comparison. We first compared tumor-nor-

mal gene expression differences between the young (early-onset) and the older (late-onset)

cohorts using the age:tissue interaction contrast [(young.tumor − young.normal) − (old.tumor

− old.normal)] in limma. We identified 183 DEGs; this contrast may identify genes responding

to tumor development (expression changes from normal to tumor) differently in the young

cohort compared to the old cohort (age-dependent tumor-normal difference) (S1 File). We

then compared differential gene expression between the normal tissue of the young and old
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groups using the old.normal versus young.normal contrast. We identified 198 DEGs; DEGs

from this contrast may reflect expression changes that normally occur with aging (S1 File). Of

these DEGs, there were 61 overlapping genes between the two comparisons. Lastly, in the

young.tumor versus old.tumor contrast, we identified five DEGs (ZIC2, ZIC5, ZNF439, USP54,

and C2); this contrast may reflect differences in intrinsic tumor properties between tumors

from the two age cohorts. ZIC2, ZIC5, and C2 overlap in the age-dependent tumor-normal dif-

ference and age-related tumor-tumor comparisons.

Based on the importance of their gene function and expression patterns (representing Fig

1a, 1b and 1c, respectively), we selected three genes (MMP7, COL2A1, and SERPINB11) to vali-

date the DASL assay results. There was a significant correlation (r = -0.81, S2 Fig) between

DASL expression values and Delta_Ct (Ct target gene – Ct reference gene) values from

qRT-PCR analysis. We observed over-expression of ERG in tumor samples compared to nor-

mal samples. To test whether the over-expression was due to TMPRSS2:ERG fusions, we con-

ducted allele-specific RT-PCR for 49 paired tumor-normal tissue samples. Based on the size

variation of PCR products, more than eight types of fusion variants were observed (S3 Fig).

Fusion variants, corresponding to over-expression of ERG in the DASL data, were detected in

8 of 25 tumor samples (32%) from the older cohort and 15 of 24 tumor samples (67%) from

the early cohort. No fusion variants were detected in normal samples.

Characterization of DEGs responding differently to tumor development

in the two cohorts

We focused on characterizing the 183 DEGs (FDR < 0.25 and |FC|> 1.5) identified from the

age:tissue interaction contrast. Of these183 DEGs, 121 genes were up-regulated and 62 were

down-regulated in the young cohort compared to the older cohort (S1 File). We observed four

basic types of age:tissue interaction patterns having inverse or crossover effects (Fig 1). For

each interaction pattern, the direction or magnitude of expression change from tumor to

normal samples differed between the two cohorts, indicating that age modified the gene

Table 1. Clinical characteristics of 49 patient samples.

Total (N = 49) Old (N = 25) Young (N = 24)

Age (years) 71–74 38–45

N (%) N (%) N (%)

Pathology stage

T2a 14 (29) 6 (24) 8 (33)

T2c 35 (71) 19 (76) 16 (67)

Gleason sum

7 (3+4) 49 (100) 25 (100) 24 (100)

PSA range 1.9–15.4 2.1–15.2 1.9–15.4

PSA group*

< = 10.0 33 (67) 19 (76) 14 (58)

>10.0 16 (33) 6 (24) 10 (42)

Race/ethnicity

Whites 43 (88) 22 (88) 21 (88)

African Americans 2 (4) 1 (4) 1 (4)

Hispanics 2 (4) 1 (4) 1 (4)

Asians 2 (4) 1 (4) 1 (4)

* no significant difference in PSA between samples from the two cohorts (Fisher’s exact test, p = 0.23)

doi:10.1371/journal.pgen.1006477.t001
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expression changes between tumor and normal samples. For example, type a (Fig 1a) and type

b (Fig 1b) interactions were characterized by significant increases of gene expression in tumor

compared to normal tissue in the young cohort and non-significant or minimally significant

changes of expression in the older cohort. In contrast, type c (Fig 1c) and type d (Fig 1d) inter-

actions were characterized by significant decreases in gene expression in tumor compared to

normal tissue in the young cohort and non-significant changes of expression in the older

cohort (type c) or significant increases in gene expression in tumors in the older cohort

(type d).

The top-five Ingenuity Pathway Analysis (IPA) results based on p-values for the 121 up-reg-

ulated DEGs are summarized in Table 2 (S1 File). All top IPA results, including the top path-

ways enriched in those DEGs, top activated regulators inferred from those DEGs, and top

disease involvement of those DEGs, relate to cellular function in inflammatory and immune

responses. Seventy of the 121 DEGs are involved with inflammation and immuno-related

pathways (S1 File), including 5 genes in the complement family, 12 immune-cell surface anti-

gen genes, 6 chemokine genes, 2 interleukin receptor genes, 2 natural killer cell group genes,

and 3 extracellular matrix remodel genes. Furthermore, 57 of the 70 inflammation and

Fig 1. Four main age:tissue interaction patterns for genes that have significant differences in tumor-induced gene

expression by age. Horizontal axis is tissue type and vertical axis is mean gene expression. For each interaction pattern, the

trend of changes in expression from normal to tumor tissues for the older (dashed line) and young (solid line) cohorts were

plotted. There was significantly increased expression in tumor tissue compared to corresponding normal tissue in the young

cohort with insignificant change in expression in the older cohort (plot a), whereas in plot b, both cohorts showed increasing

expression from normal to tumor with the larger change in the young cohort. In plot c, the young cohort had a significant

decrease in expression in tumors compared to the normal tissue, with an insignificant change in the older cohort, whereas in

plot d, there was a significant decrease in expression in the young cohort and a significant increase in the older cohort.

doi:10.1371/journal.pgen.1006477.g001
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immuno-related DEGs demonstrated type a (41 genes) or type b (16 genes) age:tissue interac-

tion patterns with significantly increased expression in tumor compared to normal tissue in

the young cohort and non-significant changes in the older cohort. Interestingly, of the 61

DEGs that overlapped between these 183 genes and the DEGs from the old.normal versus

young.normal contrast, 38 are immune-related genes, and the pattern was either type a (29

genes) or type b (9 genes). These combined results suggest a significantly more pronounced

inflammatory and immune response to tumor development in early-onset prostate cancers

than in late-onset prostate cancers. IPA results for the 62 DEGs down-regulated in the young

cohort are summarized in S1 Table; 21 of the 62 genes grouped into metabolic pathways.

Twenty of the 21 metabolism-related genes (S2 Table) exhibited type c (10 genes) or type d (10

genes) age:tissue interaction patterns(Fig 1), characterized by decreased expression in the

young cohort compared to the older cohort.

We ranked the top-five up-regulated gene sets from Gene Set Enrichment Analysis (GSEA)

of all 20,261 mRNA genes ordered by t values generated from the age: tissue interaction con-

trast in limma (Table 3). Over two-thirds of the top-five up-regulated gene sets or pathways

from the three GSEA datasets relate to cellular functions in inflammatory and immune

responses, consistent with IPA predictions. The CTLA4 pathway was the most significantly

up-regulated pathway in the young compared to the older cohort in the GSEA of the BioCarta

pathway datasets. The gene expression pattern of four DEGs (CTLA4, CD3D, CD86, and LCK)

in the CTLA4 pathway for four subgroups of samples categorized by age and tissue status is

shown in Fig 2. All four DEGs demonstrated the type b age:tissue interaction pattern (signifi-

cantly increased expression in tumor compared to normal samples in young cohort and non-

significant expression changes between tumor and normal samples in older cohort). The

down-regulated gene sets from GSEA ranked based on normalized enrichment score (NES)

are listed in S3 Table; more than half are related to metabolic pathways, consistent with IPA

Table 2. Top-five IPA results for the 121 up-regulated DEGs identified from the age:tissue interaction contrast.

Top Canonical Pathways p-value Overlap*

B Cell Development 1.90E-08 17.6% (6/34)

iCOS-iCOSL Signaling in T Helper cells 1.22E-07 7.1% (8/113)

CD28 Signaling in T Helper Cells 2.35E-07 6.5% (8/123)

Primary Immunodeficiency Signaling 2.67E-07 11.5% (6/52)

Calcium-induced T Lymphocyte Apoptosis 1.35E-06 8.8% (6/68)

Top Upstream Regulators Activation z score Predicted Activation

TGFB1 2.97 Activated

IL1 2.75 Activated

NFkB(complex) 2.52 Activated

ETS1 2.43 Activated

IL6 2.28 Activated

Top Diseases and Disorders p-value range Number of Genes

Inflammatory Response 1.55E-04–2.61E-18 61

Immunological Disease 1.50E-04–4.41E-18 56

Connective Tissue Disorders 1.06E-04–3.66E-15 39

Inflammatory Disease 1.42E-04–3.66E-15 44

Skeletal and Muscular Disorders 7.80E-05–3.66E-15 35

*Overlap: genes shared between 121 DEGs and genes in a canonical pathway.

doi:10.1371/journal.pgen.1006477.t002
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results for the 62 of 183 DEGs down-regulated in the young cohort compared to the older

cohort.

Identification of differentially expressed miRNAs (DEmiRs) and

prediction of their regulation on expression of DEGs

Using the age:tissue interaction contrast in limma to analyze miRNA expression data, we iden-

tified one DEmiR (has-miR-146b-3p) with FDR< 0.05 and |FC| > 2.0 and 27 DEmiRs with

FDR< 0.25 and |FC|> 1.5 (S1 File). From the tumor contrast of the young versus the older

cohort, we identified one DEmiR (has-miR-4461) with FDR < 0.05 and |FC|> 1.5 and one

additional DEmiR (has-miR-200a-5p) with FDR < 0.25 and |FC| > 1.5.

Because we had miRNA and mRNA expression data for each tumor and matched normal

sample, we performed a gene-set global test of association between expression of miRNA and

its target genes and further determined the contribution of individual target gene to the

miRNA-mRNA association. Based on in-silico target prediction and a global association test,

22 of the 27 DEmiRs showed significant expression associations with target DEGs (DEGs from

the age:tissue interaction contrast), ranging from 1 target DEG to 57 target DEGs (S1 File). Of

the 22 DEmiRs, Hsa-miR146b-5p demonstrated the most significant p value among the global

test of DEmiR-DEG associations. Hsa-miR-146b-5p expression had a significant positive cor-

relation (Pearson correlation r> 0.4 and FDR< 0.01) with four target DEGs in inflammation

and immune-related pathways (CCR5, CCR7, CXCR4, CD3G). Moreover, down-regulation of

7 of the 22 DEmiRs was significantly associated with increased expression of 19 target DEGs in

the inflammation and immune-related pathways.

Outliers of gene expression in tumor samples

Rare variants may have large effects on gene expression resulting in outliers of expression in

those genes in a disease subtype [7]. Because the conventional t-test and ANOVA do not

detect rare expression outliers that do not significantly alter the mean within a group, we

used the Cancer Outlier Profile Analysis (COPA) [8] method to detect outliers. We found

Table 3. Top-five up-regulated gene sets from GSEA of all 20,261 genes ranked by t values generated by the age:tissue interaction contrast.

Top gene sets or pathways ranked by Normalized Enrichment Score (NES)* Size* NES FDR q-value

BIOCARTA_CTLA4_PATHWAY 16 2.23 0.00

BIOCARTA_TOB1_PATHWAY 15 2.07 0.00

BIOCARTA_CSK_PATHWAY 17 2.04 0.01

BIOCARTA_G1_PATHWAY 23 1.97 0.01

BIOCARTA_STATHMIN_PATHWAY 15 1.87 0.02

KEGG_SYSTEMIC_LUPUS_ERYTHEMATOSUS 94 2.68 0.00

KEGG_INTESTINAL_IMMUNE_NETWORK_IGA_PRODUCTION 33 2.51 0.00

KEGG_GRAFT_VERSUS_HOST_DISEASE 27 2.46 0.00

KEGG_COMPLEMENT_AND_COAGULATION_CASCADES 45 2.38 0.00

KEGG_PRIMARY_IMMUNODEFICIENCY 29 2.35 0.00

REACTOME_IMMUNOREGULATORY_INTERACTIONS_BETWEEN_ A_LYMPHOID_AND_A_NON_LYMPHOID_CELL 50 2.62 0.00

REACTOME_GENERATION_SECOND_MESSENGER_MOLECULES 23 2.48 0.00

REACTOME_RNA_POL_I_PROMOTER_OPENING 45 2.34 0.00

REACTOME_PHOSPHORYLATION_CD3_AND_TCR_ZETA_CHAINS 15 2.32 0.00

REACTOME_EXTRACELLULAR_MATRIX_ORGANIZATION 69 2.32 0.00

*the bold are immune-related gene sets or pathways; Size: the number of genes in each gene set.

doi:10.1371/journal.pgen.1006477.t003
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that 79 of 20261 genes showed marked over-expression (outliers) in certain tumor samples

(S1 File), including 3 previously reported prostate cancer genes (ERG, ETV1, and SPINK1)

[9]. Over-expression of SPINK1 was inversely correlated with over-expression of ERG

except in one sample where both were over-expressed (S1 File). IPA was used to investigate

whether the 79 genes with outliers of expression shared a common pathway or biological

process (S4 Table). Interestingly, the top-five canonical pathways from IPA identified five

genes (IDO1, TDO2, ALOX15, DEFA5 and DEFA6) involved in inflammatory and immune

responses. DASL expression values for DEFA5 and DEFA6 were highly correlated (Pearson

correlation r = 0.72). The gene expression patterns for IDO1, TDO2, ALOX15 and DEFA6 in

four sample types, classified by tissue and age status, are shown in Fig 3. RNAseq analysis of

11 tumor samples validated the DASL outliers of expression observed in these genes

(S4 Fig).

For each gene, outliers were more common in the young than older cohort. Pooling the

IDO, TDO2, ALOX15, and DEFA6 data and using a pathway-based association test, we found

Fig 2. Boxplots and dotplots of four DEGs in the CTLA4 pathway. All four DEGs demonstrate the type b age:tissue interaction

pattern with significantly increased expression in tumor compared to normal samples in the young cohort and insignificant

expression changes between tumor and normal samples in the older cohort. Patients with biochemical recurrence are shown with a

pink color in the corresponding tumor samples.

doi:10.1371/journal.pgen.1006477.g002
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significantly more samples with expression outliers in the young cohort than in the older

cohort [12 of 24 young patients (50%) compared to 5 of 25 older patients (20%), Fisher’s exact

test, p-value = 0.038].

We also examined these four genes in The Cancer Genome Atlas (TCGA) RNAseq data for

the 24 patients (� 50 years) and 24 patients (70–78 years) (S5 and S6 Tables; S5 Fig). The

expression levels between DEFA5 and DEFA6 were also highly correlated (Pearson correlation

of 0.82). For TDO2, ALOX15, and DEFA6, the outlying expression patterns were similar

between the DASL microarray data and TCGA RNAseq data. However, outlying expression of

IDO1 in TCGA was not apparent until we included additional TCGA samples. Conducting the

same pathway-based association test in TCGA data for the four genes, we found significantly

more samples with expression outliers in the TCGA young-age group than in the older-age

group (Fisher’s exact p value of 0.008); 15 of 24 young patients (62.5%) compared to 5 of 24

older patients (20.8%) had at least one expression outlier among the four genes. These results

are consistent with our DASL data.

Fig 3. Boxplots and dotplots of DASL data exhibiting outliers of expression in IDO1, TDO2, ALOX15 and DEFA6. Patients

with biochemical recurrence are shown with a pink color in the corresponding tumor samples.

doi:10.1371/journal.pgen.1006477.g003
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Characterizing DEGs reflecting difference in tumor properties between

the two cohorts

Hierarchical cluster analysis of tumor and normal samples was performed using expression

values of the 98 DEGs with unadjusted P value < 0.01 and |FC|> 1.3 identified from the

limma contrast of young.tumor versus old.tumor. Forty-six of the 49 normal samples grouped

into one cluster with 97% bootstrap support value (S6 Fig); 20 of 24 young cohort tumor sam-

ples clustered and 18 of 25 older cohort tumor samples clustered with greater than 80% boot-

strap value (S7 Fig). When clustering the 49 tumor samples, the 98 DEGs formed two major

vertical clusters, labeled as gene group 1 (51 genes) and gene group 2 (47 genes) (S7 Fig); the

“young-cohort tumor” cluster was characterized by co-up-regulation of genes in gene group 1

and co-down-regulation of genes in gene group 2. The “late-onset tumor” cluster had an oppo-

site trend in expression. A similar cluster pattern by age status was observed in TCGA RNAseq

data.

From IPA of 98 DEGs, 24 DEGs were involved in construction of tumor morphology,

including 9 genes related to extracellular matrix (ECM) remodeling, 3 in cytokine receptor

pathways, 3 in Wnt pathway signaling, 1 protease gene, 1 cell adhesion gene, and 1 pro-onco-

gene (S1 File). Nine of the 24 genes were in the gene group1 clusters and 15 were in gene

group 2. Therefore, this opposite trend of co-expression patterns characterizing age-specific

cluster of tumor samples may reflect a difference in tumor pathology between early- and late-

onset tumors. The gene expression patterns from the DASL data are shown in S8a and S8b Fig.

The gene expression patterns for TCGA RNAseq data are shown in S8c and S8d Fig. Using

ARG2 in gene group 1 and Wnt5A in gene group 2 as examples, these data indicate no signifi-

cant expression differences between normal samples from the two cohorts. However, the

opposite trend of expression between tumor samples from the two cohorts was observed for

the two co-expressed gene groups.

We investigated the association of the gene expression pattern of the 98 DEGs with molecu-

lar prostate cancer subtypes ERG-fusion positive (ERG+), non-ERG ETS fusion positive (non-

ERG ETS+), over-expression of SPINK1 (SPINK1+), and triple negative (ERG − / non-ERG

ETS -/SPINK1 -) [9,10]. Tumor subtypes for the 49 tumor samples were assigned based on the

DASL expression data of ERG, ETS, and SPINK1 (S1 File). We then performed supervised hier-

archical cluster analysis (S10 Fig). This set of genes did cluster with prostate subtypes; genes in

Gene cluster I (right side of image) showed over-expression in the ERG+ tumor subtype and

down-regulated expression in SPINK+ tumor subtype and Triple negative tumor subtype;

whereas genes in gene cluster II showed opposite expression pattern.

Post-surgery prostate-specific antigen (PSA) data were available for 46 of 49 patients. Of the

46 patients, 7 had biochemical recurrence (defined as a PSA� 0.2 ng/mLwith successive PSA

tests� 0.2 ng/mL). Five patients were in the young cohort and two in the older cohort. Over-

expression of IDO1 and CTLA4 were significantly associated with biochemical recurrence

among the five young patients. CTLA4 expression for the 24 early-onset tumor samples had a

bimodal distribution pattern with average log2 expression of 7.2 (8 tumor samples) and 6.3 (16

tumor samples) in the high and low-mode groups, respectively (Fig 2); all five young patients

with biochemical recurrence were in the high-mode group (p< 0.002, Fisher’s exact test). Sim-

ilarly, all three young patients with outlying over-expression of IDO1 gene had biochemical

recurrence (p< 0.005, Fisher’s exact test) (Fig 3).

Discussion

In this study, we selected tumor samples from a common and homogenous tumor subtype of

grade T2 (T2a or T2c) and Gleason score of 7 (3+4) and compared differences in gene

Gene Expression Differences in Prostate Cancers between Young and Old Men
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expression between PC that developed in young men (� 45 years) and in older men (71–74

years). In this study, we identified 183 DEGs responding differently to tumor development in

the young compared to the older cohort. From IPA of 121 of 183 DEGs with up-regulated

expression in the young compared to the older cohort, we observed that 70 of the DEGs were

enriched in pathways related to cellular function in inflammation and immune responses,

indicating a more pronounced inflammatory and immune response to tumor development in

early-onset prostate cancers than in late-onset prostate cancers. From GSEA of all 20, 615

genes in our DASL data ranked by t values generated from the age:tissue interaction contrast

in limma, the CTLA4 pathway was the most significantly up-regulated pathway in the young

compared to the older cohort. Consistent with the DASL data, the CTLA4 and LCK genes in

TCGA RNAseq data demonstrated up-regulated expression in tumor compared to matched

normal in the young cohort but not in the older cohort (S9 Fig). CTLA4 is an immune check-

point receptor and up-regulation of the CTLA4 pathway leads to suppression of antitumor

immunity [11], which is consistent with the immunosuppression feature found in tumor-asso-

ciated or tumor-induced inflammation.

Recent studies have illustrated that patient-specific outlying expression in different genes

can converge into a unique pathway or related pathways for a disease [12,13]. Using COPA,

we identified an additional five DEGs (IDO1, TDO2, ALOX15, DEFA5 and DEFA6) involved

in inflammatory and immune responses; outlying expression of these genes was significantly

more prevalent in tumors from the young cohort than the older cohort, in both the DASL

microarray data and TCGA RNAseq data. Both IDO1 and TDO2 are responsible for degrada-

tion of tryptophan, producing a series of catabolites known as kynurenines that regulate

immune responses [14]. Similar to CTLA-4, up-regulation of IDO1 or TDO2 allows tumor

cells to evade antitumor immunity check from host T cells [15,16].

Up-regulation of immune-related pathways, and especially the pathway involved in

immuno-supression, may be a common mechanism related to early-onset cancer develop-

ment. In a study comparing gene expression patterns between young (<45 years) and older

(>65 year) breast cancer cohorts, young-cohort specific gene sets were related to immune

function[17]. Similarly, Nam et al [18] re-analyzed microarray data for 12 early-onset colorec-

tal cancer samples and 10 healthy controls using a pathway-based approach and identified two

pathways with up-regulation of genes implicated in immuno-suppression, including CTLA4
and IDO1, genes that were also identified in our study. It has been suggested that the balance

between tumor growth and destruction of tumor cells by the host immune system can account

for the latency of prostate tumors [19]. The tumor cell can modify the tumor antigens resulting

in lower immunogenicity and even create an immunosuppressive environment to favor tumor

growth. The growing tumor can then trigger a persistent chronic inflammation that further

promotes tumor growth. In this study, identification and pathway analysis of DEGs suggest

that tumors in young men may have a significant increase in tumor-associated inflammation

and an immuno-suppressive microenvironment, which may explain the early initiation and

development of detectable tumors in young men.

Mounting evidence suggests that up-regulation of miRNA-146a and miRNA-146b play

important roles in the resolution or termination of acute inflammatory responses after a path-

ogen has been cleared [20–22]. In our miRNASeq data, both miRNA-146a and miRNA-146b

demonstrated significantly increased expression in tumor compared to normal tissue in the

young cohort with no significant change in the older cohort. Hsa-miR146b-5p showed the

most significant p-value among the global test of association between 27 DEmiRs and 183

DEGs. However, its target genes in inflammation and immune-related pathways, such as

CCR5, CCR7, CXCR4, and CD3G, did not show down-regulated expression in tumor
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compared to normal samples. One explanation is that tumor-induced inflammation cannot be

successfully resolved because it is persistent chronic inflammation [23].

By focusing on Gleason score 7 (3+4) and T2 tumors and matching on ethnicity (Table 1),

we identified DEGs reflecting differences in intrinsic tumor properties between tumor samples

from the two age groups. From hierarchical clustering analysis, the 98 DEGs identified from

the young and older cohort tumor comparison split into two co-expressed gene groups with

an opposite trend of co-expression direction in early- and late-onset specific tumor clusters.

This opposite trend of co-expression patterns that characterize the age-specific tumor groups

may reflect differences in tumor morphology. Expression of Wnt5A can activate a non-canoni-

cal Wnt pathway and suppress the signal of the canonical Wnt pathway, resulting in decreased

proliferation, migration, invasiveness, and clonogenicity of cells, therefore behaving as a

tumor suppressor [24]. In our DASL data (S8a Fig and TCGA RNAseq data (S8c Fig), higher

expression levels of Wnt5A were observed in normal samples compared to tumor samples,

consistent with a tumor suppressor role of this gene. Moreover, a significantly lower expres-

sion of Wnt5A was observed in tumor samples from the young than the older cohort. An addi-

tional four genes involved in construction of tumor morphology were also reported to act as

tumor suppressors, including RELN (serine protease degrading ECM)[25], HS3ST1 (ECM

remodeling gene)[26], PCDH17 (cell adhesion gene)[27], and ANGPTL4 (matrix-associated

gene)[28]; these four genes shared similar expression patterns as Wnt5A. In contrast, 3 of the

24 genes (ARG2, COL2A1, FMOD) showed significantly higher expression in tumor samples

than in normal samples in both the DASL and TCGA data. Zhang et al [29] reported that

ARG2 over-expression was associated with migratory and invasive properties of prostate

tumor. Bu et al [30] provided evidence that increased expression of ARG2 was an early event

in prostate cancer development, and urine ARG2/PSA transcript ratio outperformed serum

PSA in diagnosis of prostate cancer. In both our DASL data (S8b Fig) and TCGA RNAseq data

(S8d Fig), there was significantly higher expression of ARG2 in tumor samples in the young

than the older cohort, which may suggest a stronger oncogenic role of ARG2 in the develop-

ment of prostate cancer in young men. Both COL2A and FMOD (a COL2A1 interacting pro-

tein) have been reported as biomarkers for prostate cancer (47, 48). COL2A1 and FMOD
showed very similar expression patterns as ARG2 across sample groups defined by tissue and

age status, demonstrating a higher expression level in the young tumor group than in the old

tumor group. Together, significantly lower expression of tumor suppressor genes and higher

expression of oncogenic genes in tumor samples from the young cohort as compared to the

older cohort may suggest more invasive tumor properties of early-onset prostate cancer than

late-onset prostate cancer.

The study has several limitations. First, although the sample size of matched tumor and

normal tissues in the young cohort in our study is larger than prior studies, it is still small.

Additional sample sizes are required to confirm whether over-expression of IDO1 and/or

CTLA4 in tumors may be predictive of prostate cancer recurrence in young men. The molecu-

lar tumor subtypes of the 49 samples were consistent with other reports of tumor subtypes: 1)

we identified tumor subtypes based on expression of ERG, ETV1 and SPINK1, with the same

inverse correlation of ERG/ETV1 expression to SPINK1 expression; and 2) the prevalence of

ERG fusion events was higher in the young cohort compared to the older cohort [6,8,9,31,32].

Second, in this study, we did not have normal tissues from non-prostatectomy specimens. It is

possible that normal tissue in the prostate of men with prostate cancer has undergone some

genetic changes in response to tumor development. However, the normal tissue expression

effects by age were consistent with reports from two independent large studies of aging

[33,34], where up-regulation of genes and pathways involved in inflammation and immune

responses was a common signature of aging. Lastly, we did not perform functional studies of
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the effects of these DEGs on actual tumor properties. We hope that this exploratory study will

stimulate some new thinking in this field.

In conclusion, even when matching on Gleason score and tumor grade, there are differ-

ences in gene expression in prostate tumors from young and older men. It may be that these

younger men have less indolent disease, and if not caught early, would have progressed to a

higher grade and Gleason score in several years. Moreover, a number of these differences may

reflect why prostate cancer diagnosed in younger men is often more aggressive than in older

men. We have identified genes and associated pathways that may explain some of the age dif-

ferences, and that may provide urologists with important information to treat the increasing

number of young men with prostate cancers.

Materials and Methods

Ethics statement

This study was approved by the City of Hope Institutional Review Board (IRB07244). The

study is currently approved through 06/02/2017 with the protocol approved for a Waiver of

Informed Consent and Waiver of HIPAA Authorization. There is a waiver of informed con-

sent because the samples are leftover/discard from standard of care procedures. An honest

broker process double checks the system to make sure that no specimens are from individuals

who dissented for use of their specimens for research studies.

Patients, tissue samples, and total RNA extraction

Leftover surgical tissue from prostatectomy of 49 patients, including 24 men diagnosed

between ages 38 and 45 years and 25 men diagnosed between ages 71–74 years, with tumor

surgical stage 2 (2a or 2c) and Gleason score 7 (3+4) were included in the study (Table 1). Fol-

low-up data was available through the California Cancer Registry for all patients and post-sur-

gery PSA test results were available for all but three patients. Mean follow-up times from date

of surgery were 76.7 months (range from 17.8 to 158.4 months) and 82.7 months (range from

50.2 to 203.8) for the young and older cohorts, respectively. Tissue samples of primary tumor

and matched normal tissues were obtained from formalin-fixed paraffin-embedded (FFPE)

tissue blocks isolated from prostatectomies performed between 1998 and 2011 at the City of

Hope National Medical Center. A pathologist examined all hematoxylin and eosin (H&E)-

stained slides to confirm Gleason score 7 (grades 3+4); samples with tertiary Gleason grade of

4 or 5 were excluded. The area(s) having> 80% epithelial tumor cells or > 90% normal-

appearing epithelial prostate cells were circled to identify the regions on the block to be used

for tumor and normal core samples, respectively. Total RNA was extracted from approxi-

mately 5 mg of unsectioned FFPE core samples using RecoverAll™ Total Nucleic Acid Isolation

kit (Life Technology Inc.).

mRNA and miRNA profiling

mRNA profile. The Illumina Human Whole-Genome DASL (cDNA-mediated annealing,

selection, extension, and ligation) HT Assay was used for mRNA expression profiling of

29,000 genes in the human genome. A tumor-normal sample pair was always on the same chip

and samples from the two age groups were evenly distributed on each chip. Using Principal

Component Analysis (PCA), 2 of 24 samples in batch 1 and 1 of 24 samples in batch 2 were

obvious outliers. New RNA samples for those three pairs of samples were prepared and

included in the third batch. No obvious outliers were observed among 56 samples in batch 3.

An inter-chip normalization using the quantile normalization method[35] was performed for
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the 98 samples, including 20 from batch 1, 22 from batch 2, and 56 samples from batch 3. PCA

of normalized data revealed the batch-specific sample clusters (S1a Fig). The Combat function

in sva package[36] was used to adjust batch effects across the three sample processing batches;

it considered both the tissue type factor and age cohort factor as covariates in the model matrix

and performed parametric empirical Baysian adjustments. The PCA diagrams before and after

batch correction clearly showed the minimizing of batch effect(S1a Fig), retaining the predom-

inant difference between tumor and matched normal tissues (S1b Fig) and indiscernible

change of variation associated with the age factor (S1c Fig).

miRNA profiling. Small RNA sequencing was performed for the same 98 samples; 24

tumor-normal pairs were sequenced in a first batch and the remaining 25 pairs in second

batch; samples from the two age groups were evenly distributed in each batch. 500ng of total

RNA was used for small RNA sequence library construction following the Illumina TruSeq

Small RNA sample preparation protocol. Samples were sequenced on the Illumina HiSeq2500,

and 10 to 15 million reads per sample were generated. Reads mapping and counts per million

(CPM) calculations were described previously [37]. Normalization of miRNA data was per-

formed using the trimmed mean of M-value (TMM) method in the edgeR package. Combat

was used to remove batch effect as samples were clustered into two groups corresponding to

the two sequencing batches (S1d Fig). Similar to DASL array results, Combat successfully min-

imized the batch effect and did not change the variation associated with tissue type and age

group factors (S1d–S1f Fig).

Statistical analysis of mRNA and miRNA data

Identifying DEGs as common biomarkers. DEGs were identified using a mixed linear

model with one random effect implemented in limma. In the model, tissue type with two levels

(tumor and normal) and age group with two levels (young and old) were considered as cate-

gorical variables with fixed effects, and sample ID (normal-tumor pair ID for each patient) was

treated as a random effect. The duplicationCorrelation function in limma [38] estimated the

correlation between gene expression measurements made on the same patient using sample

ID as a blocking variable. Five comparison contrasts were extracted from limma: 1) a normal

versus normal contrast between the two age cohorts (old.normal − young normal) was used to

identify expression changes that normally occur with aging; 2) a tumor versus normal contrast

(young.tumor − young.normal) within paired samples from young patients to identify tumor-

induced expression changes in the young group; 3) a tumor versus normal contrast (old.tumor

− old.normal) in the older group; 4) an age-tissue interaction contrast [(young.tumor − young.

normal) − (old.tumor − old.normal)] to identify differences in tumor-induced changes in the

young cohort compared to the old cohort (age-dependent tumor-normal difference); and 5)

because tumors from the two age cohorts were matched on tumor stage, Gleason score, and

patients’ ethnicity, a tumor versus tumor comparison (young.tumor − old.tumor) to identify

differences in intrinsic tumor expression between the two age cohorts. Probability values were

adjusted for multiple comparisons using the False Discovery Rate (FDR) method of Benjamini

and Hochberg [39]. The same analyses were used to identify differentially expressed miRNAs

(DEmiRs).

Detecting genes with outliers of expression in tumors. The t-test and ANOVA compare

difference in mean between sample groups and are often not able to detect aberrant expression

as a rare event in tumor group compared to normal group; too few samples with outlying

expression in a group may not significantly change the mean difference between two com-

pared groups. Using COPA, Tomlins et al [32] identified three genes (ERG, ETV1 and

SPINK1) with outlying expression only in a small subset of prostate tumor samples that were
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not detected by the t-test or ANOVA. Outlying expression of ERG and ETV1 are caused by

gene fusion, but outlying expression of SPINK1 is not [32]. Therefore, COPA is a complement

to the conventional t-test and ANOVA when applied to data with within-group heterogeneity.

We used COPA [8] to test whether specific genes had outliers of expression from a small num-

ber of tumor samples. Ingenuity Pathway Analysis (IPA, Qiagen) was used to explore if those

genes with outlying expression disrupt the same pathway. The Fisher’s exact test was used to

test the associations between outlying expression (yes or no) in genes within the same pathway

and age group (old and young).

Bioinformatics analyses

Pathway analysis by IPA and GSEA. IPA of DEGs was used to predict significant direc-

tional effects of DEGs on cellular function and diseases. In contrast to IPA in which a subset of

DEGs are selected and analyzed, the GSEA [40] input is a list of all assayed 20,261 genes ranked

by t-values generated by the limma analysis. GSEA was conducted for three C2-curated canon-

ical pathway datasets including BioCarta (217 gene sets), KEGG (186 gene sets), and Reactome

(674 gene sets).

Analysis of potential miRNA regulation of mRNA expression. Integrated analysis of

miRNA-mRNA expression regulation [41] was used to investigate possible interactions

between DEmiRs and target DEGs. Briefly, for each DEmiR, a set of target DEGs with predic-

tion scores was generated based on in silico target predictions from TargetScan, PITA, and

microcosm (formerly miRBase Targets). A gene-set global test was used to test association

between miRNA expression and its multiple mRNA target genes and further determine the

contribution of individual target mRNA genes to the miRNA-mRNA association.

Hierarchical clustering analysis. Partek Genomics Suite (Partek, Inc., St. Louis, MO) was

used to perform hierarchical clustering analysis with Pearson correlation coefficient as a dis-

tance metric and average linkage to measure closeness between two clusters. Pvclust[42] was

used to assess uncertainty in hierarchical clustering by calculating approximately unbiased p-

value for each cluster based on the strategy of multi-scale bootstrap re-sampling with 10,000

bootstrap replications.

Validation of DASL-data DEGs by RT-PCR

Three DEGs (MMP7, COL2A1, and SERPINB11) were selected to validate DASL expression

data by RT-PCR. HPRT1 was used as a control gene as it showed stable expression in our

DASL data and has been reported as the most stable gene among 16 potential candidate refer-

ences genes in a qRT-PCR study of PC tissues[43]. Appropriate PCR primers, with no signifi-

cant primer dimer peaks detected in PCR melting curves and spanning exon-exon junctions

were designed to amplify PCR products less than 150 bp. High Capacity cDNA Reverse Tran-

scription Kits (Life Technologies) were used for cDNA synthesis, and Power Sybr Green mas-

ter mix (Life Technologies) was used to run qRT-PCR on an ABI 7900 Realtime PCR system

(Life Technologies). Pearson correlations between the ΔCt (Ct of target gene – Ct of house-

keeping gene) and microarray expression values were calculated using the cor.test function in

R[44].

Allele-specific RT-PCR amplification of eight TMPRSS2:ERG fusion variants reported by

Wang et al[45] was carried out to test the correlation between detection of fusion variants and

over-expression of ERG in the microarray data. ZymoTaq master mix was used for PCR ampli-

fication and PCR products were resolved on 2% agarose gel to visualize sizes of fusion variants.
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Validation of DASL outliers of gene expression from COPA using RNA-

seq

Outliers of gene expression were defined as genes having a robust-Z-score transformation of

DASL data at least three times greater than the Median Absolute Deviation (MAD). RNAseq

was performed on 11 of 49 tumor samples exhibiting outliers of gene expression and for

whom high quality RNA could be isolated. 500 ng of total RNA was used for paired-end

sequencing on the Illumina HighSeq 2500. Reads mapping and reads per kilobase million

(RPKM) calculation were described before [46]. RPKM was used for validation of outlying

gene expression in DASL data.

Validation of mRNA expression results using TCGA data

miRNA and RNA-seq prostate adenocarcinoma (PRAD) data were downloaded from

TCGA[10]. These data were available for 85 PC patients diagnosed between ages 44 to 50

years (young group) and between ages 70 to 78 years (old group). Because paired normal

samples were available only for four patients in the young group and six in the old group, we

only compared gene expression differences between tumor samples from the two age

groups. Compared to the young group, more prostate tumors in the old group had tumor

pathology stage of T3 and high Gleason scores of 8 or 9. Therefore, we matched on pathology

stage and Gleason score from the two age groups (procedure described in S5 Table) and

identified 24 samples in each age group (see S6 table for clinical characteristics of those

selected samples). Batch-effect-removed mRNA sequence data were downloaded using

TCGA MBatch web tool [47]. A two-sample t-test was performed to identify DEGs between

the two tumor age groups. In addition, we specifically looked at expression levels of genes

with outlying expression identified from COPA. In order to analyze expression changes

from paired normal tissue for genes in the CTLA4 pathway in TCGA data, we relaxed the

age criteria to be older than 65 years (18 patients) and younger than 55 years (14 patients) to

increase the sample size.

Supporting Information

S1 Fig. PCA diagram before and after batch correction for batch factor, tissue factor and

age factor.

(TIFF)

S2 Fig. Correlation between DASL microarray expression data (on y-axis) and qPCR

expression data (on x-axis) for MMP7, COL2A1, and SERPINB11.

(TIF)

S3 Fig. RT-PCR of TEMPRSS2-ERG fusion variants (type 1 to type 8) from RNA extracted

from formalin-fixed paraffin-embedded (FFPE) prostate cancer tissue blocks. The type 1

variant is T1G2, indicating that exon1 of the TMPRSS2 gene (5’ of fused gene) is fused to

exon2 of the ERG gene. Based on the same naming logic, the other seven variants are type 2

(T1G3), type 3 (T1G4), type 4 (T1G5), type 5 (T2G2), type 6 (T2G4), type 7 (T2G5), and type 8

(T3G4). For each tissue sample, a separate RT-PCR was performed to amplify each variant.

Negative control samples are denoted as C. Ladder was Biorad 20-bp DNA ladder.

(TIF)

S4 Fig. Validation of outlying expression of genes from DASL data using RNAseq Eleven

samples were selected for RNAseq based on outlying expression in specific genes from

DASL expression data. As examples, this figure displays 10 samples with outlying expression
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validated by RNAseq, including one sample for IDO1, one sample for TDO2, five samples for

ALOX15, and three samples for DEFA6.

(TIF)

S5 Fig. Boxplots and dotplots of RNAseq data from TCGA for IDO1, TDO2, ALOX15, and

DEFA6.

(TIF)

S6 Fig. Hierarchical clustering of 49 COH tumor and matched normal samples using gene

expression data for the 98 differentially expressed genes (DEGs) identified from the limma

analysis comparing tumors from the young and older cohorts. In clusters, columns are sam-

ples and rows are the genes. In the heat map, red corresponds to high expression, blue corre-

sponds to low expression, and green corresponds to intermediate expression levels.

(TIF)

S7 Fig. Hierarchical clustering of 49 COH tumor samples using gene expression data for

the 98 differentially expressed genes (DEGs) identified from the limma analysis comparing

tumors from the young and older cohorts. In clusters, columns are samples and rows are the

genes. In the heat map, red corresponds to high expression, blue corresponds to low expres-

sion, and green corresponds to intermediate expression levels.

(TIF)

S8 Fig. Boxplots and dotplots of DASL data for WNT5A (plot a) and AGR2 (plot b) and

RNAseq data from TCGA for WNT5A (plot c) and AGR2 (plot d) identified from compar-

ing early-onset tumors (young group) versus late-onset tumors (older group) in limma.

(TIF)

S9 Fig. Boxplots and dotplots of four DEGs in the CTLA4 pathway in TCGA data set. For

TCGA data, mRNA expression data from paired normal tissue were available only for four

young prostate cancer patients (� 50 years). Therefore, in order to check expression changes

for genes in the CTLA4 pathway, we relaxed the age criteria to be older than 65 years (18

patients) and younger than 55 years (14 patients). This is consistent with the expression pat-

tern in the DASL data for the CTLA4 and LCK genes (see Fig 1).

(TIF)

S10 Fig. Association between molecular prostate cancer subtypes and expression of the 98

DEGs (|FC|> 1.3 and p< 0.01, identified from the young.tumor versus old.tumor compar-

ison). Tumor subtypes for the 49 tumor samples were assigned based on the DASL expression

data of ERG, ETS, and SPINK1. Supervised hierarchical cluster analysis indicated that this set

of genes cluster with known prostate subtypes.

(TIF)

S1 Table. Top-five Ingenuity Pathway Analysis (IPA) results for 62 of 183 DEGs (down-

regulated in young compared to older cohort) from the age:tissue interaction contrast.

(DOCX)

S2 Table. 21 of 62 down-regulated DEGs from age:tissue interaction contrast classified in

the metabolic pathways.

(DOCX)

S3 Table. Gene Set Enrichment Analysis (GSEA) of down-regulated gene sets or pathways

enriched in age-related differentially expressed genes in young compared to older cohorts.

(DOCX)
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S4 Table. Top-five IPA results for 79 genes with outliers of expression identified by the

Cancer Outlier Profile Analysis (COPA).

(DOCX)

S5 Table. A flow diagram for selection of samples from TCGA.

(DOCX)

S6 Table. Clinical characteristics of 48 TCGA patient samples.

(DOCX)

S1 File. An excel supplementary file includes supplementary tables longer than one page.

(XLSX)
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