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The mechanism of immune infiltration involving immune cells is closely related to various
diseases. A key issue in immune infiltration is the transendothelial transmigration of
leukocytes. Previous studies have primarily interpreted the leukocyte infiltration of from
biomedical perspective. The physical mechanism of leukocyte infiltration remains to be
explored. By integrating the immune cell transmigration computational fluid dynamics
(CFD) data, the paper builds a time-dependent leukocyte transmigration prediction model
based on the bio-inspired methods, namely back propagation neural networks (BPNN)
model. The model can efficiently predict the immune cell transmigration in a special
microvascular environment, and obtain good prediction accuracy. The model
accurately predicted the cell movement and flow field changes during the
transmigration. In the test data set, it has high prediction accuracy for cell
deformation, motion velocity and flow lift forces during downstream motion, and
maintains a good prediction accuracy for drag force. The two prediction models
achieved the prediction of leukocyte transmigration in a specific microvascular
environment and maintained a high prediction accuracy, indicating the feasibility
and robustness of the BPNN model applied to the prediction of immune cell
infiltration. Compared with traditional CFD simulations, BPNN models avoid
complex and time-dependent physical modeling and computational processes.

Keywords: random forest, back propagation neural network, cox regression, prognostic prediction, immune
infiltration

INTRODUCTION

Themechanism of immune infiltration involving immune cells is closely related to various diseases. A key
issue in immune infiltration is the transendothelial transmigration of leukocytes (immune cells). Among
them, numerous microvascular stenosis fragments smaller than the cell size and tiny pores on the vessel
wall are the key factors hindering the infiltration of immune cells. Previous studies have primarily
interpreted the infiltration of immune cells from a biomedical perspective, ignoring the physical role in
immune regulation. This paper combines various machine learning algorithms and computational fluid
dynamics (CFD) simulation methods to systematically analyze the immune cell infiltration mechanism
associated with liver cancer from the perspectives of biomedicine and mechanics.
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In recent years, physics-based modeling approaches have
become widely used analytical tools in engineering and
environmental systems (Willard et al., 2022). However, the
deviation between the actual engineering process and the
physical laws adopted in the physical model makes us need to
approximate the real value, leading to errors (Yan et al., 2020). In
addition, the physical model contains many parameters estimated
from limited observational data, which further degrades the
performance of the physical model (Günther et al., 2020).
Machine learning (ML) methods based on neural network
models automatically extract complex relationships from data,
theoretically solving scientific problems in physical models
(Bentley, 2014; Kelley et al., 2016; Biswas et al., 2018; Huang
et al., 2021; Jiang et al., 2021). The introduction of ML and deep
learning methods achieved a leap from “model-driven” to “data-
driven” (Xue et al., 2015; Jiang et al., 2021; Liu et al., 2022). This
saves us from knowing the specific equations between the data,
and the algorithm will automatically derive the data to match the
target value. In many respects, the prediction accuracy of this
method far exceeds that of traditional modeling methods due to
the coverage of the vast training dataset (Valsamis et al., 2017; Sun
et al., 2022; Wu et al., 2022; Yun and). But even state-of-the-art
neural network models can be non-generalizable in specific
studies due to the large-scale demand for data (Karpatne et al.,
2017; Zhao et al., 2022). Therefore, researchers began to explore
combining physical models and advanced neural network models
to achieve their complementary strengths (Ansari et al., 2020).

In this regard, the currently most widely used neural network
model (BPNN) plays a critical role (Dai and MacBeth, 1997). The
combination method of physical and neural network models to
practical problems is mainly divided into four aspects:
parameterization (S. and S. et al., 2019), solution of partial
differential equations (Yong et al., 2020), derivation of
governing equations (Teng et al., 2020) and inverse modeling
(Henry and F. et al., 2015). In fluid mechanics, researchers have
gradually realized the efficiency and accuracy of predictive
models (Wang et al., 2021). The forward calculation of
physical problems is to predict the next state of the system by
using physical parameters such as temperature, deformation,
mass, and spatial position of the system. In contrast, inverse
modeling uses the output of the system to derive the physical
parameters of the system. In this regard, many high-fidelity
datasets describing fluid mechanics phenomena facilitate the
application of neural network methods to fluid mechanics (Fei
et al., 2020; Yong et al., 2020). In recent years, deep learning
methods for biophysical problems have emerged (Almagrabi
et al., 2021). This modeling paradigm of exploring the laws of
physics using efficient deep learning tools is known as data-driven
modeling. These studies include predicting average Navier-Stokes
uncertainty regions in high Reynolds (Re) environments
(Templeton, 2015) and prediction studies of cylindrical
velocity fields with different Re using fused convolutional
neural networks (Jin et al., 2018).

Abundant experimental and numerical simulation data can
help researchers understand the flow around a circular object. We
used machine learning in previous studies to examine the role of
immune infiltration in various diseases (Chi et al., 2020; Yang

et al., 2021; Xu et al., 2022). This paper tries to adopt a research
method combining ML method and physical model and take
immune cell transmigration as the research object. We used CFD
simulation data to build a neural network method for immune
cell transmigration prediction. This method enables data value to
be used repeatedly and achieves second-by-second forecasts that
traditional methods cannot reach. Among them, the bio-inspired
BPNN model is adopted and the prediction performance of the
neural network and its superiority compared to the CFD method
are discussed.

MATERIALS AND METHODS

The CFD Model
In the blood flow of the human body, the size of immune cells is
generally between 7 and 15 μm (Luo et al., 2011). To simplify the
calculations, we use a cell model with a diameter of 10 μm for
benchmark simulations. The cell model consists of viscous
incompressible cell fluid and linear elastic cell membrane. The
cell membrane thickness is 0.4 μm, the elastic modulus is 100 Pa,
and the Poisson’s ratio is 0.25 (Aubry et al., 2015). Here, we
choose the elastic modulus range of 50–500 Pa to reflect the
physiologically possible mechanical response of the cell
membrane. Cell fluid and plasma were designated as
homogeneous fluids with the same parameters, with a
kinematic viscosity of 0.0008 Pa s. The density of immune cells
and plasma is 1,000 kg/m3. The phenomenon of cells passing
through pores generally occurs in the capillary or venule vascular
environment, where the blood flow rate is generally controlled at
Re between 0.01 and 0.2 (Haber et al., 2013). Therefore, Re = 0.1
was adopted as the baseline plasma flow field. To investigate the
retention effect of microvascular stenosis on cell transport, we
selected six sets of parameters with channel widths of 10, 12, 14,
16, 18, and 20 μm to establish a microvessel model containing
stenotic pores (Vollmar et al., 2019).

The immune cell transmigration model established in this
paper includes a cell droplet and a microvascular model with
narrow pores. The initial position of the immune cell is located on
the upper side of the pore, and it will passively deform and pass
through the pores smaller than its size under the drive of the fluid.
Although a 3D model would be more accurate, we chose a 2D
model to simplify the calculations. Studies have shown that the
model is insensitive to depth in cells entering narrow pores
(Leong et al., 2011). At the same time, an axisymmetric model
containing half of the computational domain was adopted to
analyze the transmigration of cells. The hemisphere model
composed of the blue and cyan areas in the figure is the
immune cell model, composed of a uniform cytosol wrapped
by a linear elastic film. Both cellular fluid and extramembrane
plasma are considered homogeneous incompressible Newtonian
fluids. This paper regards the plasma flow in microvessels as
Poiseuille flow in circular conduits. The velocity of the flow field
near the wall is relatively small, and the velocity from the near
wall to the microvessel axis rises parabolically and reaches a
maximum value. The velocity of the flow field is symmetrical
about the microvascular axis. Immune cells are located at the axis
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of the microvessels and are subjected to a symmetrically
distributed fluid shear force. In this paper, COMSOL’s “laminar
flow” is used to quantify the fluid flow of cell fluid and plasma.
Immune cells are elastically deformed under the drive of blood flow,
and “solid mechanics” is used to calculate the deformation of the cell
membrane. We used “Fluid-Structure Interaction” to calculate the
force-displacement transfer at the fluid-structure interface. The rust-
colored area in the figure is the blood vessel wall. This paper ignores its
deformation and regards it as a rigid wall.

The CFD model in this paper mainly uses COMSOL
multiphysics simulation software for numerical calculation.
The governing equation used in the model calculation is the
Navier-Stokes (N-S) equation,

ρf[zUf

zt
+ (Uf.∇)Uf] � ∇[μ∇Uf + μ(∇Uf)T] + F − ∇P (1)

The boundary condition is a no-slip boundary, namely the
blood flow velocity near the wall is zero. The PARDISO solver is
used in the COMSOL solver setting, which uses the stiffness
decomposition matrix inversion to solve the N-S equation and
uses parallel computing to improve the solution efficiency. The
Euler method is used for meshing in COMSOL, and the motion of
the fluid-solid boundary is described using an arbitrary
Lagrangian-Euler (ALE) method. Distortion of the mesh near
the fluid-solid boundary can be solved by remeshing. The
COMSOL multiphysics simulation software has meshing
capabilities that meet the computational accuracy
requirements, and all meshing is completed within the software.

The ALE coordinate system, independent of the Euler and
Lagrange coordinate systems, is generally not completely fixed in
space, nor is it completely fixed on the material node. And the
ALE grid could achieve the appropriate motion.

The Navier-Stokes equation described by ALE is

ρ(vt[x] + (c · ∇x)v) � ∇x · σ + ρb (2)
The mesh velocity described by ALE can be easily obtained

v̂ � v − zx

zΧw (3)

where w is the velocity of the solid.
The model is calculated in a two-dimensional environment,

and the leukocytes can move along the axial and radial directions
of the tube with two degrees of freedom.

The numerical precision of the calculation adopts the default
settings of the software. CFD tasks are completed on different
computers due to too many cases to be solved.

Theoretical Description
The so-called Poiseuille flow is the flow of viscous fluid in a
circular pipe. When the Reynolds number is less than 2000, the
liquid flow in a straight circular pipe with equal cross-section is
laminar flow. Poiseuile law

Q � πr4Δp/(8ηL) (4)
It describes the steady flow of an incompressible viscous fluid

in a horizontal circular pipe, and the Reynolds number is not

large. When the flow form is laminar flow, the flow rateQ and the
pressure difference Δp at both ends of the pipe, the pipe radius r0,
the pipe length l and the fluid, the relationship of viscosity
coefficient η. Poiseuille’s law is an essential law of fluid
dynamics. Poiseuille flow is one of the few cases where there
is an analytical solution to the N-S equation, the x-axis is chosen
to be on the vessel axis, and y is the radial coordinate measured
outward from the tube axis. Both the circumferential and radial
velocity components are zero, and the velocity component
parallel to the tube axis is denoted as u, which depends only
on y. At the same time, the pressure is constant in each cross-
section. In this way, in the N-S equation expressed in cylindrical
coordinates, only one axial equation is left, which simplifies to:

μ(d2u

dy2
+ 1
y

du

dy
) � dp

dx
(5)

According to the no-slip boundary condition, y � R, u � 0.
Available velocity distribution:

u(y) � − 1
4μ

dp

dx
(R2 − y2) (6)

It can be seen that the velocity from the proximal wall to the
microvascular axis increases parabolically.

At y = 0, i.e., on the tube axis (the center of the vessel)

um � R2

4μ
(−dp

dx
) (7)

Basic Theory of Neural Network
The basic unit of the neural network algorithm is the single-layer
perceptron model. The structure of the single-layer perceptron
model is simple, and its components only have an input layer and
a single output layer. The figure below represents a perceptron
model with two input neurons and one output neuron node. x1
and x2 represent the stimulus to the neuron, that is, the input
information.w1 andw2 represent the connection weights between
input and output nodes. b represents the excitation threshold of
the neuron, that is, the bias. y is the output of the perceptron. The
information transfer formula of the single-layer perceptron is
expressed as follows:

y � ω1x1 + ω2x2 + b (8)
The perceptron works by finding a linearly separable

hyperplane separating the loaded data. What’s more, stronger
data plane classification capabilities can be obtained by
integrating multiple perceptron models. In the original
perceptron model, the essence of the inter-layer transfer of the
neural network is to perform a linear transformation of the data.
This determines that a simple perceptron model can only solve
linearly separable problems, but cannot deal with non-linear
problems. Based on this, applying a non-linear activation
function to the neuron node endows the neural network with
the ability to solve linear inseparable problems. The non-linear
activation function completes the linear transformation to fulfill
output characteristics. As shown in Figure 1, the figure represents
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the non-linear modification of the linear transformation. The
application of non-linear activation functions introduces non-
linear factors into the neural network, allowing it to classify data
planes using smooth surfaces. This enables the neural network to
have superior data classification and regression capabilities.

BP Neural Network
Assume that the number of nodes in the input, hidden, and
output layers are l, m and n. The weights and biases from the
input layer to the hidden layer and from the hidden layer to the
output layer are in order ωij, ωjk and aj, bk, learning rate η. The
excitation function is g(x). The detailed steps of BPNN modeling
are as follows:

BPNN is a multi-layer feedforward neural network based on
an error back propagation algorithm. The principle is to use the
common gradient descent algorithm and gradient search
technology to minimize the error mean square error between
the actual output value and the expected output value of the
network in successive update iterations. The model topology of
BPNN consists of an input layer, a hidden layer, and an output
layer. Figure 2 shows a simple three-layer neural network. The
input signal of the neural network acts on the output node
through the hidden layer node and generates the output
signal. By adjusting the connection weights of input nodes and
hidden layer nodes, the connection weights and thresholds
between the hidden layer and output nodes during the
training, the deviation between the actual output and the

expected output value decreases along the gradient direction.
After repeated training and parameter adjustment, the network
parameters (connection weights and thresholds) that match the
minimum error are determined. The network parameters
determined by the trained neural network process the input
information of the input samples with similar characteristics
and output the prediction information. Then the prediction
result with the smallest error can be obtained.

Assume that the number of nodes in the input, hidden, and output
layers are l, m and n respectively. The weights and biases from the
input layer to the hidden layer and from the hidden layer to the output
layer are wij, wjk and ai, bk. The learning rate is η and the excitation
function is g(x). The detailed steps of BPNN modeling are as follows:

(1) Network initialization. First, the weights and thresholds
between the input and the hidden layers are initialized.
Among them, the common activation function is the
sigmoid function. Its function expression is,

f(x) � 1
1 + e−x

(9)

(2) Data forward calculation. For the three-layer BPNN shown in
Figure 2, the output sum of the hidden layer and the output
layer Hj and Ok are respectively

Hj � g⎛⎝∑l
i�1
ωijxi + aj⎞⎠ (10)

Ok � g⎛⎝∑m
j�1
ωjkHj + bk⎞⎠ (11)

(3) Error calculation

Assuming that Yk is the expected output of the network, the
error calculation formula is

E � 1
2
∑n
k�1

e2k (12)

ek � Yk − Ok (13)

(4) Update of weights and biases. The weights and biases are
updated through the back-propagation of the error to make

FIGURE 1 | Schematic diagram of activation function.

FIGURE 2 | Schematic diagram of the topology structure of BPNN.
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the error function reach the minimum value, where the
update formulas of the weights and biases are respectively

{ωij � ωij + ηHj(1 −Hj)xj∑n

k�1ωjkek
ωjk � ωjk + ηHjek

(14)

{ aj � aj + ηHj(1 −Hj)xj∑n

k�1ωjkek
bk � bk + ηek

(15)

Furthermore, we utilize mean squared error (MSE) to measure
the accuracy of BPNN predictions. The formula for calculating
the MSE is,

MSE � SSE

l
� 1

l
∑n
i�1
ωi(yi − yi

∧ ) (16)

The Training Process of BP Neural Network
The network training of BPNN includes the following processes:
(1) Integrate the training data set. The training of BPNN requires
large-scale data support, and the training samples need to contain both
input data and label data. The accuracy of the data directly affects the
prediction accuracy of the neural network. Data normalization is often
necessary for the specific training to obtain similar weighting
tendencies for different features. Normalization can reduce the
computational complexity and speed up the convergence, and also
facilitate the subsequent training optimization because the output of
the activation function is 0-centered.

(2) Network structure design. The network structure aims to
clarify the number of network layers, hidden layer nodes, the
activation function between layers, the training and the loss
function. As the network structure is determined, all data
dimensions are established.

(3) Initialize the weights. The parameter update in the training of
BPNN depends on the gradient descent algorithm (mainly
including batch gradient descent (BGD) method, stochastic
gradient descent (SGD) method, mini-batch gradient descent
(MBGD) method, etc.). Before starting training with the
gradient descent algorithm, the weights and biases in the
network need to be initialized. To eliminate the symmetrical
weights, many initialization methods are currently used to
randomly initialize the weights of each layer. Too small
initialization weight made the non-linear activation
function lose its non-linear modification ability. On the
contrary, too large an initialization weight causes the
problem of gradient disappearance.

(4) Network training. BPNN is based on the back-propagation of
the error between the network output and the label to update
the weights and repeat the iterative calculation to make the
loss function reach the expected desired value.

RESULTS

CFD Data
We used the CFD data of immune cell transmigration as the
training data of the BPNN model. Considering the limited effect

of immune cell stiffness on cell motion and deformation and flow
field in the transmigration simulation, it is not used as an input
parameter of the neural network. This paper aims to construct a
time-dependent prediction model for leukocyte transmigration to
establish a model of immune cell movement and flow field. The
data we use are all from the data obtained by our CFD simulation,
including displacement parameters, cell deformation parameters,
flow velocity, fluid lift, and drag parameters. We have fully
investigated the hydrodynamic parameters of the environment
in which immune cells migrate to ensure the accuracy of the data
obtained by CFD. We performed blood flow Re of 0.1, 0.11, 0.12,
0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, and 0.2 and AR of 0.5, 0.55,
0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, a total of 121 CFD
simulations. Among them, the combination of Re and AR is
(0.1, 0.5), (0.1, 0.55), (0.11, 0.5), (0.12, 0.5), (0.13, 0.5) and (0.14,
0.5). The impaction phenomenon is not included in the training.
We will exclude 115 sets of CFD simulation data from these six
sets of examples as the basic data set for training.

The 115 groups of Re and AR parameters in the basic data set
are used as input data. The transmigration is the target vector to train
the time-dependent leukocyte transmigration prediction model
based on the BPNN model. In addition, we used 14,221 samples
consisting of Re, AR, and cell downflow displacement parameters as
a training dataset to train cell motion and flow field prediction
models during transmigration. Among them, the target parameters
are the cell deformation, the downstream velocity, the fluid lift, and
drag forces. In order to test the accuracy of the model, 10 groups of
Re and AR were used as (0.2, 0.53), (0.19, 0.57), (0.18, 0.63), (0.17,
0.67), (0.16, 0.73), (0.15, 0.77). New examples of (0.14, 0.83), (0.13,
0.87), (0.12, 0.93) and (0.11, 0.97) are used as test datasets to validate
the time-dependent transmigration prediction model. The above
parameter combination simulates the migration environment in
which most immune cells are located and guarantees the generality
of this study. At the same time, four groups of leukocyte
transmigration CFD examples with Re and AR of (0.16, 0.73),
(0.15, 0.77), (0.14, 0.83) and (0.13, 0.87) were used to test the
accuracy of the prediction model of the transmigration. The
hydrodynamic simulation still uses the leukocyte transmigration
CFD model shown in Figure 3.

Time-Dependent Prediction of Leukocyte
Transmigration Based on BP Neural
Network Model
Many studies have shown that a 4-layer neural network with only
two hidden layers can predict most regular data matrices
accurately. The input parameters of the time-dependent
leukocyte transmigration prediction model are two vectors, Re
and AR, so the number of neurons in the input layer is 2. To avoid
the long training time caused by many nodes, we draw on the
empirical formula for node selection in the hidden layer,

∑M
n�0

Cn
I > h (17)

WhereM is the number of nodes in the input layer, namely 2. I is
the number of hidden layer nodes to be used. h is the number of
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training samples of the BP model. After calculation, the number
of nodes in the hidden layer should not be less than 15. Therefore,
we use two-layer hidden layers with 5 and 10 nodes,
respectively, to construct the time-dependent cell
transmigration prediction model. The activation function
from the input layer to the hidden layer and the hidden
layer adopts the tansig function, and the activation function
from the hidden layer to the output layer adopts the purelin
function. In addition, the trainlm function is used as the
training function of the BP neural network. Meanwhile, the
maximum training times, training target and learning rate are
1,000, 1 × 10–5 and 0.03, respectively. Figure 4 shows the
training performance of the time-dependent leukocyte
transmigration prediction model. The model achieves the

best verification performance when the number of training
times is 38, and its value is 4.524 × 10–5.

Based on the default partitioning method, the BPNN model
randomly assigns 115 samples to the training set, validation set
and test set according to the ratio of 60%, 20%, and 20%. Figure 5
shows that the regression accuracies on the training set, validation
set, test set, and total dataset reached 0.99959, 0.99907, 0.99874,
and 0.99949, respectively. This further proves the prediction
robustness of the BPNN model.

To test the prediction accuracy of the leukocyte transmigration
time prediction model, we predicted the transmigration time of
10 groups of cases in the test data set different from the training
samples and compared them with the CFD results. We use the
coefficient of determination as a criterion to analyze the deviation

FIGURE 3 | Flow field and pressure field distribution during cell transmigration (A) t = 0 s; (B) t = 0.002 s; (C) t = 0.01 s; (D) t = 0.05 s; (E) t = 0.1 s; (F) t = 0.15 s.
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between the BPNN and CFD simulation and further measure the
robustness of the mechanical prediction system. The formula for
calculating the coefficient of determination is:

R2 �
∑(ŷj − y

−)2

∑(yj − y
−)2 (18)

Where ŷj is the predicted value of BPNN and y
−
is the average value of

the real value of the CFD simulation, yj is the true value of the CFD
simulation. The interval range of the coefficient of determination is [0,
1], and the closer to 1, the better the prediction effect.

Figure 6 shows the comparison between the predicted time-
dependent of BPNN and the time-dependent CFD for 10 groups
of leukocyte transmigration examples from the Re interval of [0.1, 0.2]
and the AR interval of [0.5, 1]. The results show that the predicted
value in themiddle region of theAR interval is in good agreementwith
the true value and slightly worse at the two ends. The R2 was 0.99846,
indicating that the leukocyte transmigration prediction model had
excellent prediction accuracy. Based on this, we constructed a BPNN-
based time-dependent leukocyte transmigration prediction model a
three-dimensionalmap of the predicted leukocyte transmigration time
in the Re interval [0.1, 0.2] and AR interval [0.6, 1] (Figure 7). As
shown, the leukocyte transmigration time increased significantly with
the decrease ofRe. Compared withRe, the reduction ofAR has amore
prominent effect on prolonging the time-dependent leukocyte
transmigration. Under the dual influence of Re and AR, the
increase in leukocyte transmigration time was more pronounced
and manifested as a sharp upward curl on the map.

Prediction of Leukocyte Transmigration
Based on BP Neural Network Model
The prediction model can predict the time-dependent leukocyte
transmigration in specific Re and AR intervals. However, the

morphological changes of cells during transmigration and the
changes in the surrounding flow field remain unclear. The
robustness of the BPNN model aided to construct a leukocyte
transmigration prediction model. As mentioned above, 14,221
samples including Re, AR, cell down-flow displacement, cell
deformation, down-flow velocity, received fluid lift and drag
parameters were used as the training dataset to train the
BPNN model. The data matrix containing Re, AR and cell
forward displacement is used as input data to establish the
corresponding relationship with the target data. The target
data vectors are Rmax, Vy, Fl and Fd, respectively. Using Eq. 14
to calculate the number of neurons in the hidden layer, we use 50
nodes to fill the hidden layer. We construct a two-layer hidden
layer with 20 and 30 nodes, respectively. The selection of
activation and training functions is the same as the leukocyte
transmigration time-dependent prediction model. At the same
time, the determination coefficient of Eq. 11 is still used to
measure the prediction accuracy of the BPNN prediction model.

Cell Motion Prediction
First, we train the neural network with cell deformation
parameters as target vectors. Unlike the setting threshold of
the time-dependent prediction model of leukocyte
transmigration, the better prediction accuracy can be obtained
by setting the training target as 10–3. As shown in Figure 8A, the
prediction model achieves the best training performance when
the number of training times is 34, and its value is 0.00094417. At
the same time, a fitting accuracy of 0.99992 was obtained in
training on the overall training set with a sample size of 14,221
(Figure 8B).

Next, we use the cell deformation prediction model to predict
the cell deformation during the transmigration for the four new
examples mentioned above. Their Re and AR are set to (0.16,
0.73), (0.15, 0.77), (0.14, 0.83), and (0.13, 0.87), respectively.
Figure 9A–D compares the predicted cell deformation values
and the CFD values of the four groups of calculations,
respectively. The figure shows the deformation prediction of
the cell forward displacement by the prediction model is
consistent with the CFD results. The coefficients of
determination, which measure the degree of agreement
between the BPNN predictions of the four groups of examples
and the real solutions of CFD, are 0.9998, 0.9998, 0.9998, and
0.9999, respectively, showing an excellent prediction effect.

By changing the target vector of the prediction model to the
velocity vector of the cell forward movement, we constructed a
model for predicting the leukocyte transmigration speed. Due to
the increased degree of non-linearity between the input data and
the target vector, the threshold for the training target was set to
10–10. The training performance of the model and the data fitting
curve are shown in Figure 10A,B. When the number of training
times reaches 64, the BPNN model obtains the best training
performance with a value of 9.862 × 10–11. At the same time, the R
value of the training data fitting reached 0.99922, indicating a
goodmapping relationship between the input data and the output
data in the forecast model. Subsequently, we tested the established
cell forward velocity prediction model. Using the same 4 datasets,
the good predictive ability of the forecasting model is revealed.

FIGURE 4 | Training performance of the time-dependent model for
leukocyte transmigration.
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Figure 11A–D all show that the predicted value of BPNN can well
fit the CFD solution, and the coefficients of determination of the
closeness between the predicted curve and the real curve are
0.9990, 0.9985, 0.9971 and 0.9979.

Prediction of Cell Lift and Drag Force
Based on the same network skeleton of the leukocyte
transmigration prediction model, we replace the trained target
vector with the cell fluid lift forces to calculate the accuracy of
the prediction model in predicting the cell fluid lift forces.
Since the non-linearity of the data further increases, the
training objective and minimum gradient threshold are set
to 1 × 10–13 and 1 × 10–10, respectively, to obtain better
prediction accuracy. Figure 12A shows that the prediction
model achieved the best training performance when the
training order reached 153, and its value was 9.970 × 10–14.
At the same time, the fitting curve of the model achieved an
accuracy of 0.99867 (Figure 12B).

Similar to the prediction of cell deformation and downstream
motion velocity, we also found that the prediction model of the
transmigration is highly accurate in predicting the fluid lift force
on the cell. Figure 13A–D of show the prediction curves of the
prediction model for the fluid lift forces on cells in the four new
cases, respectively. The results show that the predicted curve is
consistent with the CFD curve, and the difference between the
predicted and actual values at each data point is very small. The
coefficients of determination of the predicted curve and the real
CFD curve in the four groups of examples are 0.9915, 0.9943,
0.9946 and 0.9965, respectively, showing excellent prediction
performance.

Finally, we replaced the target vector of the leukocyte
transmigration prediction model with the drag force of the cell
to observe the prediction ability of the model to the drag force.
After adequate iterations were implemented, it was found that the
training model with the training target and the minimum
gradient threshold set to 1 × 10–14 and 1 × 10–12, respectively,

FIGURE 5 | Fitting curve of time-dependent leukocyte transmigration model.
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could maintain a good prediction of the target. When the number
of training times reaches 716, the model has the best training
performance with a value of 9.997 × 10–15 (Figure 14A). At this
point, the fitting parameter of the training data reached 0.99093
(Figure 14B). Based on the same test case, we analyzed the
prediction accuracy of the prediction model for the drag force of
cells during the transmigration. Figure 15A–D show the drag
force prediction curves and CFD curves of different examples,
respectively. The prediction accuracies of these examples are
0.9257, 0.9451, 0.9512 and 0.9569, respectively. The entire
computation process, including CFD and BPNN, is shown in
Figure 16. The prediction models have significant discrepancies
in the prediction of the drag force in the initial cell movement
stage, the pore entry stage and the pore exit stage. The model
maintained a high prediction accuracy for drag force in other
periods.

Computational Efficiency Comparison
Compared with traditional CFD simulation methods, we found
that BPNN greatly shortens the simulation time of the model and
maintains high accuracy under the condition of sufficient sample
size. Once the network model is trained, BPNN can
instantaneously predict the time-dependent transmigration of
cells. The computer configuration for this article is (Intel(R)
Core(TM) i5-4570 3.2 GHz RAM 8G). Based on the same
computing resources, the training time of the BP model is less
than 10 min in total. In contrast, the total time required for
establishing and training the BP model is comparable to that of a
CFD example. This fully reflects the punctuality and efficiency of
BPNN forecasting.

DISCUSSION

Immune cell infiltration and is of great concern in the biomedcine
(Shen et al., 2020). Traditional CFD methods are often
accompanied by complex and time-dependent modeling and
calculations (Khaleghi et al., 2021). Based on this, many
leukocyte transmigration CFD simulation data obtained in the
previous paper, we tentatively established a time-dependent
prediction model of the transmigration. The cellular
transmigration time-dependent prediction model can predict
the time it takes for cells to pass through the pores in the
vascular environment in specific Re and AR intervals. On this
basis, the leukocyte transmigration model can predict the cell
movement and flow field changes during the transmigration with
extremely high accuracy. Both prediction models have a double
hidden layer structure, and the total number of hidden layer
nodes is 15 and 50, respectively. The time-dependent leukocyte
transmigration prediction model only has two input parameters,
Re and AR. The input data of the leukocyte transmigration
prediction model also includes the cell forward displacement
parameter. Based on the constructed model, we selected 10 time-
dependent samples of leukocyte transmigration and 4 examples
of leukocyte transmigration in the training Re and AR intervals to
test the prediction accuracy of the two prediction models and
obtained superior predictions Effect. Compared to traditional
CFD techniques, the predictive capability of the BPNN model
significantly highlights its potential applications in fluid
mechanics (Wong and Kim, 2018).

With the rise of the technology, many algorithms have
emerged that incorporate physical models (Jiang et al., 2019;
Liu et al., 2022; Liu et al., 2022). In this regard, the neural network
family to which BP belongs plays an important role (Wong and
Kim, 2018). Earlier studies have simply used neural network
algorithms to improve the accuracy of data processing (Rediniotis
and Vijayagopal, 1999). For example, Wang et al. applied the
artificial neural network based on BP theory to the data
processing of the five-hole probe in the fluid experiment, and
put forward the conclusion that the accuracy and reliability of the
prediction results are better than the linear three-dimensional
interpolation method. Then, the predictive capabilities of neural
networks, which can maintain high accuracy and rapidity, are
gradually applied to fluid mechanics (Rediniotis and Vijayagopal,

FIGURE 6 | BPNN prediction value and CFD real value of 10 groups of
calculation examples based on time-dependent leukocyte transmigration
prediction mode.

FIGURE 7 | Time-dependent leukocyte transmigration prediction model
based on BP neural network.
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1999; Fan et al., 2003; Cheng et al., 2020). For example, the BP
model can effectively predict the displacement and dominant
frequency of the vortex-induced vibration of flexible cylinders

commonly found in engineering. But the neural network has a
significant disadvantage, that is, the successful training of the
network needs to rely on a considerable number of samples (Liu

FIGURE 8 | Training performance and fitting curve of the leukocyte transmigration prediction model for cell deformation prediction (A) Training performance; (B)
Fitting curve.

FIGURE 9 | Prediction accuracy test of a leukocyte transmigration prediction model for cell deformation prediction.
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et al., 2015; Chen, 2017). In this regard, other algorithms can
better address this problem (Jiang et al., 2019; Sun et al., 2022;
Wang and Cao, 2029). The reason for abandoning the large-scale

physical models and choosing the neural network model is
primarily because of its efficient and fast simulation and
prediction capabilities (Li and Peng, 2007; Kang and Cho,

FIGURE 10 | The training performance and fitting curve of the leukocyte transmigration prediction model used for cell downflow velocity prediction (A) Training
performance; (B) Fitting curve.

FIGURE 11 | Prediction accuracy test of the leukocyte transmigration prediction model used for cell forward velocity prediction (A) Re = 0.13, AR = 0.87; (B) Re =
0.14, AR = 0.83; (C) Re = 0.15, AR = 0.77; (D) Re = 0.16, AR = 0.73.
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2014). Like most forecasting models, the two forecasting models
established in this paper based on the BPNN model show the
instantaneousness and high accuracy of forecasting.

A sufficiently trained neural network model also can guide
engineering design, such as the rational planning of the airfoil
design process by predicting the leading edge pressure

FIGURE 12 | Training performance and fitting curve of the leukocyte transmigration prediction model used for the prediction of fluid lift forces on cells (A) Training
performance; (B) Fitting curve.

FIGURE 13 | Prediction accuracy test of the leukocyte transmigration predictionmodel for the prediction of fluid lift forces on cells (A)Re = 0.13, AR = 0.87; (B)Re =
0.14, AR = 0.83; (C) Re = 0.15, AR = 0.77; (D) Re = 0.16, AR = 0.73.
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distribution of a hybrid airfoil (Yao and Sung et al., 2018; Sekar
et al., 2019;廖鹏与姚磊江等, 2019). What’s more, an active flow
controller incorporating deep reinforcement learning neural

networks significantly reduces lift and drag fluctuations in the
flow around a cylinder (Haryanto et al., 2014; Peng et al., 2020;
Tang et al., 2020). Because of the wide application of BPNN

FIGURE 14 | Training performance and fitting curve of the leukocyte transmigration prediction model used for the prediction of drag force to cells (A) Training
performance; (B) Fitting curve.

FIGURE 15 | Prediction accuracy of the leukocyte transmigration prediction model for the prediction of fluid lift forces on cells (A) Re = 0.13, AR = 0.87; (B) Re =
0.14, AR = 0.83; (C) Re = 0.15, AR = 0.77; (D) Re = 0.16, AR = 0.73.
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model in fluid mechanics, we integrated the leukocyte
transmigration CFD dataset to establish a time-dependent
leukocyte transmigration prediction model. We randomly
predicted the CFD results of leukocyte transmigration models
for several groups of different Re and AR using established two-
class prediction models. Compared with the real CFD results, the
prediction model showed robustness in both the time-dependent
transmigration and the changes of cell motion and flow field
during the transmigration.

This paper mainly focuses on the processing of leukocyte
migration data obtained by CFD simulation using BPNN
technology, and fully demonstrates the advantages of artificial
neural networks for the prediction of immune cell perforation
compared with traditional CFD simulation after having a certain
amount of data in the early stage. This advantage is mainly
reflected in forecasting speed and reliable accuracy. The effects of
biochemical factors on leukocyte migration were significantly
different from mechanical factors on leukocyte migration. The
adhesion and migration of immune cells are crucial in the body
immunity and host defense. Integrins on the surface of immune
cells are the core molecules regulating immune cell adhesion and
migration. The main scientific question to explore the influence
of biochemical factors is how immune cells sense changes in the
extracellular microenvironment, thereby controlling tissue-
specific migration of immune cells by regulating integrin
function. It is more of an on-off regulation. Migration often
occurs because cells sense signals from the outside world, such as
white blood cells sensing abnormal proteins released by bacteria.
The cell then turns on a switch inside itself, initiating the
migration process. The mechanical factor focuses on the fluid
environment in which the immune cells in the blood vessels are
located and the forces they experience during migration, such as
the fluid environment characterized by the two parameters Re
and AR in this paper.

We performed numerical simulations of the model based on
the fine, finer, and ultrafine meshing methods, respectively, to
verify the reliability of our CFD results. Relevant content has been
added to the revised manuscript. The numbers of meshes
included in the numerical model under the fine, finer and
ultrafine meshing are 8522, 21,237 and 55,245 meshes,
respectively. As shown in Supplementary Figure S1A, the
time-Rmax curves of the three meshing methods have the
same trend. However, the resulting finer distribution of data
points differs slightly from the other two meshing methods. The
finer and ultra-fine results can fit well. Considering the increasing
demand for computing resources brought about by the increase
in grids, we use a finer grid division method for subsequent
simulations. As shown in Supplementary Figure S1B, the finer

mesh division method locally refines the fluid-structure
interaction boundary based on the physical model of cell
perforation based on different physical field distributions. The
mesh model based on this meshing method can better meet the
calculation requirements of the physical model with large non-
linear characteristics to ensure that the results are reliable enough.

Overall, our results demonstrate the feasibility and robustness
of BPNN in prediction studies of leukocyte transmigration. The
strong generalization ability of the neural network also provides a
technical guarantee for a comprehensive and complete prediction
model of cell infiltration in the future. Compared with the
traditional CFD technology, the neural network model is easy
to implement because it does not require an explicit fitting
function. At the same time, the prediction time of this method
also significantly shortens the simulation time based on
traditional physical models.
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