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Objectives: Real-time data analysis during a pandemic is crucial. This paper aims to
introduce a novel interactive tool called Covid-Predictor-Tracker using several sources of
COVID-19 data, which allows examining developments over time and across countries.
Exemplified here by investigating relative effects of vaccination to non-pharmaceutical
interventions on COVID-19 spread.

Methods: We combine >100 indicators from the Global COVID-19 Trends and Impact
Survey, Johns Hopkins University, Our World in Data, European Centre for Disease
Prevention and Control, National Centers for Environmental Information, and Eurostat
using random forests, hierarchical clustering, and rank correlation to predict COVID-19
cases.

Results: Between 2/2020 and 1/2022, we found among the non-pharmaceutical
interventions “mask usage” to have strong effects after the percentage of people
vaccinated at least once, followed by country-specific measures such as lock-downs.
Countries with similar characteristics share ranks of infection predictors. Gender and age
distribution, healthcare expenditures and cultural participation interact with restriction
measures.

Conclusion: Including time-aware machine learning models in COVID-19 infection
dashboards allows to disentangle and rank predictors of COVID-19 cases per country
to support policy evaluation. Our open-source tool can be updated daily with continuous
data streams, and expanded as the pandemic evolves.

Keywords: machine learning, time series cross-validation, interactive visualization, COVID-19 prediction,
comparative analyses, COVID-19 non-pharmaceutical interventions, social epidemiology, COVID-19 virus variants

INTRODUCTION

A novel coronavirus originated from China [1] that causes the COVID-19 disease has escalated
rapidly around the Globe [2], resulting in fundamental life-changing effects. As of 30 July 2022, the
virus has infected more than 590 million individuals, caused about 64 million deaths [3]. Every
variant changes the course and contours of the COVID-19 pandemic. Nations navigate this dynamic
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political, economic, and social environment, responding to the
steam of challenges with a range of approaches that reflect the
complex diversity of polities and circumstances.

After more than 2 years of employing a diverse set of non-
pharmaceutical interventions (NPI) governments are eager to
evaluate the effectiveness of their measures and compare their
strategies to other countries. Seeking to assist decision-making
around the identification of COVID-19 infection predictors, we
built a data-driven [4, 5] interactive visualization and analysis tool
called Covid-Predictor-Tracker using a wide range of COVID-19
related time series data. The Covid-Predictor-Tracker—available
at https://corona.stat.uni-muenchen.de/covid_FI/ - allows the
retrospective time series analyses by country and across
countries of COVID-19 infections, as a function of individual
behaviors, country-specific characteristics, and NPI measures
over time.

Several tools exist for various aspects of the COVID-19
pandemic. Most provide exploratory features like Our World
in Data [6] and the Johns Hopkins Cornonavirus Resource
Center [3, 7] with a global perspective, or local ones like the
Dutch COVID-19 Dashboard [8] and COnVIDa [9]. Few provide
model-based analytical elements like the COVID-19 Spread
Mapper [10] with log-linear modeling and epiMOX [11] with
a compartment model and what-if analysis simulating different
epidemic trends.

While nearly all dashboards report epidemiological indicators
according to a descriptive assessment of 158 public online
COVID-19 dashboards [12], indicators on social, economic
factors and behavioral insights are rarely reported (4.4%, 1.3%,
respectively). Our tool stands out with an extensive coverage of a
wide range of factors and with its model-based analytical
approach, incorporating diverse fields relevant to the virus
spread.

In our modeling approach (see Figure 1A) we started with a
machine learning random forest (RF) algorithm (see also
[13–15]) applied to a time series database of COVID-19-
related variables to find the most important variables
predicting COVID-19 spread across the EU countries. These
ensemble of learning methods for classification or regression
[16] combine several regression trees in a way that each tree
depends on the values of a random vector sampled
independently and with the same distribution for all the
trees. The importance of a single variable can be assessed
[17]. At this step we considered a wide range of variables
related to COVID-19 spread, including behavioral responses
like self-reported mask usage and the frequency of direct
contact [18], a meteorological factor [19], vaccination [20]
rates, share of COVID-19 variants [21] and NPIs [22], as
literature suggests. While the use of machine learning models
in COVID-19 prediction is not unique, Alali [23] points out,

FIGURE 1 | Flow of data and models and Schema of the rolling forecasting origin method. (A) Flow of data and models (Selected countries of the European Union,
2020–2022). (B) Schema of the rolling forecasting origin method (Covid-Predictor-Tracker, Selected countries of the European Union, 2020–2022).
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most of the machine learning models do not consider the time
dependency of data series. In contrast, our RF approach
underlines the importance of the time dependency in
COVID-19 data, capturing it by applying time-series cross-
validation during the RF training phase.

As Ying [24] and Farmer [25] highlight, it is crucial to reveal
the relationship between the disease spread and socioeconomic
and health indicators across regions. To do so, we included age
and gender distribution, health expenditure, and cultural
participation in our model. As a second step, agglomerative
hierarchical clustering [26] was used to form relevant groups
of countries based on these time-constant country characteristics.
Agglomerative hierarchical clustering starts with every country
representing a single cluster and, in every step of the algorithm,
one pair of clusters, the one with the smallest intergroup
dissimilarity is merged into one group. The algorithm stops
when there is only one cluster left, this one contains all the
countries.

As a third step, we calculated Spearman’s rank correlations
[27] between the predictor importance ranks of each country
and the predictor importance rank of the relevant
country–cluster assessing monotonic relationships between
these variables. To get the latter measures, a RF model was
run on each country cluster (omitting country borders within
clusters) in addition to the same RF models for each single
country. This way we can examine for each country whether its
most important predictors of COVID-19 daily new infections
are typical for countries with similar country characteristics
or not.

We elaborate on the customization of the RF method and on
hierarchical clustering in the following section after we describe
the data sources used. We then share some selected findings
focusing on country comparisons. We display and discuss the
most important predictors of the spread of the COVID-19
infection for the time frame between February 2020 and
January 2022. We close with some suggestions for
improvements of the Covid-Predictor-Tracker tool, however in
its existing form it can already help public health authorities to
examine the effect of interventions/campaigns related to other
influential factors, while controlling for basic country
characteristics.

METHODS

We used nine data sources to build two integrated databases. A
time-constant, cross-sectional database on general country
characteristics, and a time-varying time series database of
COVID-19-related variables. We describe the (automated)
data collection and updating processes, as well as the
database preparation, to include daily updates as the
pandemic continues. The publicly available data streams are
captured via APIs (Application Programming Interfaces) or csv
(comma-separated value) files from provider homepages. We
selected data sources based on validity [28–32], accessibility,
regularity of updates, and availability since the start of the
pandemic [33].

Data Sources and Collection
The time-constant country characteristics are extracted using an
API provided by Eurostat. The most recent available data were
used to capture country population characteristics such as age
and gender, as well as total population size [34], health
expenditures [35], and cultural participation [36]. Pre-COVID-
19 cultural participation indicators included the percentage of 16-
year-old and older, under 30, and over 75 year-old who did not
attend any broadly defined cultural event in the last 12 months.

The time-varying covariates and outcome information come
from six different online sources. Daily average temperatures are
obtained from the National Centers for Environmental
Information [37] using the rnoaa R package [38].

Country-specific response measures are downloaded from the
homepage of the European Centre for Disease Prevention and
Control (ECDC) [39] using the data.table R package [40]. Because
links to this database change from time to time, we extracted the
html code of the homepage with the rvest R package [41]. The
share of COVID-19 variants among the newly registered cases are
downloaded as a csv file from this homepage [39].

Number of new infections, deaths, and recoveries related to
COVID-19 are extracted from the COVID-19 Data Repository
[3] by the Center for Systems Science and Engineering at Johns
Hopkins University (JHU CCSE) using the coronavirus R
package [42].

Behavioral responses to the pandemic were captured in the
Global COVID-19 Trends and Impact Survey (CTIS) [43, 44].
Astley et al. (2021) [45] evaluated internal and external validity of
the CTIS data. We used the open API [44] to download country-
specific aggregates of “mask usage,” “direct contact,” and
“reported COVID-like illness symptoms.”

The data about “new and total number of vaccinations” and
“proportion of vaccinated people” [6] stem from Our World in
Data access with the data.table R package [40].

To enable effective automatic updating and quality control, a
back-check is programmed. Anytime the database is updated, a
list is created automatically for the overlapping periods showing
the differences between the newly downloaded data and the
previous version. This feature allows users to follow the
corrections made by the data providers. All code can be found
on GitHub at https://github.com/covidrealtime/covidrealtime,
and is described in the Supplementary File. All variables were
checked for implausible and missing values. Standardizations and
variable transformations were used to combine all time-constant
country-specific variables together in one database, and all time-
changing variables in another. The full list of variables can be
found in the Supplementary File.

Model Selection
Following Shmueli [46] and his conception framework we use a
random forest (RF) machine learning approach, capturing the
association between outcome and predictors. Because our focus is
to reveal the effects of many predictors, rather than to forecast a
single time series, ARIMA, ARCH/GARCHmodels are less ideal.
Shang et al. [47] argues, Vector Autoregression, a forecasting
algorithm for multivariate time-series often used when two or
more time-series influence each other, is less suited for
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epidemiological outcomes. Kane et al. [13] show that RF
outperformed ARIMA time series models for prediction of
avian influenza H5N1 outbreaks. Yeşilkanat [14] achieved
good results for COVID-19 when used for spatial-temporal
prediction on worldwide daily cases of COVID-19 applying
RF. Cobb et al. [15] saw RF outperform other statistical
analyses when examining the effect of social distancing on the
compound growth rate of COVID-19. As Shmueli [46:292] states,
“Newly available large and rich datasets often contain complex
relationships and patterns that are hard to hypothesize,” and
assumptions on variable distribution would be problematic
as well.

Our Model
We use RF to predict the permutation feature importance of
many predictors of the change in daily confirmed new COVID-19
cases over 14 days across the countries in the EU. Smoothing was
implemented with 7-day rolling averages. The change in the
number of cases is proportional to population size. Repeated
permutation (variable importance) results can be unstable, so we
averaged the importance measures over repetitions of 5 to
stabilize the rank of feature importance.

We used multilevel models with time points nested within
each country, following the approach of Chakraborti et al. [48],
who compared the five continents exploring determinant factors
of the present pandemic comparing the results of five runs of their
RF model. Data were split by countries generating a list with
countries at the first level and RF was implemented throughout
the list via functional programming.

To evaluate the effect of country characteristics on feature
importance, we run the same RFmodels on the clusters formed by
covariate combinations, omitting country borders. As countries
within clusters are similar to each other, we can neglect country-
level case dependency in case of country clustering. All predictors
were standardized before we added them into the model. None of
the bivariate correlations of the predictors were above 0.7, thus
conditional forests were not needed [49]. Average temperature,
COVID-like illness, mask coverage, and direct contact variables
were smoothed with a 7-day rolling average.

Time-Series Cross-Validation
To honor the time-dependent structure of the data when forming out
training and test data we used the rolling forecasting origin technique,
introduced by Hyndman/Athanasopolous [50], via the R package
caret [51]. In this procedure, there are a series of test sets, each
consisting of fixed lengths of observations (see Figure 1B) [52]. An
advantage of this approach is that “corresponding training set consists
only of observations that occurred prior to the observation that forms
the test set. Thus, no future observations can be used in constructing
the forecast” [50:84].

The number of consecutive values in each training set sample
(called initialWindow in R package caret and in Figure 1B) is set
to 28 days in order to cover a period long enough to contain
enough time to possibly show an effect of a response measure
considering the combination from the incubation period of
COVID-19 with a median 4.5–5.8 days (95% CI) [53], and the
test delay (time until doctor visit and test evaluation time) [54].

The number of consecutive values in the test set sample (called
Horizon in caret and Figure 1B) is 5 to allow for a relatively high
number of resamples without “running out” of the time series
over time. Our model used between 246 and 364 samples varying
per country implemented with the Rolling Forecasting Origin
resampling technique. Root mean square error was applied to
select the optimal model using the smallest value. The final
number of predictors tried at each split (mtry) used for each
country model is 9 with 500 trees (for details on the code see
GitHub at https://github.com/covidrealtime/covidrealtime).

The percentages of variance explained, i.e. the measure of how
well out-of-bag predictions explain the target variance of the
training set, varies between 82.68 and 95.47 for each country
model, except for France and Finland with 65.04 and
65.26 percent of variance explained respectively.

We use the results of the RF models for Partial Dependence
Plots (PDP) and for the Bump Chart (to compare feature
importance ranks by countries) [55] in the Covid-Predictor-
Tracker app. For validation purposes, the sensitivity analysis
to finalize the parameters for our RF model covers several
versions of the extent of time lag between predictors and
reported infections and tests on dimensionality reduction,
i.e., we produce new versions of restrictions by merging
restrictions with partially relaxed measures (for example
merging complete and partial closure of hotels and
accommodation services). Further, we test different parameters
of resampling time slices during model training.

Hierarchical Clustering
To find the typical groups of countries with similar country
characteristics, we perform a hierarchical cluster analysis, which
is a common method to form country groups (for example [56,
57]). The variables included in the cluster analysis are time-
constant, therefore this analysis is conducted only once.

Because we had no prior hypothesis on the number of clusters,
and few covariates, we perform agglomerative hierarchical
clustering with the stats [58] R package. The following
variables are included in the clustering algorithm:

• population size,
• healthcare expenditures (in 1000 Euros per capita),
• cultural participation of 16 year-olds and older (percentage

not attending any cultural event in the last 12 months),
• percentage of population in age groups (under 20, 20–39,

40–59, 60–79, above 80 years-old),
• percentage of males.

Again, variables are standardized before going into the model
and in some instances scales are increased to give them a bigger
weight in the cluster analysis. As an internal validation step, we
multiply the scale of the variables “population size” and
“percentage of males” with 1.1, and the scale of variables
“healthcare expenditures” and “cultural participation” with 1.6.
The aspects of choosing the exact magnitude of the weights are
the maximization of the cophenetic correlation and the
achievement of a sufficient number of clusters when defining
the optimal number of clusters.
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We use Euclidean distance measures to capture the
dissimilarity between two countries. The distance between two
clusters is measured with the Ward’s method [26], because in our
analysis this method results in the highest (0.67) correlation
between the cophenetic distances (height at which two clusters
are combined) and the dissimilarity measures.

We define the optimal number of clusters with the average
silhouette method. The silhouette width measures how close the
points of a cluster are to the points of the neighboring cluster [26].
A high value of average silhouette width indicates that the
observations are clustered well. A low value indicates the
opposite, observations lying between or in the wrong clusters.
The value with the highest average silhouette width is the optimal
one for the clusters, 7 in our case.

As a result of hierarchical clustering the countries involved in
the analysis are assigned to seven distinct clusters. The Nordic
countries are allocated in the first cluster with the Netherlands,
Belgium, and Austria. The Balkan countries and Hungary are in
the second cluster. The third cluster comprises the Czech
Republic and Slovenia, the fourth cluster Germany and
France. The Mediterranean countries are assigned to the fifth
cluster, and Poland and Slovakia form the sixth cluster. Ireland
forms a separate cluster alone. We will provide more detail and a
visualization in the result section.

The Covid-Predictor-Tracker Interactive
Dashboard
Our interactive data visualization and analysis tool (see Figure 2)
is created with the shiny [59] and shinydashboard [60] R
packages. The inputs of the application are the prepared

databases and the results of the RF models, described in the
previous sections. We encourage readers to use the app https://
corona.stat.uni-muenchen.de/covid_FI/ while reviewing the
Results chapter.

RESULTS

Our results are based on data from 2/2020 to 1/2022 from nine
different data sources, the COVID-19 cases from JHU CCSE,
CTIS behavioral responses, weather info from NOAA,
vaccination data from Our World in Data, response measures
and variant info from ECDC, and Eurostat data on country
characteristics on population, health expenditures, and cultural
participation.

COVID-19 Infection Predictors
Based on our RF time series model, the five strongest predictors
overall of the daily new COVID-19 cases (see Figure 3) across
selected countries in the EU (in descending order) are the
percentage of people vaccinated at least once, the percentage
of the B.1.1.529 variant (Omicron) by week, the average daily
temperature of the given day, the share of people who self-
assessed having COVID-like symptoms within the last 24 h,
and the percentage of respondents self-reported using a mask.
The importance rank positions of most predictors vary between
countries. While the proportion of people vaccinated at least once
is among the top 5 predictors in all analyzed countries, the
predicting power of the other top predictors are more varied.

We learned from different combinations of PDPs that
although the percentage of people vaccinated at least once is

FIGURE 2 |Covid-Predictor-Tracker Interface. Here, the interactive exploration page displays COVID-19 infections for Italy from 1 February 2020 till 13 June 2021,
as well as reported mask coverage, direct contact, and vaccination rates. The red bars represent periods with interventions in place to limit all indoor/outdoor mass and
public gatherings (Covid-Predictor-Tracker, Italy, 2020–2021).
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a powerful predictor in all countries, its effect on the change on
daily new cases is ambiguous. A higher percentage of vaccinated
people often goes with a moderate increase in the daily new
COVID cases. This association might occur due to the
emergence of new variants with different spread patterns
since the start of the vaccination period. At the same time
the other strong, but more dynamic predictor associated with
the vaccination, the percentage of newly vaccinated people
shows a negative effect of the vaccinations on the daily new
COVID-19 cases.

In many countries, such as in Italy and Slovenia, there is a
steady slowdown in the increase of daily new cases as
temperatures rise. In some other countries, for example in
Austria, Hungary and Germany, the association is more
staggered: the daily new cases start increasing strongly before
the average daily temperature reaches 10°C, see Figure 4. As the
average daily temperature reaches over 10°C, the increase of the
percentage of population recorded with new COVID-19 infection
is getting smaller in every country, showing a similar pattern as
flu spread [61].

The share of the Omicron variant (B1.1.529) is one of the top
5 predictors in every country (between 2/2020 and 1/2022),
except for some Eastern -and Central-European countries.
This can be explained by the short time between the
appearance of this variant and the end of our analysis. The
effect of new vaccinations is higher in countries with low
vaccination rates. These are countries with lower healthcare
expenditures and lower population size, namely the Balkan
countries, Czech Republic, and Slovakia. In these countries the
percentage of vaccinated people is 51.27%, while in the other
countries it is 76.52%.

The usage of protective masks is often among the top
predictors (in countries where usage varied), having a negative
effect on the daily new cases in most of the countries, both with
colder and warmer average daily temperatures (see Figure 5). A
higher percentage of reported usage of protective masks
combined with more new vaccinations also contributed to the

deceleration of the spread of COVID-19 in most countries, with
some exceptions such as France, Greece, and Ireland.

Effects of restriction measures on the daily new COVID
cases are more difficult to interpret because of their
dependence on the pandemic levels. Nevertheless, we
identified restrictive measures that had a negative effect on
the daily new cases. We found the closure of non-essential
shops, pubs, daycares, and primary schools to be associated
with the decline of the spread of the pandemic in most
countries. The importance of the closure of daycares and
primary schools was the highest in the Balkan countries.

Effects of Country Specific Characteristics
on the COVID-19 Infection Predictor
Importance Ranks
Figure 6 displays the effect of time-constant country
characteristics (like age, gender distribution, health
expenditure, and cultural participation) on the RF predictor
importance ranks on changes in the COVID-19 confirmed
daily new infections. The correlation of COVID-19 predictor
importance ranks between relevant country clusters and the
single countries within the clusters are high. The correlations
vary between 0.42 and 0.75.

The correlation is the weakest among the Nordic countries,
followed by the Balkan countries. In all other clusters the
correlation is middle/high. This means that the country
characteristics, which formed these country clusters, might
well determine the importance rank of a predictor in the
countries of these clusters in general, i.e., the order of the
variables that explain the virus spread.

DISCUSSION

Our main goal was to build one time series model and analyze the
relative effects of various country characteristics, NPIs and other

FIGURE 3 | Rank position of top 5 predictors across selected countries of the European Union, random forest time series model from Covid-Predictor-Tracker
(Covid-Predictor-Tracker, Selected countries of the European Union, 2020–2022).
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measures in the spread the COVID-19 infection. Most of the
COVID-19 studies investigate the effect of different lock-down
types [62, 63], vaccination and personal protective equipment
separately, while we incorporated them into one model among
many other predictors.

In line with our results, an observational study [64] shows the
superior effect of vaccination over lock-downs in Israel.
Conforming to our findings, high-rate mask usage is more
beneficial than lock-downs alone [65] and mask usage
precedes lock-down effects in a meta-analysis [66], though
Sharma [67] shows that in more specific conditions some
restrictions have greater effect than mask usage.

Strengths
The Covid-Predictor-Tracker online interactive visualization
tool belongs to the rare group of model-based analytical
dashboards, as Ivanković et al. [12] state, which incorporates
socioeconomic factors complementing COVID-19 predictors.
Though COVID-19 RF prediction is not novel (see for example
[13–15]), using this machine learning approach in a dashboard
is unique. Alali et al. [23] show the superior performance of the

inclusion of lagged data in machine learning models when the
method is applied to time series data. We went further and apart
from the inclusion of lagged data, we applied time series cross-
validation to consider information from past data in order to
improve our RF model.

The models and the interactive tool can help substantive
researchers to reveal a more detailed image of the effect of
country-level restriction measures. The open source code for
the Covid-Predictor-Tracker allows continuous updates to the
presentation and model, and with that allows continuous
monitoring of the evolution of the pandemic and the effects of
preventive measures. The effect of time-constant country
characteristics can also be examined.

Limitations
While the tool would allow us to do so, in this article we did not go
into specific country-level analyses, nor precise focus of the
included predictors is available compared to other analyses
focusing on a specific theme and geography like Fukumoto
et al. [68], who investigated the effect of school closures in
Japan on the spread of COVID-19.

FIGURE 4 | 2D partial dependence of average daily temperature on daily new COVID-19 cases in Slovenia, example for rather steady association and Austria,
example for staggered association (Covid-Predictor-Tracker, Slovenia, Austria, 2020–2022).
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To improve our predictions, some transformations of the
outcome variable (e.g., compound growth rate or growth curve
slope estimates [69]) could be studied. We ran our model
separately for each country and cluster but countries or

clusters could be considered using spatial models as well.
Statistical models such as Spatial Error Model, Spatial Lag
Model [70] or Geographically Weighted Regression, or its
extension into the machine learning approach, namely

FIGURE 5 | 3D partial dependence of mask coverage and average daily temperature on daily new COVID-19 cases in Sweden, 3D partial dependence of mask
coverage and new people vaccinated per hundred on daily newCOVID-19 cases in Germany fromCovid-Predictor-Tracker. The colors show the change in new cases in
percentage points for each combination of mask coverage and average daily temperature (Covid-Predictor-Tracker, Sweden, Germany, 2020–2022).

FIGURE 6 | Country clusters and strength of the correlation of Random Forest predictor importance ranks between clusters and countries within the clusters from
Covid-Predictor-Tracker (Covid-Predictor-Tracker, Selected countries of the European Union, 2020–2022).
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Geographically Weighted Random Forest [71] could be applied. The
latter one is a local nonlinear nonparametric regression model
considering topography, which integrates a spatial weight matrix
into RF. Competing machine learning applications [72] for our
research question might be Recurrent Neural Network and Long
Short Term Memory or Gradient Boosted Machine [19]. The data
about country-specific response measures have several limitations.
There are differences in the implementation of these measurements
between countries, for example in the enforcement of the restriction
measures or exceptions to them. Regional measures within a country
are not present in this dataset and delays in the implementation of the
response measures are also possible [5].

Conclusion
We found that the most important predictors of the daily new
COVID-19 cases in the EU include proportion of vaccinated
people, the spread of different variants, the average daily
temperature, self-reported COVID-like symptoms, and the use of
protective masks from 2/2020 to 1/2022. The effect of environmental
and behavioral factors, vaccinations, emergence of new variants, and
application of restrictive measures aiming to decelerate the spread of
COVID-19 do have different effects in different countries. These
predictors tend to have a more similar effect in countries with similar
characteristics with respect to population size, cultural participation,
healthcare expenditures, and population distribution by sex and age
group. The emergence of the Omicron variant resulted in the highest
increase in the Nordic countries and the Mediterranean. Moreover,
new vaccinations are the most beneficial in countries with lower
healthcare expenditures, and the effect of closing daycares and
primary schools on reducing the increment of daily new cases is
highest in the Balkan countries.
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