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ABSTRACT

The investigation of allosteric effects in biomolecular
structures is of great current interest in diverse ar-
eas, from fundamental biological enquiry to drug dis-
covery. Here we present ProteinLens, a user-friendly
and interactive web application for the investigation
of allosteric signalling based on atomistic graph-
theoretical methods. Starting from the PDB file of
a biomolecule (or a biomolecular complex) Protein-
Lens obtains an atomistic, energy-weighted graph
description of the structure of the biomolecule, and
subsequently provides a systematic analysis of al-
losteric signalling and communication across the
structure using two computationally efficient meth-
ods: Markov Transients and bond-to-bond propensi-
ties. ProteinLens scores and ranks every bond and
residue according to the speed and magnitude of
the propagation of fluctuations emanating from any
site of choice (e.g. the active site). The results are
presented through statistical quantile scores visu-
alised with interactive plots and adjustable 3D struc-
ture viewers, which can also be downloaded. Pro-
teinLens thus allows the investigation of signalling
in biomolecular structures of interest to aid the de-
tection of allosteric sites and pathways. ProteinLens
is implemented in Python/SQL and freely available
to use at: www.proteinlens.io.

GRAPHICAL ABSTRACT

INTRODUCTION

Allostery describes the effect of a distant binding event to-
wards the orthosteric site activity of a protein (or protein
complex) and the resulting regulation of function (1). The
study of allostery is of particular interest in the context of
drug discovery, where efforts targeting allosteric modes of
action have gained traction over the past decades. Indeed,
allosteric binding sites provide selectivity and sensitivity ad-
vantages, especially in large protein families, since allosteric
sites are often less conserved within protein families and
hence allow more selective targeting of disease-causing pro-
teins (2). Additionally, allosteric modulation can both up-
and downregulate a given protein function, leading to the
potential development of highly specific drugs (as reviewed
by Wenthur et al. (3)).

However, the experimental discovery of allosterically reg-
ulated proteins is often a product of chance or requires high-
throughput screenings (4). Computational methodologies
that can provide a more targeted approach to investigate al-
losteric effects in protein structures, allowing for higher pre-
cision and for the exploration of a much wider ligand space,
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are of great interest for allosteric discovery. Lu et al. recently
reviewed the available tools and databases for allosteric site
detection and prediction (5). Many such methods are of lit-
tle use to researchers in wet labs as they are not easily acces-
sible, and only some of the presented methods offer easy-to-
use web interfaces (6–15). These webservers can be broadly
classed into two types: they either focus on identifying al-
losteric sites (6,9–11,13,15) or on investigating allosteric sig-
nalling and functional residues (7,8,12,14,15). The underly-
ing methodologies for allosteric site prediction range from
structure-based (9,15), normal model analysis (10), molec-
ular dynamics simulations (6) to correlation analysis (13)
and Monte Carlo simulations (11). For the detection of al-
losteric signalling and mutations, the web applications are
based on Monte Carlo path simulations (7), normal mode
analysis (8,14) or elastic network models (12). Most of these
underlying methodologies are computationally heavy, thus
impacting the user experience, since results might only be
available after a considerable waiting time. In other cases,
the computational cost is reduced through coarse-graining
and reducing the level of detail of the interactions and struc-
ture, at the cost of detailed chemical information.

ProteinLens is a computational tool for the study of de-
tailed signalling across atomistic structures of biomolecules
such as proteins or DNA. A major application is in the
study of allostery, which is often considered to be facili-
tated by communication within a protein (or protein com-
plex) based on the idea that an input on a distant site on the
protein, i.e. on the allosteric site, is transmitted towards the
active site over intrinsic pathways (16).

ProteinLens provides a computationally inexpensive and
efficient web application that addresses both aspects of al-
losteric signalling: for a given input site, it scores allosteric
hotspots and communication pathways within the protein.
The methodology underlying ProteinLens achieves atom-
istic resolution, which allows the identification of single im-
portant bonds and atoms. This level of detail is achieved by
building atomistic graph representations of experimentally
resolved biomolecular structures using BagPype (17). Bag-
Pype obtains an atomistic graph from the 3D coordinates of
a protein (a protein complex or a protein/DNA complex) by
first detecting and then weighting the graph edges according
to covalent and weak interactions (hydrogen bonds, electro-
static and hydrophobic interactions) between atoms. Hence
the structure is transformed into a weighted graph, where
every atom is a node and all bonds and interactions are
summarised as edges, thus capturing the physicochemical
properties of biological entities in atomistic detail (18,19).
These graphs are then used to compute two separate graph-
theoretical measures to model connectivity and signal dis-
tribution in proteins:

• Bond-to-bond propensity is an edge-based measure that
quantifies the magnitude of the redistribution of fluctu-
ations between a chosen source site and every other bond
in the structure. This measure has been shown to detect
allosteric sites in proteins (20,21).

• Markov transient is a node-based measure that models
how the perturbations propagate over the atomistic graph
using a random walk formalism. This allows us to capture
dynamical aspects of signal propagation within the same

static protein structure that serve as a means to detect al-
losteric signalling. Calculating the Markov transient half-
times quantifies the communication between a source site
and any node in the graph. This analysis has previously
been used to investigate allosteric communication path-
ways in caspase-1 (19) and contributed to the discovery
of an allosteric binding site to inhibit p90 ribosomal s6
kinase 4 (RSK4) (22).

Both methods are quantified with statistical scores com-
puted with quantile regression.

ProteinLens presents interactive visualisations accompa-
nied by colour-coded 3D-rendered protein structures to al-
low the user to explore the results intuitively. To support
the user in gaining problem-specific insights from the calcu-
lations, ProteinLens provides complementary entry points
for data exploration, i.e., the user can choose to: (i) focus on
analysis of prevalent hotspots and coldspots; (ii) inspect the
most relevant residues; or (iii) visually follow the random
walker, which can aid in detecting pathways. ProteinLens
also provides the user with the option to score a site of inter-
est in a comparative manner, using a bootstrapping method
against randomised sites to calculate a significance level.
ProteinLens thus presents a broad tool to study atomistic
communication pathways and connectivity within proteins
and protein multimers. The underlying theoretical methods
are computationally inexpensive because of their reliance
on sparse matrices, thus allowing the study of large atom-
istic structures. This makes them well suited to be deployed
within an interactive web application.

MATERIALS AND METHODS

For a detailed description of the methodologies under-
pinning ProteinLens, including mathematical formulas
and computational methods, see (17–20,23,24) and the
background section of ProteinLens: https://proteinlens.io/
webserver/background. The following is a short overview of
the theoretical background and the extended benchmarking
and scoring of our methodologies.

Atomistic graph construction

ProteinLens uses BagPype (17) to construct atom-
istic graphs from three-dimensional coordinate data of
biomolecules, as stored in the Protein Data Bank (PDB)
(25). BagPype builds on previous work by Delmotte et al.
and Amor et al. who studied the translation of protein
structures into atomistic graphs: every atom in the structure
becomes a node in the graph and all chemical bonds and in-
teractions between these atoms are recorded as edges in the
graph (18,19). This includes the bonds and interactions that
are formed between the ligand molecule and the protein.
BagPype detects the following bond and interaction types:
covalent bonds, hydrogen bonds, hydrophobic interactions,
salt bridges, electrostatic interactions and �−� stacking (in
structures that contain DNA). Every edge is then weighted
according to its type and strength. This approach allows us
to describe physicochemical characteristics of a structure
in atomistic detail.

https://proteinlens.io/webserver/background
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Bond-to-bond propensity

To investigate the connectivity within a structure we cal-
culate a measure called bond-to-bond propensity, which
quantifies the connectivity between the bonds in a user-
defined source and any other bond in the structure. Bond-
to-bond propensities assess the propagation of a perturba-
tion originating at the source site through an edge formu-
lation of random walks. For the underlying mathematical
derivations, see Amor et al. (20). Bond-to-bond propensity
is edge-based, and corresponding residue propensities are
obtained by summing over the bonds in the residue. Bond-
to-bond propensities have been shown to give insight into
protein allostery and into cooperativity of multimeric pro-
teins (20,21).

Markov transient times

Another methodology accessible through ProteinLens is
the computation of Markov transient times. The intuition
behind this approach is to follow the path of a random
walker on a protein graph, originating on the nodes con-
tained within a chosen source. At each time step, the walker
will move from one node to another depending on the
strength of the edge between those two nodes. We directly
visualise this signalling process by calculating the proba-
bility of the random walker being at a certain node at any
time point. A measure for signal propagation between the
source and any node in the graph is the characteristic tran-
sient time t1/2 of a node, defined as the time needed for
the probability to reach half its stationary value at that
node. Hence, this provides a measure of how fast the sig-
nal reaches any atom in the structure and thus of how
connected such atom is to the source. This methodology
has been used successfully to reveal allosteric pathways
in caspase-1 (19) and aided in allosteric site discovery in
RSK4 (22).

Quantile regression

The distribution of bond-to-bond propensities declines with
distance from the chosen source, whereas Markov Tran-
sient half-times increase with distance. Whilst the former is
a natural consequence of investigating diffusion processes
on graphs, the latter is a result of Markov transients being
based on a Markovian random walk.

To account for this distance bias, we use quantile regres-
sion into our workflow (26). This method assigns a quantile
score (from 0 to 1) to every bond or atom based on the sig-
nificance of that atom or bond compared to all other atoms
and bonds equidistant from the source.

This allows the identification of atoms, bonds and
residues that have a statistically significantly higher propen-
sity (or lower half-time) discounting the effect of the dis-
tance from the source. This step is especially important
for long-range effects like allostery. The computed quan-
tile scores allow the comparison of residues in a structure
for different settings i.e. two calculations which are sourced
from different sites. More details can be found in Amor et al.
(20) and in (23).

Benchmarking and scoring

The methods have been benchmarked against available
datasets through a range of statistical scoring measures.
Note that our methods do not impose a distance cut-off
onto the detection of allosteric sites, as allosterism can be
conferred over short- and long-range effects (for an alter-
native approach see (27)). In previous work, bond-to-bond
propensity correctly predicted allosteric sites in 19 out of
20 allosteric proteins with at least one of the introduced
statistical scores (20). For full details on the proteins and
scoring see Supplementary Data in Amor et al. (20). Here,
we have additionally benchmarked the method against al-
losteric proteins from the ASBench database (28). After ex-
tracting all the structures in ASBench, 113 proteins with 118
allosteric sites contained the full information about the or-
thosteric sites and correct PDB structures essential to be
used with our framework. Details of the orthosteric and
allosteric sites were retrieved from the ASD database (Re-
lease 4.10) (29), and the proteins and site residues used can
be found in Supplementary Table S1. Using the four sta-
tistical scorings introduced in Amor et al. (20), 102 out of
118 allosteric sites were detected correctly according to at
least one statistical scoring measure (see Supplementary Ta-
ble S2). This predictive accuracy of 86% by bond-to-bond
propensity outperforms other reported methods (27,30–32)
that have been benchmarked against the ASBench database.

IMPLEMENTATION

ProteinLens is a user-friendly web application that fa-
cilitates easy access to methods previously developed
in our group as described above. ProteinLens builds
on Django (v.3.1) (33), a Python-based framework for
web development, interfaced with an SQLite database
backend. The frontend relies on Bootstrap (v4.3.1, https:
//getbootstrap.com/docs/4.3/getting-started/introduction/).
Data-driven visualisations are made with help of the
D3.js library (https://d3js.org), and zoomable 3D protein
structures are powered by the NGL viewer (34). Figure 1
provides a schematic overview of the usage of ProteinLens.
The specific steps are explained in more detail in the
following.

Input

Our methods are based on structural data, which is used to
create atomistic graphs. The most comprehensive source of
such data is the Protein Data Bank (PDB) (25), from which
the user is allowed to choose a structure directly, using the
appropriate four-letter PDB identifier. The user is also given
the option to upload their own structural file, as long as it
is provided in the official PDB format (version 3.3).

After a structure is uploaded to ProteinLens, the user is
provided with some options to consider before the atom-
istic graph is constructed. As some of the structures in
the PDB are experimentally determined by nuclear mag-
netic resonance spectroscopy (NMR), several models of the
same protein will be present and the user will need to se-
lect the preferred one. By default, model one is selected
along with all chains present in the PDB file, but water

https://getbootstrap.com/docs/4.3/getting-started/introduction/
https://d3js.org
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Figure 1. Flowchart of the ProteinLens process. (1) The user can upload their own structure file in .pdb format or source it directly from the PDB using a
4 letter identifier. ProteinLens then provides graph construction settings to adjust the biomolecular structure or strip certain atoms or residues. (2) After
the graph is constructed, the user provides interactively a set of source residues and choose which methodology to run. By default both bond-to-bond
propensity and Markov transient time are chosen. (3) In the final step, the user is provided with a variety of complementary visualisations, each of which
provide an insight into a different aspect of allosteric signalling. ProteinLens also provides a scoring feature to access the significance of a previously known
site.
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molecules and anisotropic temperature factor (ANISOU)
entries are removed. These settings can be changed using
intuitive checkboxes and drop-down menus (some of which
are listed under advanced settings). Additionally, we allow
the choice between biological assemblies described for a re-
spective structure. ProteinLens will automatically model or
remove chains to build the biological assembly chosen by
the user. Altogether, the input settings are then used to cre-
ate an atomistic graph as described in the Methods section.

Computation settings

The next page on the ProteinLens webserver presents the
user with a feedback report on the constructed graph, and
allows them to choose further computational settings. At
this stage, the connectivity of the constructed graph is also
checked, which allows the user to select the relevant con-
nected graph component if necessary.

Both methods in ProteinLens require a so-called ‘source’
from which to propagate the perturbation into the struc-
ture. ProteinLens has an intuitive way to choose source
residues on a structure using drop-down menus and open
text fields. It will also directly suggest hetero atoms present
in the structure, since ligand binding sites are generally good
source site candidates. Once the user confirms their choice
of source residues, they are asked to decide which computa-
tional method they want to apply on their graph: bond-to-
bond propensity, Markov transients, or both.

Results

Once the calculations are finished running in the backend,
a new page is opened to present the results. In the first pane,
ProteinLens gives an overview of the finished run including
the chosen structure, all graph construction settings and the
source residues. We also provide the user with a personalised
session ID with which they can directly access their results
from the welcome page if they were to refresh their browser.

The bond-to-bond propensity and Markov transient re-
sults are then presented in different panes to provide
a comprehensive insight into the data. Every visualisa-
tion incorporates an interactive structure displayed via the
NGLViewer (34), which enables the user to explore the re-
sults directly on the chosen biomolecular structure.

The Hotspot view is provided for both bond-to-bond
propensities and Markov transient analysis and colours
each residue of the structure according to the calculated
quantile score (Figure 1, bottom left). The data are also
plotted in a separate chart, which is fully linked to the
structural view. This result representation gives an overview
of the data and allows identification of highly connected
hotspots in the structure.

The Relevant Residues view is also available for both meth-
ods and allows the user to investigate highly scoring residues
in more detail. We provide the option to look at different
residue quantiles in an interactive manner and colour the
relevant residues accordingly in the data plot (Figure 1, bot-
tom middle). This pane also links structure and data plot in-
teractively. The Scoring panel allows a detailed investigation
of the bond-to-bond propensities of given sites of interest.
A score can be calculated to assess the connectivity of any

additional user-defined site (relative to the source residues).
Such additional sites can be provided in the same manner as
the source residues were chosen. We then calculate the aver-
age residue quantile score for the chosen site and compare it
to the average random score calculated over 1000 surrogate
sites randomly sampled over the whole structure under the
assumption of having the same residue number and diame-
ter as the site of interest. To provide statistical significance,
we calculate a 95% confidence interval using a bootstrap.
This workflow is further described in Amor et al. (20) and
quantifies the relevance of a site of interest in the scope of
the whole structure.

The Random Walker is the basis of Markov transients and
we give the user the opportunity to follow signal propaga-
tion within the graph in an interactive manner. We colour
each node of the graph according to the probability of the
random walker ending up on this node after each time
step (Figure 1, bottom right). A slider allows to explore
this probability distribution over all Markov transient time
steps. This pane gives the user the option to assess the pro-
gression and localisation of signalling pathways over an in-
teractive sliding timescale.

All results data can be downloaded in one compressed
folder, and each result pane is accompanied by a screenshot
option to capture a figure of the shown biomolecule.

Documentation

Full documentation for ProteinLens can be found on the
webpage, including an extensive background section and a
step-by-step tutorial. A frequently asked questions section
is also provided to facilitate troubleshooting. We addition-
ally provide a quick link to our recent COVID-19 work for
which we used ProteinLens functionality (35). For further
queries please email the ProteinLens focus group here: pro-
teinlens@imperial.ac.uk.

CASE STUDY: ALLOSTERIC REGULATION IN HU-
MAN GLUCOKINASE

Glucokinase (GCK) is one of four mammalian hexokinases,
enzymes that phosphorylate glucose. It is expressed in hu-
man brain, liver, pancreas and small intestines and is de-
scribed as an ultra-sensitive glucose sensor that interacts
with insulin to regulate glucose metabolism (36). Muta-
tions in the glucokinase gene are associated with hyper-
and hypoglycemia and certain types of diabetes (37). Cru-
cially, glucokinase has a distinctly different enzymatic reac-
tion rate compared to other hexokinases, which is believed
to be underpinned by allosteric mechanisms. As GCK is a
monomeric protein with a single active site, the so-called
mnemonical mechanism was proposed (38) and validated
further when GCK was crystallised in the presence and ab-
sence of substrate and allosteric modulator (39). Here, we
use the structure of active GCK bound to glucose and a
small molecule activator to demonstrate the capability of
ProteinLens to detect an allosteric site at 20 Å from the or-
thosteric binding site. The protein structure is sourced di-
rectly from the PDB by providing the four letter code: 1V4S
(39). Once the structure is loaded, ProteinLens opens the
pane for graph construction settings. In the case of 1V4S,
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Figure 2. Hotspot and relevant residues views for human glucokinase. Showcased here are the bond-to-bond propensity results when sourced from the
active site ligand in GCK(PDB ID: 1V4S (39)). (A) The hotspot view allows to find areas of high or low connectivity to the source site (green). We plot all
data points as propensity over distance from source and provide a 3D protein structure. Both are coloured according to quantile score and are fully linked
to highlight residues and data points in an interactive manner. (B) The relevant residues view highlights the highest scoring residues with an adjustable
quantile score cut off. As above, the two plots are fully linked to allow interactive access to single data points.

the default settings are kept since the structure contains
the biological relevant monomer and all solvent molecules
can be stripped. The graph construction takes <10 s and
once finished the user is automatically forwarded to the next
page and greeted by a graph summary. This summary lists
the chains, residues, atoms and bonds contained within the
graph and indicates whether it is fully connected (which is
the case for 1V4S).

The only input required for bond-to-bond propensity and
Markov transient time analysis is a source from which to
start the calculations. In the case of human glucokinase, the
active site is bound by a glucose molecule which can be cho-
sen as the source. The computational methods yield a pic-
ture of the strength and the speed of connectivity in the pro-
tein in relation to the orthosteric site ligand (the glucose),
and reveals allosteric signalling. After the calculations are
finished, the user is forwarded to the results page. The dif-
ferent visualisation options provided by ProteinLens reveal
different aspects of the glucokinase allostery.

For example, the hot- and coldspot view (result pane 1A)
allows to identify areas of interest in a global manner (Fig-
ure 2A) and identify the location of potential allosteric sites.

By looking at the highest scoring residues in the relevant
residues view (result pane 1B) we can further narrow down
which key residues are involved in the allosteric modulation
(Figure 2B). In the case of 1V4S, there are large values in the
experimentally resolved allosteric site.

To attach a score to this detection, we can use panel
1C which allows to score a site of interest. We here enter
the known allosteric site residues (Val62, Arg63, Met210,
Ile211, Tyr214, Tyr215, Met235, Val452, Val455) and re-
ceive an average residue quantile score. This score is com-
pared to an average random score of 1000 sampled surro-
gate sites of the same size. The known allosteric site of GCK
scores 0.95 which is significantly higher than an average ran-
dom site score of 0.53 (0.95% CI [0.52,0.54]). Figure 3 shows
the scoring panel for this scoring run (PDB ID: 1V4S (39)).

CONCLUSIONS AND FUTURE DEVELOPMENT

ProteinLens is a comprehensive web tool allowing the anal-
ysis of allosteric properties in proteins and DNA. We de-
veloped this platform to provide access to computational
tools for the investigation of molecular structures in a user-
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Figure 3. Screenshot of result pane for scoring the allosteric site of human glucokinase. This pane uses the propensity results of a given run and shown
here is the GCK structure (PDB ID: 1V4S (39)) after a run sourced from the active site ligand. All residues belonging to a site of interest can be entered
via a dropdown menu or an open text field. The pane lists the results for each site of interest highlighted on the structure and provides information on
the average quantile scores of the sites. It also provides a randomly generated site score to compare against.

focused way. The user is guided through a classical analy-
sis workflow with intuitive input options and a simple in-
terface. We also implemented a variety of visual data rep-
resentations for a straight-forward evaluation of results.
These interactive visualisations allow to explore allosteric
sites and pathways which can be detected with our meth-
ods. ProteinLens further provides scoring of sites of inter-
est to assess statistical relevance of allosteric sites. Protein-
Lens can also be used to investigate the reverse effect of
allosteric regulation (27) by using the identified allosteric
hotspots as ‘source’ residues in subsequent runs. The all-
encompassing functionality of ProteinLens allows to pre-
dict allosteric properties in biological structures and is ac-
cessible to the wider community.

In future versions, we would like to implement an inter-
active source residue choice to make the tool even more in-
tuitive to the user. Similar in style to the output structure
viewer, we want to have a 3D visualisation of the chosen
structure on which residues can be selected. This will help
users who are not familiar with the details of PDB files but
want to investigate the allostery of a protein from a known
area of interest.

Furthermore, we would like to further the investigation
of the impact of structural alterations on molecular com-
munication. We are therefore working towards implement-
ing in silico mutational scans. This application would al-
low the mutation of every residue in the structure into Ala-
nine, a technique commonly applied in molecular biology
to investigate the contribution of residue side chains to pro-
tein function (40). As our methods are computationally effi-
cient, it is possible to run a full alanine scan and apply both
bond-to-bond propensities and Markov transients to every
mutated structure. We would then present the user with the
residues which upon mutation lead to the highest divergence
from the original results. This feature will give insight into

the stability of signalling pathways and connectivity within
a structure. Hence, ProteinLens would acquire the capabil-
ity to study protein allostery upon mutation of key residues,
a major interest in the field of predicting resistance in drug
design (41). This could also be of aid in predicting where
allosteric drug binding would be most effective (42).

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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