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Abstract: Lectins are a structurally heterogeneous group of highly specific carbohydrate-

binding proteins. Due to their great biotechnological potential, lectins are widely used in 

biomedical research. The purpose of the present study was to evaluate the healing potential 

of the lectin of Bauhinia variegata (nBVL) and its recombinant isoform (rBVL-1). 
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Following surgical creation of dorsal skin wounds, seven groups of mice were submitted to 

topical treatment for 12 days with lectin, D-galactose, BSA and saline. The animals were 

anesthetized and euthanized on POD 2, 7 and 12 in order to evaluate the healing potential 

of each treatment. The parameters considered included wound size, contraction rate, 

epithelialization rate and histopathological findings. Wound closure was fastest in animals 

treated with rBVL-1 (POD 7). nBVL was more effective than the controls. All skin layers 

were reconstructed and keratin deposition increased. Our findings indicate that the lectin of 

Bauhinia variegata possesses pro-healing properties and may be employed in the treatment 

of acute skin wounds. 

Keywords: wound healing; legume lectins; Caesalpinoideae; Bauhinia variegata 

 

1. Introduction 

Skin wounds are the result of disruption of tissue integrity [1]. Tissue damage initiates a cascade of 

events including inflammation and tissue formation and reshuffle (granulation tissue), eventually 

leading to partial or complete reconstruction of the damaged area [2,3]. Thus, if a wound is a 

disruption of anatomical and physiological continuity of an organ or tissue, a scar is an attempt of the 

body to restore integrity [4]. 

Skin healing is understood as a dynamic process with a complex cascade of cellular and molecular 

events involving the extracellular matrix (ECM) and soluble mediators such as cytokines [5]. The 

repair process starts immediately after injury and includes the following phases: Hemostasis, 

inflammation, proliferation, ECM remodeling and scar formation (maturation) [6]. 

A major health concern for many patients, delayed wound healing can significantly reduce quality 

of life [1,7]. Consequently, the ability of natural products to speed up the healing process with minimal 

pain and scar tissue formation has been extensively investigated for decades [8]. 

Lectins are proteins that recognize and bind specifically to epitopes of structural carbohydrates 

without modifying them [9]. Lectins are mediators in various biological processes, including cell-cell 

adhesion of fungi and bacteria to host cells, and have long been employed in the detection and analysis 

of carbohydrates, immune response and other processes [10-12]. Due to the participation of lectins in a 

range of important biological processes, the possibility of using them as biotechnological tools has 

been extensively explored [13-19]. 

Galactose-specific lectins of the subfamily Caesalpinoideae, such as Bauhinia purpurea (BPA), 

Bauhinia monandra (BmoLL) and Griffonia simplicifolia, have been used as insecticidal agents, as 

blood group markers, in studies on cancer cells and in several other important biological contexts [20-22]. 

The lectin of the orchid tree Bauhinia variegata (nBVL) has at least two isoforms (BVL-1 and 

BVL-2). Both are galactose ligands with a molecular mass of 32 kDa and structurally similar to other 

Caesalpinoideae lectins [23]. Alencar and colleagues [24] have shown that nBVL has pro-inflammatory 

properties capable of inducing resident mast cell-dependent neutrophil migration in vivo and in vitro. 
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Plant lectins may also be synthesized with the aid of expression vectors such as bacteria and yeasts, 

making large-scale production of biotechnically useful lectins feasible [25-27]. Recently, through 

cloning and expression in E. coli, a recombinant isoform of the lectin of B. variegata (rBVL-1) was 

obtained, with DNA sequence and amino acids similar to other well-known Caesalpinoideae lectins [23]. 

The purpose of this study was to investigate the healing potential of topical administration of the lectin 

of B. variegata (nBVL) and its recombinant isoform (rBVL-1) on surgically induced skin wounds in a 

murine model. 

2. Results and Discussion 

Animals treated with rBVL-1 displayed lower levels of typical inflammatory signs, such as swelling 

and redness, in the first days following treatment, compared to controls, indicating a possible anti-

inflammatory effect. In contrast, nBVL had a pro-inflammatory effect, as shown by the finding of 

higher levels of swelling and redness in the wound bed. On postoperative day (POD) 9, scar tissue was 

observed in more animals in the rBVL-1 group than in the nBVL group (data not shown). In the 

inflammatory stage, healing was faster and more effective in G-I (rBVL-1) than in G-VI (nBVL) and 

controls. Total wound closure was observed in the animals treated with nBVL only on POD 12 

(Figures 1A–C). 

Figure 1. Closure rate of surgically induced skin wounds in mice treated with topical 

administration of saline ; nBVL complexed with D-Gal  and nBVL  (A); saline 

; rBVL-1 complexed with D-Gal  and rBVL-1  (B); * significant in relation 

to saline; # significant in relation to rBVL-1 complexed with D-Gal. BSA ; rBVL-1

 and nBVL  (C); * and # significant in relation to BSA. Statistical test:  

Mann-Whitney (p < 0.05). 

 

The measurement of the actual wound area was hampered by the presence of a thick scab (dry fibrin 

in the wound bed) formed through contact with atmospheric oxygen [28]. Despite this difficulty, 

reliable measurements were obtained based on the wound borders. Wound epithelization (ER) was 

significantly greater in G-I (rBVL-1) than in all other groups due to more efficient wound contraction 

(CR) during the inflammatory phase (POD 0-2) (Table 1). Both administration of nBVL and D-

galactose decreased wound size from POD 7 on (data not shown). In the healing period between 

proliferation and remodeling (POD 7–12), G-VI (nBVL) displayed greater CR and ER values than the 

other groups, though differences were not significant (Table 1). 
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Table 1. Contraction rate (CR) and epithelialization rate (ER) of surgically induced skin 

wounds in mice treated with rBVL-1 (Group I), rBVL-1 complexed with D-galactose 

(Group II), bovine serum albumin (Group III), D-galactose (Group IV), saline (Group V), 

nBVL (Group VI) or nBVL complexed with D-galactose (Group VII). Figures are mean 

values ± standard deviation. 

POD 0–2 2–7 7–12 

Parameter CR ER CR ER CR ER 

Group I 7.708 ± 1.345 * 3.854 ± 0.672 * 3.800 ± 0.704 1.900 ± 0.352 48.50 ± 24.13 24.25 ± 12.07 

Group II 0.833 ± 0.441 0.416 ± 0.220 5.275 ± 0.915 2.638 ± 0.457 40.50 ± 9.35 20.25 ± 4.67 

Group III 3.667 ± 1.008 1.833 ± 0.504 5.675 ± 0.630 2.838 ± 0.315 35.50 ± 3.61 17.75 ± 1.80 

Group IV 2.542 ± 1.532 1.271 ± 0.766 4.775 ± 1.113 2.388 ± 0.556 69.70 ± 25.37 34.85 ± 12.69 

Group V 2.250 ± 1.689 1.125 ± 0.845 4.625 ± 1.375 1.542 ± 0.555 14.75 ± 1.80 2.458 ± 1.08 

Group VI 3.958 ± 1.345 1.979 ± 0.672 5.925 ± 0.865 2.963 ± 0.433 61.00 ± 9.33 30.50 ± 4.66 

Group VII 2.542 ± 1.167 1.271 ± 0.583 6.125 ± 1.616 3.063 ± 0.808 52.75 ± 1.93 26.38 ± 0.96 

POD = postoperative day. Parameter units: mm2/day. * Statistically significant when compared to Groups II, 

IV, V and VII (p < 0.05; ANOVA and post-Tukey test). 

Histopathological Assessment 

Four samples of injured tissue were collected from each group on POD 2, 7 and 12 and submitted 

to histopathological evaluation. Wounds treated with BSA and rBVL-1 had scab sealing the opening 

in the epithelium (Figure 2). 

Wounds treated with rBVL-1 presented mild inflammatory exudate, but the inflammatory infiltrate 

in the reticular dermis was intense (Figure 2B). Wounds treated with BSA had intense inflammatory 

exudate (Figure 2A). On the other hand, in wounds treated with rBVL-1, collagen fibers were seen 

around the congested vessels irrigating unilocular adipose tissue on POD 2, suggesting collagen-

producing cell proliferation and, consequently, faster healing (Figure 2D). 

On POD 7, wounds treated with rBVL-1 presented restoration of the epithelial lining, subepithelial 

collagen deposition and thickening of collagen fibers in the reticular dermis with restructuring of the 

adipose tissue (Figure 3C). Figure 3D shows layers of restructured skin (epidermis, papillary and 

reticular dermis) and new skin appendages on animals treated with rBVL-1. This was not observed for 

animals treated with BSA (Figures 3A–B). In G-II (rBVL-1 complexed with D-galactose) and G-IV 

(D-galactose), tissue regeneration was observed only on POD 12 (Figure 4). 

Healing was slow in G-VII (nBVL complexed with D-galactose), even during fibroplasia (POD 7). 

The animals in this group presented severe acute inflammation, little reaction of the adipose tissue to 

early formation of granulation tissue, hemorrhage, and degeneration of the fatty tissue below the 

dermis (Figure 5). On POD 7, development of epidermal hyperplasia for epithelial repair, active 

granulation tissue formation with adipose tissue proliferation and active cell clusters were observed in 

G-VI (nBVL) (Figure 6). 
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Figure 2. Photomicrographs of surgically induced skin wounds in mice treated with topical 

administration of BSA (Group III) and rBVL-1 (Group I); POD 2 (stained with Masson’s 

trichrome). A: BSA (Group III; control). See scab (star) covering the wound bed and 

intense inflammatory exudate (arrow), area of collagenolysis and reticular dermal edema 

under the exudate (between dashed blue lines), and subcutaneous skeletal muscle with 

congested vessels immediately below the dermis (blue arrows). Magnification: 4×;  

B: rBVL-1 (Group I). See thicker scab (star) over wound bed and less intense 

inflammatory exudate (arrow), area of collagenolysis, reticular dermal edema and intense 

inflammatory infiltrate under the exudate (between dashed blue lines), subcutaneous 

skeletal muscle with fibers separated by connective tissue immediately below the dermis 

(blue arrows), and fat cells near the area of collagenolysis (red arrow). Magnification: 4×; 

C: detail of subcutaneous skeletal muscle showing fat cells (arrow), congested vessels 

(star) and mild inflammatory infiltrate. Magnification: 10×; D: rBVL-1 (Group I). 

Congested vessels (star) bounded by collagen fibers embedded in proliferated unilocular 

adipose tissue below area of intense inflammatory exudate and scab. 
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Figure 3. Photomicrographs of surgically induced skin wounds in mice treated with topical 

administration of BSA (Group III) and rBVL-1 (Group I); POD 7 (stained with Masson’s 

trichrome). A: BSA (Group III; control). Observe scab (star) covering the wound bed and 

intense inflammatory exudate (between dashed yellow lines), granulation tissue with 

congested vessels (arrow) and intense fibroblast proliferation below exudate, and blue band 

due to collagen synthesis (red arrows) immediately below the inflammatory exudate. 

Magnification 4×; B: BSA (Group III; control). Details of granulation tissue. Observe 

fibroblast proliferation (arrow) and mild inflammatory infiltrate around vessels (blue 

arrow), collagen band above granulation tissue (red arrow), and vessels in the granulation 

tissue (star). Magnification 10×; C: rBVL-1 (Group I). Scab detaching from epithelium 

(white star). Observe restructuring of the epithelial lining (arrow), dermis with areas of 

reduced subepithelial collagen deposition (star) and reticular dermis characterized by 

thickening of collagen fibers (red star). Observe restructured subcutaneous adipose tissue 

(SCAT) below the dermis. Magnification 4×; D: Detail of previous photo showing regular 

layers of restructured skin: 1) epidermis, 2) papillary dermis, and 3) reticular dermis, and 

budding skin appendages (arrow). 
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Figure 4. Photomicrographs of surgically induced skin wounds in mice treated with topical 

administration of D-galactose (Group IV) and rBVL-1 complexed with D-galactose (Group 

II); POD 12 (stained with Masson’s trichrome and hematoxylin-eosin). A: D-galactose 

(Group IV). Observe intact skin with newly formed luminal epithelium (black arrow), 

nearly closed wound and reduced keratin production, retracting granulation tissue just 

below the epithelium (star), indicating poor tissue reorganization and, further below, 

thickening of collagen fibers in the papillary dermis (white star). Magnification: 10×; B:  

D-galactose (Group IV). Presence of luminal epithelium (black arrow). Observe the 

epidermal hyperplasia with formation of budding skin appendage (blue arrows). 

Magnification 10×; C: rBVL-1 complexed with 2.3 mM D-galactose (Group II). Nearly 

closed wound with restructuring of the epithelial lining (black arrow). See the formation of 

budding skin appendage below the new epithelium (blue arrows). Magnification: 10×; D: 

rBVL-1 complexed with 2.3 mM D-galactose (Group II). Congested vessels are seen in the 

papillary dermis (arrows). See the epidermal hyperplasia (Ehy) and the presence of 

sebaceous glands (SG) as budding skin appendages. Magnification: 10×. 
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Figure 5. Photomicrographs of surgically induced skin wounds in mice treated with topical 

administration of nBVLcomplexed with 2.3 mM D-galactose (Group VII); POD 7 (stained 

with hematoxylin-eosin). A: Overview of damaged area. Observe scab sealing epithelial 

opening (S), early stage of granulation tissue formation (star) with intense acute 

inflammation and degenerating adipose tissue (dAT). Magnification: 4×; B: Detail of 

previous photo showing area with degenerating adipose tissue (dAT) and unaffected 

adipocytes (Ad) in the granulation tissue, vessels in granulation tissue (red arrows), and 

congested vessels (black arrow) in area with hemorrhage. Magnification: 10×;  

C: Granulation tissue originated from reactional adipose tissue (RAT). The red arrow 

shows congested vessels from granulation tissue. Observe area of intense inflammatory 

reaction (star). Magnification: 10×; D: Detail of open wound with scab, hemorrhage just 

below the scab, and congested vessels (arrows). Magnification: 10×. 
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Figure 6. Photomicrographs of surgically induced skin wounds in mice treated with topical 

administration of nBVL (Group VI); POD 7 (stained with hematoxylin-eosin). A: Scab 

above granulation tissue originating from unilocular adipose tissue proliferating with active 

cell clusters (RAT) and congested vessels in granulation tissue (red arrows). Presence of 

recently formed epithelium on the board of scab area (black arrows). Magnification: 4×; B: 

Detail of previous photo showing epidermal hyperplasia (Ehy) on the border of scab area, 

budding skin appendages (black arrows) and sebaceous gland (SG). Observe the 

granulation tissue area along the adipose tissue (AT). Magnification: 10×; C: Detail of A 

showing area of active granulation tissue (star) with congested vessels (arrows) below the 

reactional adipose tissue (RAT). Observe subcutaneous muscle tissue (SCMT). 

Magnification: 10×; D: Detail of previous photo showing new vessels (black arrows) in the 

granulation tissue, indicating angiogenesis. Observe the presence of reactive fibroblasts on 

the granulation tissue (GT) area (blue arrows). Magnification: 40× 

 

On POD 12, the animals in G-VI (nBVL) presented restructuring of the epithelial lining with 

increased production of keratin, and dermal deposition of active collagen. Despite the inflammatory 

reaction (Figure 7A), bands of collagen were seen to proliferate towards the subcutaneous tissue, 

replacing the adipose tissue (Figure 7C), and ridges with dermal papillae and budding skin appendages 

were observed (Figure 7B). In G-V (saline), the healing process was delayed, as indicated by the 

presence of acute inflammatory response and early-stage granulation tissue on POD 7 (Figure 8). 
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Figure 7. Photomicrographs of surgically induced skin wounds in mice treated with topical 

administration of nBVL (Group VI); POD 12 (stained with hematoxylin-eosin).  

A: Keratin deposition on the epithelial lining (arrows), thickening of subepithelial collagen 

fibers deposited in the dermis (star), and fat cells below the dermis (AT). Magnification: 

10×; B: Detail showing the formation of epidermal ridges with consequent formation of 

dermal papillae (arrows), and newly formed skin appendages. Magnification: 10×; C: 

Detail showing bands of active collagen (star) moving towards the retracting adipose 

tissue, and congested vessels in granulation tissue (arrows) retracting along with the 

adipose tissue; D: Bands of active collagen in adipose tissue in retraction (black star). 

Remaining vessels of the granulation tissue can be noted. Magnification: 40×. 
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Figure 8. Photomicrographs of surgically induced skin wounds in mice treated with topical 

administration of 150 mM NaCl; POD 7 (stained with hematoxylin-eosin and Masson’s 

trichrome). A: Open wound with thick scab and dystrophic calcification (white star) 

sealing the epithelial opening (S). Observe early formation of granulation tissue originating 

from reactional adipose tissue (RAT) along with vessels (arrows), and waning 

inflammatory process (black star). Magnification: 4×; B: Granulation tissue with congested 

vessels in fat (arrows) immediately below calcified scab. Observe inflammatory exudates 

below scab (star). Magnification: 10×; C: Detail of A showing area of acute inflammation 

in slightly degenerated adipose tissue (star), and vessels of granulation tissue (arrows) in 

adipose tissue (AT) above the inflammation. Magnification: 10×; D: inflammatory exudate 

below scab (white star). Observe poor collagen deposition and granulation tissue in the 

dermis (black star) between areas of adipose tissue. Magnification: 10×. 

 

The primary function of the skin is to serve as a protective barrier against the environment. The loss 

of skin integrity from injury or illness can lead to severe disability or even death [29]. Healing is a 

dynamic and well-organized biological process [30] involving cellular and biochemical components 

employed in the recovery of tissue morphology and function [31]. 

The development of technologies based on natural sources for the healing of skin wounds or ulcers 

is of major interest to researchers and other stakeholders in the biomedical field [32]. Of special 

importance are agents capable of enhancing tissue repair and reducing healing time [33,34]. 
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Lectins are a structurally heterogeneous group of proteins with several direct biomedical and 

biotechnological applications [27]. Galactose-binding lectins are particularly useful because they 

interact with several endogenous molecules involved in innate and specific immune responses [13]. 

The ability of these macromolecules to activate immune cells, neutrophils, macrophages and mast  

cells [35,36] indicates a potential for accelerating wound healing and epithelial tissue regeneration [37]. 

In our study, wounds treated with nBVL presented stronger inflammatory signs characteristic of 

inflammatory response, inducing a proinflammatory response, than wounds treated with saline or BSA 

(controls). This appears to have contributed to the faster and more effective healing process observed 

in G-VI (nBVL). 

Macrophages and mast cells are resident cells with surface glycoproteins and glycolipids which 

may act as ligands for lectins [13]. When activated, they release mediators capable of initiating 

inflammatory response [29,38]. Stimulation of adhesion molecules (VCAM-1, VE-Cadherin, ICAM-1, 

VCAM-1 and P-selectin) and chemotaxis (CXC receptors) triggers the migration of inflammatory cells 

to the damaged tissues [6,39]. Iordache and colleagues demonstrated that lectins from potatoes 

(Solanum tuberosum) and extracts of marigold (Calendula officinalis) are able to increase the 

proliferation of endothelial progenitor cells (EPCs) and modulate gene expression of adhesive 

molecules and chemotaxis, facilitating the attachment of the EPCs to the injured endothelium. Lopes 

and colleagues [40] demonstrated that plant lectins are capable of inducing histamine release by mast 

cells of different origins. In another study, lectins were shown to have a mitogenic effect on 

lymphocytes and to stimulate the production of proinflammatory cytokines such as IFN-γ and TNF-α, 

strongly activating macrophages cultured in vitro [41]. 

rBVL-1 (G-I) and nBVL (G-VI) induced faster healing than rBVL-1 complexed with D-galactose 

(G-II). These findings were confirmed by histopathological assessment (Figures 2–8). The finding in 

G-I of regenerated skin layers already on POD 7 suggests rBVL-1 has a greater pro-healing potential 

than the other treatments tested in this study. The pro-healing effect was reversed when D-galactose 

blocked the CRD (carbohydrate recognition domain), suggesting healing was significantly improved in 

the presence of rBVL-1. 

The lectin of B. variegata (nBVL) and its recombinant isoform (rBVL-1) appear to stimulate the 

mitogenic activity of resident cells, turning them into potent chemotactic agents for the recruitment of 

neutrophils through the release of cytokines, as observed in studies on other galactose-binding lectins 

such as Vatairea macrocarpa and Artocarpus integrifolia [13,17]. Mast cells are responsible for 

secreting large amounts of growth factors, including TGF-β and α [42]. TGF-β is a major growth 

factor involved in the regulation or stimulation of tissue repair, angiogenesis, granulation tissue 

formation, collagen synthesis by fibroblasts, and fibroplasia [42,43]. 

In a histological analysis of the effect of monosaccharides (hexoses) on wound healing in rats, 

Kössi and colleagues [44] found that treatment with D-galactose caused a considerable increase in the 

accumulation of granulation tissue. This may explain the pro-healing effect of D-galactose in relation 

to the controls. 

Granulation tissue consists of new capillaries generated from pre-existing ones. The growth factors 

FGF2 and VEGF are responsible for the development of this tissue [45]. The formation of granulation 

tissue in the early postoperative period seems to suggest that nBVL and rBVL-1 induce the release of 
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FGF2, VEGF and angiopoietins by endothelial cells modulated by cytokines produced by mast cells 

and macrophages. 

Epithelialization starts within hours of tissue injury. In this process, the release of TGF-α and FGF 

flags are essential for the proliferation of epithelial cells and keratinocytes required for total wound 

closure. Moreover, fibroblasts are activated for collagen synthesis mediated by TGF-β released from 

mast cells and macrophages [43,46,47]. During tissue remodeling, the old collagen needs to be 

degraded by matrix metalloproteinases secreted mainly by macrophages and endothelial cells of the 

new vessels in the granulation tissue [48]. The new fibers deposited in the dermis (essentially the 

gradual replacement of type III collagen by type I collagen) are structurally more organized and will 

eventually form the new ECM [49]. 

According to Ishihara and colleagues, early healing is characterized by rapid epithelialization and 

wound contraction. Consequently, wound tensile strength increases, possibly due to greater deposition 

and stabilization of collagen fibers [50]. 

The CR and ER values observed in the present study strongly indicate nBVL and rBVL-1 stimulate 

the differentiation of fibroblasts into myofibroblasts, which is an extremely important event in the 

remodeling of connective tissue [51]. When fibroblasts are activated in damaged tissues, they 

differentiate into myofibroblasts which in turn exercise physical traction on the wound, stimulating 

contraction and helping remodel the collagen synthesized by fibroblasts during healing [43,51,52]. 

The difference in wound healing observed between animals treated with nBVL and rBVL-1 was 

most likely due to structural differences in the CRD of these lectins. rBVL-1 is but one of many 

potential isoforms of nBVL [23]. 

3. Experimental 

3.1. Lectin Extraction and Purification 

Lectin extracted from the seeds of Bauhinia variegata (nBVL) was purified by affinity 

chromatography on a lactose-agarose column (Sigma, St. Louis, MO, USA), then cloned and expressed 

in E. coli to produce the recombinant isoform (rBVL-1), following the method described by Pinto and 

coworkers [23]. 

3.2. Induction and Treatment of Skin Wounds 

The experimental protocol was approved by the Ethics Committee of Ceará State University 

(UECE) under entry #11042434-4 and all animals were treated following the recommendations of the 

Brazilian College of Animal Experimentation (COBEA) and the Guide for the Care and Use of 

Laboratory Animals of the US Department of Health and Human Services (NIH publication No. 85–23, 

revised 1985). 

The in vivo study employed eighty-four 10-week-old male Swiss albino mice (Mus musculus) 

weighing 35.0 ± 5.0 g, supplied by the laboratory animal facility of the Federal University of Ceará 

(BIOCEN/UFC). During the experimental procedures, the animals were kept in individual cages in a 

controlled environment (circadian cycle, 25 ± 2 °C, 55 ± 10% humidity, food and water ad libitum) at 

the School of Medicine in Sobral (UFC). 
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Prior to the surgical procedure, the animals were randomly distributed into seven groups (n = 12) 

according to the topical treatment administered: G-I (200 µg/mL rBVL-1); G-II (200 µg/mL rBVL-1 

complexed with 2.3 mM D-galactose); G-III (200 µg/mL bovine serum albumin); G-IV (2.3 mM  

D-galactose); G-V (150 mMNaCl); G-VI (200 µg/mL nBVL); G-VII (200 µg/mL nBVL complexed 

with 2.3 mM D-galactose). 

The mice were then anesthetized with subcutaneous administration of 2% xylazine with 10% 

ketamine hydrochloride (10 mg/kg and 115 mg/kg, respectively) [53], followed by trichotomy and 

antisepsis of the dorsal thoracic region with povidone-iodine and sterile saline solution (150 mM 

NaCl). After marking the skin with a sterile mold (1.00 cm2), circular aseptic skin wounds were 

created by incision with a scalpel (#15) followed by resection of the subcutaneous tissue with fine 

dissection tweezers. Immediately after the surgical procedure, the wounds were treated topically for  

12 days according to treatment group. Animals treated with lectins and BSA received a single daily dose 

of 20 µg/100 µL; the remainder received 100 µL. 

3.3. Evaluation of Healing Potential 

Wounds were measured daily for 12 days in order to evaluate the healing potential of each 

treatment. The wound area was expressed as mean ± standard deviation, as previously reported [54]. 

The wound contraction rate (CR) was expressed as change in wound area (mm²) over time (day), 

according to the following equation: 

CR = ∆ area ÷ ∆ time (day) 

The epithelialization rate was expressed as growth of new epithelium (mm²) over time (day), 

according to the following equation: 

2ER = ∆ area ÷ ∆ time (day) 

The animals were anesthetized prior to the collection of histopathological material and subsequently 

euthanized [54]. Samples (4 per group) of injured tissue were collected on the 2nd, 7th and 12th 

postoperative day (POD), fixed in 10% formaldehyde (v/v) buffered in 0.01 M PBS (pH 7.2), prepared 

in 5-mm cuts for routine histological analysis [55] and stained with hematoxylin-eosin (HE) and 

Masson’s trichrome. The histopathological assessment included the following parameters: Presence of 

scabs, re-epithelialization, collagen deposition, neovascularization and exudate. The analysis was 

performed under a Leica light microscope (model DM 500) at 4, 10 and 40× magnification. 

3.4. Statistical Assessment 

Intergroup differences in CR and ER values were analyzed with one-way ANOVA followed by the 

Tukey post-test. Differences between wound area and closure percentage were tested with the  

Mann-Whitney test. The data were processed with the statistics software GraphPad Prism v.3.00 for 

Windows®. Values are given as mean ± standard deviation. The level of statistical significance was set 

at p < 0.05. 
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4. Conclusions 

Our results indicate that lectin extracted from the seeds of Bauhinia variegata (nBVL) can stimulate 

the healing process of skin wounds in mice, possibly by acting on cells of the immune system, 

enhancing proinflammatory response, collagen synthesis by fibroblasts and angiogenesis by 

modulating the release of inflammatory cytokines and growth factors. The recombinant isoform of the 

lectin (rBVL-1) displayed pro-healing effects as well. 

The secretion of growth factors and consequent phenotypic change of fibroblasts into 

myofibroblasts may explain the observed acceleration in wound closure (faster wound contraction and 

increased collagen deposition by fibroblasts, even in the inflammatory phase), with effective healing 

accomplished by POD 7. 
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