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Brain hierarchy score: Which deep
neural networks are hierarchically brain-like?

Soma Nonaka,1,4 Kei Majima,2,4 Shuntaro C. Aoki,2,4 and Yukiyasu Kamitani2,3,5,*

SUMMARY

Achievement of human-level image recognition by deep neural networks (DNNs)
has spurred interest in whether and howDNNs are brain-like. Both DNNs and the
visual cortex perform hierarchical processing, and correspondence has been
shown between hierarchical visual areas and DNN layers in representing visual
features. Here, we propose the brain hierarchy (BH) score as a metric to quantify
the degree of hierarchical correspondence based on neural decoding and encod-
ing analyses where DNN unit activations and human brain activity are predicted
from each other. We find that BH scores for 29 pre-trained DNNs with various ar-
chitectures are negatively correlated with image recognition performance, thus
indicating that recently developed high-performance DNNs are not necessarily
brain-like. Experimental manipulations of DNN models suggest that single-path
sequential feedforward architecture with broad spatial integration is critical to
brain-like hierarchy. Our method may provide new ways to design DNNs in light
of their representational homology to the brain.

INTRODUCTION

The design of deep neural networks (DNNs) is typically based on brain-like multi-stage hierarchical struc-

tures. DNNs have been reported to achieve human-level performance in some cognitive tasks, including

image recognition (Krizhevsky et al., 2012). The structural and behavioral similarities between DNNs and

biological brains have triggered investigation on howDNNs and biological brains are ‘‘functionally’’ similar.

A large number of studies have suggested that task-optimized DNNs acquire similar representations to

task-related brain regions. For example, neuronal responses in the inferior temporal (IT) cortex of monkeys,

which underlies object recognition, are predicted accurately by unit activation patterns of DNNs trained to

perform visual tasks (Cadieu et al., 2014; Khaligh-Razavi and Kriegeskorte, 2014; Yamins et al., 2014). DNN’s

activations can also successfully explain human functional magnetic resonance imaging (fMRI) responses

(Eickenberg et al., 2017; Guclu and van Gerven, 2015; Khaligh-Razavi and Kriegeskorte, 2014). Moreover,

recent studies have demonstrated hierarchical correspondence of representations or hierarchical homol-

ogy between DNNs and biological brains (Cichy et al., 2016; Guclu and van Gerven, 2015; Horikawa and Ka-

mitani, 2017). Horikawa and Kamitani (2017) reported that human fMRI responses to visual images can be

decoded (translated) into unit activations of a DNN (AlexNet) responding to the same images. The brain

areas that best predict unit activations in a DNN layer are reported to have gradually shifted from lower

(e.g., V1, V2, and V3) to middle and higher visual areas (e.g., V4, lateral occipital complex, fusiform face

area, and parahippocampal place area) as the target DNN layer shifts from lower to higher. This finding in-

dicates the functional similarity of the hierarchical representations between DNNs and biological brains.

Why is the functional similarity between DNNs and the brain important? Brain-like hierarchical representa-

tions have the potential to realize DNNs that exhibit more human-like behavior, and to overcome the

limitations of the current task-optimized DNNs. To design and train DNNs to develop hierarchical repre-

sentations similar to the human brain, DNNs are expected to share the feature spaces with the human brain

and emulate its internal information processing. Such DNNs would behave more similarly to humans than

DNNs trained to maximize the task performance. Potential advantages of the brain-like DNNs include

robustness against adversarial attack (Szegedy et al., 2014), generalizability across datasets with various

types of image distortion (Geirhos et al., 2019), and realistic behavior patterns as surrogates of humans.

In addition to the potential benefits of the development of DNNs, brain–DNN functional similarity mea-

surement may advance our understanding of the brain by providing better computational models (Yamins

and DiCarlo, 2016) or experimental tools generating optimal stimuli for neurons (Bashivan et al., 2019;
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Ponce et al., 2019). Thus, quantitative measures for evaluating how a given DNN has similar representations

to the brain and how the representations develop brain-like hierarchies may have a range of valuable

applications.

In a previous study (Schrimpf et al., 2018), the Brain-Score was proposed as a framework to quantitatively

measure the brain–DNN similarity of representations. The Brain-Score evaluates how accurately neuronal

responses in primate visual areas were predicted from DNN unit activation patterns. This previous study

systematically compared the similarities between various DNNs for image recognition and representations

in middle and higher visual areas (V4 and IT cortex), reporting a positive correlation between object clas-

sification accuracy on the ImageNet dataset (i.e., ImageNet top-1 accuracy) and Brain-Score across 69

DNNs. However, this correlation was absent for more recently developed high-performance DNNs

(DNNs with R70% accuracy), suggesting that performance improvement does not necessarily lead to

brain-like DNNs. Although the Brain-Score captures the similarity of representations between DNNs and

individual brain areas, it does not evaluate hierarchical homology across layers/brain areas between

DNNs and the brain. Becausemultistage hierarchical processing is considered to play a vital role in percep-

tion and cognition, quantitative evaluation of the brain–DNN hierarchical homology may provide a sensi-

tive comparison of functional similarity between DNNs and the human brain.

In the current study, to quantitatively evaluate the degree of brain–DNN hierarchical homology across

DNN layers and cortical areas, we propose a metric called the brain hierarchy (BH) score. The BH score

is designed to capture the extent to which DNN layers of a given DNN are aligned with the hierarchy of

the brain. To evaluate the hierarchical correspondence between DNN layers and brain regions, we used

decoding and encoding approaches. To compute the decoding-based BH score, we characterize individ-

ual DNN units by decoding analysis where unit activations of DNNs are predicted from brain activity (Hori-

kawa and Kamitani, 2017). We predict the activation of each unit from fMRI responses in one of five brain

areas (regions of interest; ROIs) covering the ventral visual pathway (V1, V2, V3, V4, and higher visual cortex

[HVC]), then identify the ROI showing the highest decoding accuracy among the five ROIs (hereafter

referred to as the ‘‘top ROI’’; Figure 1A). The decoding-based BH score is defined as the Spearman rank

correlation coefficient between the layer number and the top ROI across units in the given DNN (Figure 1A).

When the top ROIs of DNN units monotonically increase with respect to their layer number in a given DNN,

the DNN shows the highest score. As a complementary measure, by exchanging DNN layers and brain

areas, the encoding-based BH score is also calculated based on encoding models that predict fMRI voxel

values from DNN unit activities (Figure 1B). Unless stated otherwise, the average of those two measures is

reported as the BH score. Although many previous studies relied on the encoding approach to detect

brain–DNN similarities, the decoding approach provides a complementary evaluation and allows for

straightforward characterizations of individual units in a DNN by explaining/predicting the unit activations

by brain activity patterns. Thus, we discuss the hierarchical correspondence in each DNN by looking at how

the distribution of each DNN unit’s top ROI shifts across the hierarchical layers.

Using the BH score and the distributions of the top ROIs for DNN units in each layer, we examine the de-

gree of hierarchical similarity to the brain in 29 representative DNNs that were pre-trained on an object

classification task, including AlexNet, the VGG family, the ResNet family, the DenseNet family, and the

Inception family (see STAR Methods: ‘‘Deep neural networks’’ and Table 1). Note that, unlike Schrimpf

et al. (2018), we focused on DNNs with high performance in the ImageNet large scale visual recognition

challenge (more than 70% accuracy). DNNs with the same architectures and random weights are also stud-

ied to examine the effects of training. We investigate the correlations between BH scores and ImageNet

top-1 accuracy to determine whether high-performance DNNs are hierarchically more brain-like, while

testing the robustness of the BH score and the relationship with other measures of brain–DNN similarity.

We then seek to identify architectural characteristics of DNNs associated with the degree of hierarchical

homology. We focus on five representative components of DNN architecture: the presence of fully-con-

nected (FC) layers, the presence of branch-connections, the presence of skip-connections, the number

of DNN layers, and the number of weight parameters. These architectural components are compared

with BH scores among the 29 pre-trained DNNs. Then, some of the components are experimentally manip-

ulated to evaluate the effects on BH scores in trained DNNs with the rest of the architectures being iden-

tical. The code and the fMRI data to compute the BH score for novel DNNs are provided for public use at

repositories (see STAR Methods: ‘‘Data and code availability’’).
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RESULTS

Brain hierarchy score

The brain hierarchy (BH) score is designed to evaluate a deep neural network (DNN) for object recognition

in terms of the hierarchical similarity to the human brain by determining the correspondence between DNN

layers and visual cortical areas (regions of interests, ROIs) through decoding and encoding analyses. To

consider hierarchical representations of DNNs, we included representative layers of each DNN in the anal-

ysis: the first layer, the last fully-connected (FC) layer (referred to as the ‘‘category layer’’ in the current

study), the other FC layers, convolutional layers that do not belong to submodules (i.e., convolutional-

block, skip-block, or branch-block), and the output layers of submodules. To treat DNN layers with and

without submodules in a consistent manner, we used the output layers of submodules and excluded the

internal layers inside those submodules in the computation of the BH score. Hereafter, ‘‘layer’’ refers to

the representative layer, unless otherwise stated. The layers in each DNN are numbered from input to

output. Each DNN unit is labeled by the layer number it belongs to. The brain ROIs include V1, V2, V3,

V4, and a combined region of ventral object-responsive areas (higher visual cortex [HVC]; see STAR

Methods: ‘‘Region of interest’’), and each is assigned an ROI number: V1 (1), V2 (2), V3 (3), V4 (4), and

HVC (5).
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Figure 1. Evaluation of hierarchical homology

(A) Decoding-based brain hierarchy (BH) score. To characterize individual deep neural network (DNN) units using human

functional magnetic resonance imaging (fMRI), the responses of each DNN unit given natural images were predicted

(decoded) from the fMRI responses to the same images in each of five ROI in the visual cortex. The ROI showing the best

decoding accuracy (top ROI) was assigned to the unit (left). The decoding-based BH score was evaluated using the

Spearman rank correlation between the layer and the top ROI numbers (right). When DNNs to be compared have

different number of layers, we randomly subsampled five layers, and calculated the mean BH score across random

selections. The units that were not predicted by any of the ROIs above a statistical threshold were excluded from the

computation of the BH score.

(B) Encoding-based BH score. We defined encoding-based BH score by exchanging DNN units and fMRI voxels. We

predicted each fMRI voxel responses from activities of DNN units given natural images. The layer showing the best

encoding accuracy (top layer) was assigned to the fMRI voxel (left). The encoding-based BH score was defined by the

Spearman rank correlation between the ROI and top layer numbers (right).
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Here we describe in detail how to calculate BH scores based on decoding of DNN’s unit activation from

fMRI signal patterns in each brain area (decoding-based BH score; Figure 1A). The encoding-based BH

scores were obtained by the same procedure but swapping units in the DNN and voxels in the fMRI

data. For each DNN unit, we identified the ROI with the best linear decodability (i.e., the ROI whose func-

tional magnetic resonance imaging [fMRI] voxel pattern can best predict the DNNunit activity using a linear

decoder given the same input image) which we refer to as the ‘‘top ROI.’’ DNN units that were poorly pre-

dicted from any of the ROIs were excluded in later analyses to improve sensitivity of the BH score to the

hierarchical representations (see STARMethods: ‘‘Brain hierarchy score’’ for details). For the first DNN layer

in which linear spatial filtering is performed, the absolute values of the raw unit activations were used as

targets for decoding, because fMRI signals are known to be sensitive to deviations from baseline luminance

but not luminance itself, even at V1, presumably reflecting complex cell-like early nonlinear processing

(Haynes et al., 2004; see STARMethods: ‘‘Decoding analysis’’). We used the unit selection and the first layer

nonlinearity as default settings. We discuss how these settings affected BH scores in a later section.

Repeating the procedures for the DNN units used in the decoding analysis, we obtained the distributions

of the top ROIs for each layer for visualization (Figure S1). If a DNN has hierarchical representations that are

similar to those of the brain, the distribution of top ROIs should gradually shift from lower to higher cortical

areas as the DNN layer increases.

Table 1. 29 deep neural networks compared in the current study

Model

ImageNet top-1

accuracy (%) Full-connection Skip-connection Branch-connection Depth

# Of weight

parameters

AlexNet 57 U – – 8 61M

VGG-16 71 U – – 16 138M

VGG-19 72 U – – 19 143M

VGG-F 59 U – – 8 61M

VGG-M 63 U – – 8 103M

VGG-S 63 U – – 8 103M

ResNet-18 70 – U – 18 12M

ResNet-34 73 – U – 34 22M

ResNet-50-v2 76 – U – 50 26M

ResNet-101-v2 77 – U – 101 45M

ResNet152-v2 78 – U – 152 60M

DenseNet-121Net-121 75 – U – 121 8M

DenseNet-161 78 – U – 161 29M

DenseNet-169 76 – U – 169 14M

DenseNet-201 77 – U – 201 20M

Inception-v1 70 – – U 22 6M

Inception-v2 74 – – U 34 11M

Inception-v3 78 – – U 48 27M

Inception-v4 80 – – U 76 46M

Inception-ResNet-v2 80 – U U 136 59M

CORnet-Z 48 – – – 5 2M

CORnet-R 56 – – – 9 5M

CORnet-S 75 – U – 12 53M

SqueezeNet-1.0 58 – – – 18 1M

SqueezeNet-1.1 58 – – – 18 1M

MobileNet-v2-1.4-224 75 – U – 51 7M

NASNet-Mobile 74 – U U 34 5M

NASNet-Large 83 – U U 46 89M

PNASNet-Large 83 – U U 46 86M
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The decoding-based BH score quantifies this gradual shift of top ROIs, exhibiting a high value if the distri-

bution monotonically shifts with the layer number, and a low value if 1) the peak does not monotonically

shift or 2) the distribution is flat or multimodal with highly variable top ROIs at each layer. Because the num-

ber of layers differs across DNNs and brain ROIs could be delineated differently, a linear relationship would

not be expected between the layer and ROI numbers. Thus, we used the Spearman rank correlation be-

tween the layer and ROI numbers, measuring the degree of the monotonic relationship between the

two variables.

The decoding-based BH score is defined by the Spearman rank correlation coefficient between the layer

number and the top ROI number across DNN units. To compute the score, we sorted the values of variables

in descending order and assign their positions in the rankings to them. When tied values (i.e., identical rank

position) were present in the data, their mean position was assigned. The assigned values are called the

fractional ranks. In this study, we denote the fractional ranks of the layer number and the top ROI number

of the i-th DNN unit by f Layeri and f ROI
i ði = 1;.; IÞ, respectively. The score was then computed using the

Spearman rank correlation coefficient between the layer number and the top ROI number, which is ex-

pressed using their fractional ranks as follows:

BH score =

PI
i = 1

�
f Layeri � mLayer

��
f ROI
i � mROI

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPI

i =1

�
f Layeri � mLayer

�2
r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPI

i = 1

�
f ROI
i � mROI

�2
r ;

where, mLayer and mROI are the means of ff Layeri gIi = 1 and ff ROI
i gIi = 1, respectively. This measure is based on the cor-

relation calculated with individual units, not just on the peaks of the distributions. Therefore, we took the vari-

ability in the distribution into account so that highly fluctuating top ROIs in each layer lead to low BH scores.

Randomly selected 1000 units per layer were used in the decoding analysis. The remaining DNN units after

excludingpoorly predictedoneswereused. Tomatch the number of layers used to compute theBHscore across

DNNs, we computed the score with the first, last, and randomly selected three intermediate layers. The random

layer selection and BH score computation were repeated 10,000 times, and the mean score is reported.

A complementary evaluation can be performed with encoding analysis by exchanging fMRI voxels and

DNN units in BH score computation (Figure 1B). In the encoding analysis, we identified the DNN layer

with the best encoding accuracy for each fMRI voxel (top layer). The encoding-based BH score is defined

by the Spearman rank correlation coefficient between the ROI number and the top layer number across

fMRI voxels. We mainly report the average of the decoding-based and encoding-based BH scores, while

we examine the consistency between these two metrics.

In the current study, we performed the decoding and encoding analyses using fMRI data collected by Shen

et al. (2019) (see STARMethods: ‘‘fMRI dataset’’). This dataset is composed of fMRI activity of three subjects

viewing 1250 natural object images from ImageNet (2011, fall release; Deng et al., 2009). fMRI responses to

1200 and 50 natural object images were separately used as training and test data for the decoders. The top

ROIs were computed using fMRI data from individual subjects separately. Thus, the BH score could be

computed using the fMRI data from each subject. We report the consistency of BH scores across the three

subjects. Unless stated otherwise, we calculated the Spearman rank correlation coefficient by pooling all

top ROIs across three subjects.

Comparison of BH scores across DNNs

We compared BH scores between 29 representative DNNs (Table 1). All DNNs were pre-trained to classify

1000 object categories on ImageNet (Deng et al., 2009). In the decoding analysis, these DNNs showed

different tendencies in their distribution of top ROIs of DNN layers (Figure 2; also see Figure S1). For

example, DNNs with FC layers (e.g., AlexNet; Krizhevsky et al., 2012 and the VGG family) (Figure S1)

show a clear gradual shift of top ROI distributions from lower to higher visual areas along with the hierarchy

of DNN layers. Unit activations in early convolutional layers were better predicted from the lower visual

areas, those in late convolutional layers were better predicted from V3, and those in the FC layers were bet-

ter predicted from V4 or HVC. This gradual hierarchical correspondence between the DNN layers and the

visual cortical areas led to high BH scores (e.g., BH score = 0.42 for AlexNet). Inception-v1 (Szegedy et al.,

2014), which consists of blocks with branch-connections (inception module), shows flat distributions of top

ROIs. Similar flat distributions are also observed in other DNNs with branch-connections (e.g., the
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Inception family, NASNet [Zoph et al., 2018] and PNASNet [Liu et al., 2018]; Figure S1). Although the top

ROI distributions in the category layers show a clear peak at HVC, the flat distributions in the other layers

obscure the gradual shift along the hierarchy of DNN layers, resulting in low BH scores (e.g., BH score =

0.27 for Inception-v1). One possible reason for the flattened distributions of top ROIs is that different sizes

of convolution and pooling operations are parallely applied in branch-connections, and DNN units corre-

sponding to different brain areas that tend to co-exist within the individual layers. In DNNs with

AlexNet:
BH score = 0.42

Inception-v1 :
BH score = 0.26
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BH score = 0.14

NASNet-Large:
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Figure 2. Top ROI distributions and BH scores for representative DNNs

The distributions of top ROIs for each layer of AlexNet, Inception-v1, ResNet-152-v2, and NASNet-Large are shown with

schematics of their architectures. Histograms are normalized for each layer by the total number of counted DNN units. To

match the number of layers used to calculate the BH score across DNNs, BH scores were computed by randomly choosing

five DNN layers. The mean BH scores across 10,000 random selections are shown above.
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skip-connections (residual module) such as ResNet-152-v2 (He et al., 2015), NASNet-Large (Zoph et al.,

2018), and variants of these DNNs (e.g., the DenseNet family and PNASNet-Large [Liu et al., 2018]), the

peaks of top ROI distributions non-monotonically swing between V1 and V3. Despite the peak of HVC at

the category layers, these swinging peaks in the other layers disrupted the gradual shift of top ROI

distribution along the hierarchy and led to low BH scores (e.g., 0.14 for Resnet-152-v2 and 0.17 for

NASNet-Large; Figure S1). This tendency may be caused by bypassing of representations via skip-

connections: representations similar to lower visual areas are bypassed from lower to higher DNN layers

via the skip-connections, and the higher layers tend to include units that are well predicted from fMRI

responses in the lower visual areas. In the encoding analysis, the DNNs exhibited consistent tendencies

in the distribution of top layers of each brain region (Figure S6).

By comparing these 29 DNNs, we found that DNNs with simple architecture (e.g., AlexNet, the VGG family,

and the CORnet family) exhibited relatively high BH scores (Figure 3). In contrast, DNNs with elaborate ar-

chitecture and high image recognition performance, such as the DenseNet family, the ResNet family, and

the Inception family, showed low BH scores. BH scores were negatively correlated with the ImageNet top-1

accuracies across the DNNs (Figure 3; r = �0.73, permutation test, p < 0.01), indicating that high-

performance DNNs are not brain-like if hierarchy is considered.

To examine whether this negative correlation is robust to the measurement of image recognition perfor-

mance, we evaluated DNNs’ image recognition accuracies on image datasets other than ImageNet:

Caltech-101 (Fei-Fei et al., 2007) and Caltech-256 (Griffin et al., 2007). Amultinomial logistic regression clas-

sifier was trained using the second last layer of each DNN as input. The classifiers were trained and tested

with the training and test data of each dataset. BH scores were also negatively correlated with image recog-

nition accuracy evaluated on Caltech-101 data and that evaluated on Caltech-256 data (Figure S2).

To examine whether training is necessary for DNNs to yield brain-like hierarchical representations, we

compared the degree of hierarchical homology between trained and untrained (i.e., with random weights)

VGG-S
CORnet-R

VGG-F
AlexNet
VGG-M
VGG-19
VGG-16

ResNet-18
CORnet-S
ResNet-34

SqueezeNet-1.0
SqueezeNet-1.1

DenseNet-121
DenseNet-161
DenseNet-201
DenseNet-169

CORnet-Z
Inception-v1
Inception-v2

Inception-ResNet-v2
PNASNet-Large
NASNet-Mobile

MobileNet-v2-1.4-224
ResNet-50-v2

NASNet-Large
ResNet-101-v2

Inception-v3
ResNet-152-v2

Inception-v4

0.43
0.42
0.42
0.42
0.41
0.4

0.38
0.38
0.38
0.37

0.34
0.3

0.28
0.28
0.28
0.27
0.27
0.26

0.24
0.22
0.21
0.21
0.21

0.19
0.17
0.16

0.14
0.14

0.10

BH score Brain-to-Brain
(0.59)

50 60 70 80 90
ImageNet top-1 accuracy (%)

0.0

0.1

0.2

0.3

0.4

0.5

B
H

sc
o

re
CORnet-Z

SqueezeNet-1.0

NASNet-Mobile

Inception-v4

VGG-S

ResNet-18

r = −0.73

AlexNet

DenseNet-169

Figure 3. BH scores and ImageNet top-1 accuracies

BH scores and ImageNet top-1 accuracies. The BH scores for the 29 DNNs are shown in the descending order of the BH

scores. The brain-to-brain score was calculated by predicting fMRI voxel activities from those of other subjects (0.59),
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versions of the 29 DNNs. To construct untrained DNNs, we used randomly initialized weights provided in

the original implementation of the DNNs. Overall, the untrained DNNs exhibited lower BH scores than

DNNs trained on ImageNet (Figure 4). The monotonic shift of the distribution of the top ROIs along the

hierarchy of DNN layers was deteriorated by replacing DNN’s trained weights with random values (Fig-

ure 4A). The unit activations in the untrained DNNs were less predictable, particularly in higher layers

(e.g., layers 6 and 7, and the category layer in AlexNet), from the fMRI responses in higher visual areas

(V4 and HVC) compared with those in the trained DNNs. This effect resulted in flattened, middle ROI-

peaked, or lower ROI-peaked distributions of the top ROIs in each layer, and degraded the BH scores of

DNNs with random weights. Similar degradation of BH scores was observed in the majority of tested

DNNs (Figure 4B). The results indicate that hierarchical homology of DNNs to the brain does not arise

only from their architectures, but also requires training with image data.

Robustness of the BH score

We defined the BH score based on several optional choices of procedures. Here we consider the robust-

ness of the BH score to some of these choices. In the calculation of the BH score, we excluded DNN units

whose decoding accuracies did not exceed a predefined threshold for any ROIs (student’s t-test, p < 0.05).

On average, 42.9% of DNN units were excluded by this procedure. We computed BH scores without this

unit exclusion and compared them with the original BH scores (Figure S3A). BH scores with and without

unit selection were highly correlated across the 29 DNNs (r = 0.91). In addition, we found highly correlated

scores when raw unit activations were used instead of absolute values for the first layer (Figure S3B, r =

0.98). Although the scores with and without these procedures were strongly correlated, the original BH

scores tended to take a wide range of values, indicating that these procedures are effective in detecting

monotonic shifts with more sensitivity.

We also examined the consistency of BH scores across fMRI data from individual subjects. We computed

BH scores using fMRI data for each subject, and found that similar scores were observed across subjects

(Figure S4). The results suggest that the BH score does not depend on the particular brain used for

calculation.

We examined whether similar comparison results were consistently observed with each of the decoding

and encoding analyses. Here, we computed the BH score based on either decoding or encoding
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analysis, and those two measures were compared (Figures S5 and S6). The decoding-based BH

scores were positively correlated with the encoding-based BH scores (Figure S5; r = 0.54). Both scores

were also negatively correlated to ImageNet top-1 accuracies (r = �0.72 [decoding] and r = �0.47

[encoding]). Although these measures do not perfectly agree, the overall tendency is similar and the rela-

tion to the ImageNet top-1 accuracies appears to be robust regardless of the choice of the analysis

method.

To further characterize the difference between the encoding and decoding approaches, we performed

post-hoc analyses to see what proportion of fMRI voxels and DNN units effectively contribute to the decod-

ing- and encoding-based BH scores. First, we obtained the proportion of significantly predicted DNN units

and fMRI voxels that were included in the calculation of decoding-based and encoding-based BH scores,

respectively (see STAR Methods: ‘‘Decoding analysis’’ and ‘‘Encoding analysis’’; Figure 5). In the decoding

analysis, 56.93% of DNN units on average showed significantly higher than chance-level prediction accu-

racy. In the encoding analysis, a similar proportion of the units (58.97%) showed significantly higher than

chance-level prediction accuracy.

Next, we examined the proportion of input features, fMRI voxels in decoding and DNN units in

encoding, that were selected for prediction of at least one of their target variables (see STAR

Methods: ‘‘Decoding analysis’’ and ‘‘Encoding analysis’’). In our main analyses, we selected 500 voxels/

units that were most correlated with each target variable (see STAR Methods: ‘‘Feature

importance analysis’’). In the decoding analysis, almost all the voxels were selected in at least one of

the predictions regardless of target DNNs. In contrast, a limited portion of DNN units were selected

from at least one of the predictions in the encoding analysis. Although the proportion of selected units

varied across DNNs, overall a majority of DNN units were not selected for any of the predictions of voxel

activations (Figure 6). Qualitatively similar results were observed with different selection thresholds and

criteria.
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The encoding-based BH scores showed a weaker negative correlation with ImageNet top-1 accuracies than

the decoding-based scores. A post-hoc analysis revealed a lower correlation between subjects in the en-

coding-based BH scores than in the decoding-based BH scores (Figure S4). This lesser consistency across

subjects might reduce the correlation between the encoding-based BH score and ImageNet top-1

accuracy.

We have used the BH scores calculated with sets of randomly selected 5 DNN layers to match the number

of layers across DNNs.We examined whether similar results could be obtained even when we excluded this

procedure. We computed BH scores without layer selection and compared them with our original BH

scores. The rank correlation between those two types of BH scores across the 29 DNNs was 0.91, indicating

that the BH score ranking was not much affected by layer selection.

We examined whether the BH score depends on our choice of ROIs. Specifically, our definition of HVC in-

cludes the large portion of the ventral visual cortex, summarizing the finer architecture and potentially

underestimating the hierarchical correspondence to DNN layers. Thus, we tested whether dividing HVC

affects the BH score. Because it is difficult to define a hierarchical order between the subregions delineated

by the conventional functional anatomy, we employed a data-driven approach: we divided HVC into three

regions based on the principal gradient defined by functional connectivity of resting-state activity (Margu-

lies et al., 2016; see STARMethods: ‘‘Region of interest’’) and calculated BH scores with 7 ROIs (e.g., V1, V2,

V3, V4, HVC-1, HVC-2, and HVC-3). The BH scores with 7 ROIs were highly correlated to those with 5 ROIs

across the 29 DNNs (Figure S7A, r = 0.98), and negatively correlated to ImageNet top-1 accuracy (Fig-

ure S7B, r = �0.73). Although the top ROI distributions at the category layers tended to peak at HVC

with 5 ROIs, they peaked at HVC-1 with 7 ROIs, not at HVC-2 or -3 (Figure S8). This suggests that the cate-

gory layers in the DNNs we tested have similar representations to the lower portion of HVC, and that the

subdivision of HVC does not improve the hierarchical correspondence to the DNNs.
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We also applied the principal gradient as a measure of data-driven parcellation of the entire ventral visual

cortex we used in this study. We divided the visual cortex into 5 or 10 ROIs based on Gradient1 of the prin-

cipal gradient (see STAR Methods: ‘‘Region of interest’’) and calculated BH scores with the 5 or 10 ROIs.

However, the BH scores had substantially small values regardless of the number of ROIs (r = 0.04 G 0.04

for 5 ROIs and r = 0.02 G 0.06 for 10 ROIs; averaged over 29 DNNs). The result suggests that the principal

gradient does not necessarily allow us to investigate a detailed hierarchical correspondence in the visual

cortex whereas it is effective in capturing a global hierarchy of the entire cortex.

Measurement modality of brain activity

The Brain Score study (Schrimpf et al., 2018) and our current study employed brain data obtained by

different measurement methods: electrophysiological recordings from monkeys and fMRI from humans.

To examine whether the measurement modality is critical to the evaluation of brain-DNN similarity, we

performed an encoding analysis similar to the previous studies (Schrimpf et al., 2018; Yamins et al., 2014;

Yamins and DiCarlo, 2016) on our fMRI data. In accordance with the brain regions examined in the pre-

vious studies, we selected V4 and HVC for this encoding analysis. The responses of individual voxels in V4

and HVC were predicted from the activations of DNN units in each DNN (Figure 7; STAR Methods: ‘‘En-

coding analysis’’). Consistent with the previous finding, we observed a positive correlation between Im-

ageNet top-1 accuracy and encoding accuracy across DNNs (r = 0.76 for V4; r = 0.68 for HVC). The results

suggest that electrophysiology and fMRI provide a similar evaluation of brain-DNN similarity in individual

areas.

Similarity between DNNs and single brain regions

Recent studies have used representational similarity analysis to evaluate the similarity between a DNN and

human IT using fMRI, reporting a negative correlation between the representational similarity to human IT

and ImageNet top-1 accuracy across DNNs (r = �0.47 in Jozwik et al. (2019) and r = �0.38 in Storrs et al.

(2020)). We replicated the results using fMRI data in the current study (r =�0.57; Figure S9). Although these

results are based on individual brain areas, not hierarchy, the lower similarity of high-performance DNNs to

the higher visual areas (human IT or HVC) might contribute to poor hierarchical correspondence, account-

ing for the negative correlation between BH scores and image recognition performance. However, it re-

mains unclear why representational similarity and predictive (encoding or decoding) accuracy exhibited

opposite correlations to image recognition performance when measured in individual areas.

BH scores and DNN architectural components

What components of architecture are critical for brain-like hierarchical representations in DNNs?We exam-

ined how BH scores are explained by five representative components of DNN architectures: the presence
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(A) fMRI V4 encoding accuracy and ImageNet top-1 accuracy. Responses of individual voxels in V4 were predicted from

unit activations of each DNN. The mean prediction accuracies (encoding accuracies) across the voxels are plotted against
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(B) fMRI higher visual cortex (HVC) encoding accuracy and ImageNet top-1 accuracy. The mean encoding accuracies for

HVC are plotted against the ImageNet top-1 accuracies.
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of FC layers, the presence of skip-connections, the presence of branch-connections, the total number of

convolutional and FC layers (i.e., depth), and the number of weight parameters. Note that to define the

depth of a DNN, we counted not only the representative layers but also those not used in the computation

of the BH score. For the first three components, we compared the mean BH score between the presence

and the absence of each component. Correlations with the BH score were calculated for the depth and

weight parameters. Because only two DNNs (CORnet-R and CORnet-S) had recurrent connections among

the DNNs we tested in the current study, the difference owing to the presence of recurrent connections was

not quantitatively examined (BH scores for CORnet-R and CORnet-S are 0.44 and 0.41, which is relatively

high among the tested DNNs).

DNNs with FC layers exhibited markedly higher BH scores than those without FC layers (d’ = 3.07 [d-prime:

the mean difference normalized by the standard deviation]; Figure 8A), whereas those with skip-connec-

tions and branch-connections showed moderately lower BH scores: d’ = �0.78 for skip-connections and

d’ = �1.23 for branch-connections (Figure 8A). We also found a negative correlation between BH scores

and depth (r = �0.47; Figure 8B), and a weak positive correlation between BH scores and the number of

weight parameters (r = 0.26; Figure 8B). Complementary regression analysis, in which BH scores were

modeled as a linear weighted sum of variables parameterizing the five components, also indicated a

greater contribution of the presence of FC layers compared with the other components (Figure 8C).

How do FC layers contribute to the high degree of hierarchical homology? As an example, in AlexNet, the

distributions of top ROIs for FC layers have peaks at HVC (Figure 9A), leading to a large shift in distribution.

To examine whether this tendency is consistently observed for other DNNs with FC layers, we computed
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(A) Comparison between DNNs with and without fully-connected (FC) layers, skip-connections and branch-connections.
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(B) Relationship to DNN depth and the number of weight parameters. Each dot denotes individual DNNs.

(C) Regression analysis. A linear regression model was fitted to explain the BH score with five architectural components.

The resultant standardized regression coefficients are shown for each component.
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the mean top ROI number of each layer and plotted it as a function of the layer number for the 29 DNNs

(Figure 9B). Whereas the mean top ROI numbers in the higher layers shifted up to higher visual areas in the

DNNs with FC layers, the shift stopped at mid-level visual areas in DNNs without FC layers.

Experimental manipulation of DNN architecture

To complement the observations from pre-trained DNNs described above, we experimentally manipu-

lated DNN architectures in a base DNN, AlexNet consisting of five convolutional layers, two fully-con-

nected (FC) layers, and one category layer without skip- or branch-connections. We created these variants

of the base DNN and compared their BH scores. These DNNs were trained on the same ImageNet dataset.

First, we manipulated the number of FC layers from zero to five while maintaining the other architectural

characteristics (STAR Methods: ‘‘Manipulation of DNN architecture’’). The DNNs with 0, 1, 2, 3, 4, and 5

FC layers achieved 0.55, 0.57, 0.56, 0.51, and 0.46 ImageNet top-1 accuracies, respectively. The DNN

with no FC layers showed a gradual shift of the top ROI distribution up to the second last layer, but had

a relatively large gap between the second last layer and the last layer (Figure 10A). In contrast, in DNNs

with one, two, or three FC layers, the top ROI distribution gradually shifted over the layers. With even

more FC layers, the shift of top ROIs over the convolutional layers became less gradual, and the last con-

volutional layer and the first FC layer exhibited a large gap. Thus, the BH score was highest at the DNNs

with two FC layers (Figure 10B).

The effect of FC layers on the BH score was also tested for DNNs with different base architectures (i.e., Re-

sNet-based and Inception-based DNNs). The DNNs with two FC layers also had higher BH scores than

DNNs with no FC layers for both ResNet-based DNNs (0.41 for two FC layers and 0.38 for zero FC layers)

and Inception-based DNNs (0.41 for two FC layers and 0.39 for zero FC layers). In our comparison of the 29

pre-trained DNNs, all of the DNNs with FC layers (i.e., AlexNet and the VGG family) had two FC layers. This

moderate number of FC layers is likely to have produced high BH scores.

To examine the effect of the number of FC layers in terms of the similarity to single brain regions, we also

compared encoding accuracy for each brain area across the DNNs with different numbers of FC layers (see
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(A) The distributions of top ROIs for AlexNet. The distributions for the FC layers are shown in red.

(B) The mean top ROI across all layers for the 29 DNNs. For each DNN, we computed the mean of the distribution of each

layer except for the last layer, and plotted it as a function of the depth of the DNN layer. The DNNs with FC layers are

colored, while the DNNs without FC layers are shown in grey. The depth of the DNN layer has been rescaled for

visualization purposes.
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‘‘Similarity between DNNs and single brain regions’’ for methods). Although the DNN with 2 FC layers

showed the highest BH score (Figure 10B), the DNNs with the best encoding accuracy differed depending

on the predicted brain area: higher brain areas tended to be better explained by the DNNs with larger

numbers of FC layers (Figure S10). This result indicates a dissociation between hierarchical homology

captured by the BH score and the similarity to single brain regions.

Convolutional layers and FC layers differ in twomain aspects: kernel size and the number of channels. While

each unit in an FC layer has connections from all units in the previous layer, units in convolutional layers have

spatially limited connections. The spatial range of connections allowed in a convolutional layer is specified

by the kernel size. In addition, the number of channels is generally different between convolutional layers

and FC layers. The number of channels in an FC layer is typically set to several thousand, whereas that in

convolutional layers is set to several hundred. To examine which component is critical for explaining

high BH scores of DNNs with FC layers, we tested how each component in FC layers affected the BH score.

To examine the effects of kernel size, we constructed a DNN with six convolutional layers and one category

(fully-connected) layer, and manipulated the kernel size of the last convolutional layer from one to six (Fig-

ure 11A; see STAR Methods: ‘‘Manipulation of DNN architecture’’). When the kernel size of the DNN is six,

each unit in the last convolutional layer has connections from all units in the second last layer. In other words,

the last convolutional layer of this DNN is equivalent to an FC layer. By changing this kernel size systematically,

we examined how the BH score and the representation of this layer changed depending on this parameter. As

the kernel size became larger, the BH score increased (Figure 11B) and the distribution of top ROIs for the last

convolutional layer was centered at higher visual areas with some fluctuations (Figure 11C).

We also tested how other architectural characteristics (i.e., presence of skip-connections, presence of

branch-connections, and depth) affect the BH score by manipulating either of them in base DNNs (AlexNet

for the presence of skip- or branch-connections and VGG-16 for depth; STAR Methods: ‘‘Manipulation of

DNN architecture’’). Skip- and branch-connections were introduced by replacing convolutional layers with

residual blocks of ResNet-18 and inception modules of Inception-v1, respectively. The depth was manip-

ulated by inserting additional convolutional layers. Note that the additional convolutional layers were not

included in the calculation of BH scores. Because the number of weight parameters could not be changed

independently, it was not considered here.

Consistent with the tendency among the 29 pre-trained DNNs, the distributions of top ROIs for DNNs with

skip-connections and branch-connections were relatively flat compared with the base DNN. In addition,
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(A) Eight-layer DNNs with different numbers of FC layers were trained on ImageNet (see STARMethods: ‘‘Manipulation of

DNN architecture’’ for the details of the architectures). Their top ROI distributions are shown. FC layers are indicated in
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the top ROI distributions for the DNN with skip-connections did not monotonically shift from lower to

higher visual areas: the centroid of the distribution shifted to higher visual areas at layer 2, then back to

lower areas at layer 3 (Figure 12A). As a result, those DNNs showed slightly lower BH scores than the

base DNN without them (Figure 12B). When the depth was manipulated, BH scores of deeper DNNs

tended to be higher with sharper peaks (Figures 12C and 12D).

DISCUSSION

In the current study, we presented a method for quantifying the hierarchical similarity between the human

brain and deep neural networks (DNNs) and its applications in an attempt to elucidate the characteristics

that make DNNs hierarchically brain-like. We characterized individual DNN units by their best decodable

visual areas (top ROIs) in fMRI decoding analysis and quantified the correspondence of hierarchical

representations between the brain and DNNs. The distributions of top ROIs revealed differences in the

hierarchical transformation of representations between DNNs (Figure 2). We also performed similar

characterization by exchanging the DNN units and fMRI voxels (i.e., encoding analysis). By combining the

results of the decoding and encoding analyses, our proposed metric, i.e.,the brain hierarchy (BH) score,

was negatively correlated with image recognition performance across DNNs (Figure 3), suggesting that

high-performance DNNs are not necessarily brain-like. This negative correlation with image recognition

performance was consistently observed with different image datasets (Figure S2). The omission of training

decreased BH scores of the DNNs (Figure 4), indicating the importance of DNN training for hierarchical ho-

mology with the human brain. The BH score was robust to optional choices about the unit selection and the

processing of unit activations in the first layer (Figure S3). Complementary encoding analysis also provided

similar comparison results across DNNs (Figures S5 and S6). By comparing DNNs with different architec-

tures, we identified architectural characteristics that were associated with the degree of hierarchical homol-

ogy (Figure 8). DNNs with fully-connected (FC) layers exhibited higher BH scores, and DNNs with skip- and

branch-connections exhibited lower BH scores by smaller margins. DNNs with FC layers gradually devel-

oped internal representations from those similar to lower visual areas to those similar to higher visual areas,

whereas DNNs without FC layers lacked layers whose representations were similar to higher visual areas

(Figure 9). This observation was also confirmed by a manipulation experiment (Figure 10). Additional
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(A) We used a seven-layer DNN while changing the kernel size at the second last layer (layer 6) indicated in red (see STAR

Methods: ‘‘Deep neural networks’’).

(B) BH scores with varied kernel sizes.

(C) Top ROI distributions at layer 6 with varied kernel sizes.
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experiments provided further support for the importance of broad spatial integration at FC layers (Fig-

ure 11). The presence of skip-connections and branch-connections tended to degrade the degree of hier-

archical homology by flattening and non-monotonically swinging the top ROI distributions, respectively

(Figure 12).

The BH score is based on both the decoding of individual DNN units and the encoding of individual

voxels. BH scores based solely on either decoding or encoding showed similar results (Figure S5),

suggesting the robustness of the results to be the choice of the analysis method. Many previous
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Figure 12. Effects of depth, skip-connections, and branch-connections

(A) Effect of skip-connections and branch-connections. A DNN with pure convolutional layers, a DNN with skip-

connections and a DNNwith branch-connections were prepared and trained on ImageNet using the same procedure (see

STAR Methods: ‘‘Deep neural network training’’ for details of the architectures).

(B) BH scores for the base DNN, DNN with skip-connections and DNN with branch-connections.

(C) Effect of depth. Four DNNs with different depths were prepared by inserting convolution layers into each layer. The

layer number and depth at each layer are also shown.

(D) BH scores for DNNs with different depths.
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studies rely on the encoding analysis to assess the similarity between the representation of the brain and

DNNs (e.g., Schrimpf et al., 2018; Yamins et al., 2014; Yamins and DiCarlo, 2016; Zhuang et al., 2017; Kell

et al., 2018; Cadena et al., 2019). Encoding models can provide descriptions of how neural responses

emerged from features in the external world and allow us to directly compare different computational

models of the brain (Naselaris et al., 2011; Kriegeskorte, 2011). In addition, encoding approaches can

exploit higher order interaction between DNN features. Representational similarity analysis has also

been used to detect the similarities to the brain based on the activation patterns across those units (Joz-

wik et al., 2019; Khaligh-Razavi and Kriegeskorte, 2014; Storrs et al., 2020). Most of these studies applied

dimensionality reduction techniques to the DNN activation patterns because of their high dimension-

ality, thus potentially overlooking fine representations encoded in individual units (Figures 5 and 6).

Although encoding approaches have methodological benefits as described above, our results indicated

potential advantages of the decoding analysis in relating DNNs and the brain. First, the portion of input

variables (DNN units in encoding and fMRI voxels in decoding) used for at least one prediction is markedly

smaller in encoding than in decoding (Figure 6). This indicates a possibility that only a small subset of DNN

units could account for brain activity, and thus, the encoding approach may only provide a partial charac-

terization of an entire DNN. Second, the comparison of the inter-subject consistency showed that the de-

coding-based BH score tended to be more consistent across subjects (Figure S4), which would increase its

sensitivity to detect the brain–DNN homology. Note that these observations were found in post-hoc ana-

lyses, and require further confirmation with independent datasets.

Our comparative results using the BH score were robust to several choices of procedures. The original BH

score was strongly correlated with those computed without the unit exclusion procedure (Figure S3A) or

the nonlinear transformation (Figure S3B) across the 29 DNNs. Meanwhile, the raw values of the BH score

were systematically affected by these procedures. The unit exclusion procedure tended to increase/

decrease the BH score for DNNs with high/low scores, respectively. These procedures generally broad-

ened the range of BH scores, suggesting that they may improve the sensitivity of the BH score.

The BH score was also highly consistent across fMRI datasets from different subjects (Figure S4), consistent

with our previous study showing high correlations of the decoding accuracies of individual DNN units be-

tween different subjects (Horikawa and Kamitani, 2017). Although the BH score showed high consistency

across normal subjects, brain disorders such as schizophrenia have recently been proposed to be associ-

ated with disorganized object representations in the brain (Nishida et al., 2020). The BH score based on

fMRI responses from participants with such disorders may reveal functional differences compared with

typical brains.

In the current study, we found that the BH score was negatively correlated with image recognition perfor-

mance across the 29 pre-trained DNNs (Figure 3). Thus, high-performance DNNs do not necessarily exhibit

hierarchical representations that are similar to the brain. Although early work suggested that DNNs with

improved recognition performance are likely to provide better computational models of the brain (Yamins

and DiCarlo, 2016), a recent study (Schrimpf et al., 2018) reported that image recognition performance and

brain–DNN similarity was more weakly correlated in recently developed high-performance DNNs (DNNs

with R70% ImageNet top-1 accuracy). Our comparative results using the BH score also showed a dissoci-

ation between image recognition performance and similarity to the brain. As one of the gaps in the object

recognition process between DNNs and the brain, a recent computer vision study suggested that DNNs

trained on ImageNet tended to classify object images according to their textures, whereas humans classi-

fied object images based on their shapes (Geirhos et al., 2019). A subsequent study quantitatively

compared this texture bias between AlexNet and ResNet-50, and showed that the global-pooling

operation in ResNet-50 largely removes shape information and strengthens the texture bias (Hermann

and Kornblith, 2019). Although both DNNs have a strong texture bias, AlexNet preserves relatively richer

shape information in their FC layers. This suggests that FC layers mitigate DNNs’ texture bias and make

processing in the higher layers more brain-like, which may explain our comparative results between

DNNs with and without FC layers. In contrast, because FC layers have large number of weight parameters

and increase the risk of overfitting, global-pooling operations are more commonly adopted in recent

high-performance DNNs (Szegedy et al., 2014; He et al., 2015; Zoph et al., 2018; Liu et al., 2018). Likewise,

elucidating the differences between high-performance DNNs and the brain remains an important

challenge, which, if solved, would provide important insights into the properties of DNNs.
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In addition to the quantification of the brain–DNN hierarchical homology with the BH score, we character-

ized individual DNN layers by the distributions of their top ROIs. The distributions of top ROIs tended to

show specific patterns depending on the architectures of DNNs. DNNs with FC layers (e.g., AlexNet and

the VGG family) showed unimodal and sharp distributions at the layer. The peak of the distribution was

monotonically shifted from lower to higher visual areas along with the hierarchy of the DNN layers, leading

to high BH scores for those DNNs. In contrast, DNNs with branch-connections (e.g., the Inception family,

NASNet, and PNASNet) tended to have flat distributions. Because the branch-connections develop their

features through parallel convolutions with different kernel sizes, representations corresponding to

different visual areas may be mixed into single concatenated layers, flattening the distributions. In the

DNNs with skip-connections (e.g., the ResNet family, the DenseNet family, NASNet, and PNASNet), the

peak of the distribution tended to oscillate between V1 and V3, possibly reflecting the bypassing of repre-

sentations between lower and higher layers. Although brain regions are connected not only by sequential

single feedforward path but also by branch-like or skip-like connections (Felleman and Van Essen, 1991;

Sporns and Zwi, 2004), DNNs with such connections do not yield hierarchical representations similar to

the brain. Instead, DNNs consisting of single-path sequential feedforward connections acquire more hier-

archically similar representations to the brain, suggesting that such plain feedforward connections among

brain regions play a dominant role in forming hierarchical representations in the brain.

Although deeper DNNs tended to have lower BH scores among the 29 pre-trained DNNs (Figure 8B), the

opposite tendency was observed in the DNNs trained after their depth was manipulated (Figures 12C and

12D). Many of the deeper pre-trained DNNs had skip-connections in their architectures. Skip-connections

are often used to mitigate the risk of gradient vanishing in very deep networks (He et al., 2015). The covari-

ation of these architectural factors in the 29 pre-trained DNNsmay account for the discrepancy in the effect

of depth found in the manipulation experiment.

Our results suggest that full connections in the last few layers (FC layers) make the representations similar to

those in the higher visual areas and thus lead to greater hierarchical homology (Figure 10). FC layers can

spatially integrate visual features to achieve translation-invariant representation of object categories. fMRI ac-

tivity in the higher visual areas, including lateral occipital complex (LOC), the fusiform face area (FFA), and the

parahippocampal place area (PPA), is associated with processing translation-invariant information of object

categories (Carlson et al., 2011). Thus, spatial integration of local visual features may play a common crucial

role in hierarchical transformation of spatially invariant visual representation in both DNNs and the brain. In

addition, a recent study reported that DNNs with FC layers exhibit better generalizability across datasets

than all convolutional DNNs (i.e., DNNs without FC layers) (Zhang et al., 2018). FC layersmay also play a critical

role in achieving human-level generalizability. In contrast, all convolutional DNNs tend to show better Image-

Net top-1 accuracies than DNNs with FC layers. This is presumably because all convolutional DNNs have

smaller number of weight parameters owing to weight sharing, thus allowing for efficient learning with a

limited amount of training data. Thus, only performance-optimization for a specific task may not lead to

brain-like DNNs. Consistent with this view, in the manipulation experiment in which the number of FC layers

was changed, the DNN with one FC layer achieved the highest ImageNet top-1 accuracy whereas the DNN

with two FC layers showed the highest BH score. This also indicates that a greater degree of hierarchical

homology is not necessarily associated with higher object recognition performance.

We found that DNNs with random weights (i.e., untrained DNNs) showed markedly lower BH scores than

DNNs trained for the classification task on ImageNet (Figure 4). Similarly, DNNs trained for object classi-

fication have shown to have a more similar representation to human IT than untrained DNNs (Storrs

et al., 2020). These results suggest that goal-driven task optimization of DNNs is critical for brain-like rep-

resentations. Another recent study reported that DNNs trained in an unsupervised manner could explain

neuronal responses in monkey V1, V4, and IT cortex to a comparable degree to DNNs trained for object

classification (Zhuang et al., 2020). Thus, DNNs could acquire brain-like hierarchical homology not only

by explicit tasks but also by implicit learning of task-related features.

Although we quantitatively characterized hierarchical homology of visual representations between DNNs

and the human brain, the BH score could be used for examining hierarchical homology of representations

in different modalities (e.g., auditory representations, tactile representations) or that between DNNs and

the brain of other species. Previous studies examined hierarchical homology between a DNN trained for

sound classification and the human auditory cortex (Kell et al., 2018) and the hierarchical homology
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between VGG16 and the mouse visual cortex (Cadena et al., 2019). Another study proposed several types

of biologically-feasible DNN that imitate hierarchical representations of the rodent tactile system (Zhuang

et al., 2017). It remains unclear which type of DNN best captures the properties of real rodents. The BH

score would provide a quantitative tool for comparison of different types of DNN in terms of the similarity

to given hierarchical representations in those modalities and species.

Limitations of the study

The BH score is only applicable to single-path sequential hierarchies of deep neural networks (DNNs) and

brains. For the formalization of hierarchy, we assumed that the hierarchy is represented by an ordinal scale

(i.e., layer and ROI numbers). Thus, the BH score does not incorporate multi-path or non-sequential hier-

archical structures such as branching, collateral (skip) path, or loop (recurrence). Although some DNNs

tested in this study have branch-connection, skip-connection, or recurrent-connection, we selected the

output layers of the branch-block, skip-block, or recurrent-block (submodules) instead of respective indi-

vidual layers in the block as multiple layers. Thus, the hierarchy of DNNs was summarized as a single feed-

forward pathway. In the current study, we focused on DNNs developed for image recognition and the brain

regions underlying object recognition (i.e., the ventral visual pathway), in which neural representations are

assumed to develop through a single pathway. To quantify the homology between more complex DNNs

(e.g., multi-path, and/or recurrent neural networks) and the whole brain network, a more sophisticated

metric will be required.

The choice of brain regions (ROIs) and their hierarchical order are critical for the BH score: different sets and

orders of ROIs produce different scores in the same DNN. In this study, we selected brain regions in the

ventral visual pathway (V1, V2, V3, V4, and higher visual cortex [HVC]), which underlies object recognition.

The vital role in object recognition and the structural and functional hierarchy of these areas have been well

established in neuroscience research, supporting the notion that our set and ordering of ROIs captured the

hierarchy of object recognition. Nevertheless, this ROI selection method based on known functional anat-

omy is inevitably user-dependent and has the potential to scatter BH scores. Moreover, the prior knowl-

edge-based selection of ROIs has a potential inherent risk of overlooking hierarchy in the brain that is

not incorporated in our prior knowledge. Instead of such prior knowledge-based ROIs, brain hierarchy

characterized by data-driven approaches (e.g., Margulies et al., 2016) can be used for the assessment of

BH scores and yield alternative measures.

As architectural characteristics of interest, we did not focus on the presence of recurrent connections

because only one DNN has recurrent connections among the 29 DNNs examined in the current study

(Table 1). We limited the DNNs tested here to those trained on the same ImageNet classification task

for a fair comparison, and there were few available pre-trained DNNs with recurrent connections satisfying

this limitation. Several studies recently developed DNNs with recurrent connections, suggesting that those

DNNs capture the dynamics of neuronal responses in the ventral visual areas (Nayebi et al., 2018; Spoerer

et al., 2017). Testing new DNNs designed to imitate the processing in the cortex will be helpful for eluci-

dating the importance of recurrent connections in the human visual system.

STAR+METHODS

Detailed methods are provided in the online version of this paper and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY

B Lead contact

B Materials availability

B Data and code availability

d EXPERIMENTAL MODEL AND SUBJECT DETAILS

B Deep neural networks

d METHOD DETAILS

B fMRI dataset

B Region of interest

B Decoding analysis

B Encoding analysis

B Brain hierarchy (BH) score

ll
OPEN ACCESS

iScience 24, 103013, September 24, 2021 19

iScience
Article



B Manipulation of DNN architecture

B Feature importance analysis

d QUANTIFICATION AND STATISTICAL ANALYSIS

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.isci.2021.103013.

ACKNOWLEDGMENTS

The authors would like to thank Tomoyasu Horikawa, Guohua Shen, Fan Cheng, and Mohamed Abdelhack

for helpful comments on the manuscript. The data used in the study were collected using the MRI scanner

and related facilities of Kokoro Research Center, Kyoto University. This work was supported by the New

Energy and Industrial Technology Development Organization (NEDO) project JPNP20006, and JSPS

KAKENHI Grant Numbers JP15H05920, JP15H05710, JP20H05705, and 20H05954 Japan.

AUTHOR CONTRIBUTIONS

Conceptualization, Y.K.; Methodology, S.N. and K.M.; Validation, S.N., K.M., and S.C.A.; Formal Analysis,

S.N., K.M., and S.C.A.; Investigation, S.N., K.M., and S.C.A.; Resources, Y.K.; Writing – Original Draft, S.N.,

K.M., and S.C.A.; Writing – Review & Editing, S.N., K.M., S.C.A., and Y.K.; Visualization, S.N., K.M., and

S.C.A.; Supervision, Y.K.; Funding Acquisition, Y.K.

DECLARATION OF INTERESTS

The authors declare no competing financial interests.

Received: July 23, 2020

Revised: December 31, 2020

Accepted: August 18, 2021

Published: September 24, 2021

REFERENCES
Abadi, M., Agarwal, A., Barham, P., Brevdo, E.,
Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean,
J., Devin, M., et al. (2016). TensorFlow: Large-
Scale Machine Learning on Heterogeneous
Distributed Systems. arXiv 1603.04467 [cs.DC],
https://arxiv.org/abs/1603.04467.

Bashivan, P., Kar, K., and DiCarlo, J.J. (2019).
Neural population control via deep image
synthesis. Science 364, eaav9436. https://doi.org/
10.1126/science.aav9436.

Cadena, S.A., Sinz, F.H., Muhammad, T.,
Froudarakis, E., Cobos, E., Walker, E.Y., Reimer,
J., Bethge, M., Tolias, A.S., and Ecker, A.S. (2019).
How well do deep neural networks trained on
object recognition characterize the mouse visual
system? 33rd Conference on Neural Information
Processing Systems (NeurIPS 2019), Vancouver,
Canada. https://openreview.net/forum?
id=rkxcXmtUUS.

Cadieu, C.F., Hong, H., Yamins, D.L.K., Pinto, N.,
Ardila, D., Solomon, E.A., Majaj, N.J., and
DiCarlo, J.J. (2014). Deep neural networks rival
the representation of primate IT cortex for core
visual object recognition. Plos Comput. Biol. 10,
e1003963. https://doi.org/10.1371/journal.pcbi.
1003963.

Carlson, T., Hogendoorn, H., Fonteijn, H., and
Verstraten, F.A.J. (2011). Spatial coding and
invariance in object-selective cortex. Cortex 47,
14–22. https://doi.org/10.1016/j.cortex.2009.08.
015.

Chatfield, K., Simonyan, K., Vedaldi, A., and
Zisserman, A. (2014). Return of the devil in the
details: delving deep into convolutional nets.
arXiv, 1405.3531 [cs.CV]. https://arxiv.org/abs/
1405.3531.

Cichy, R.M., Khosla, A., Pantazis, D., Torralba, A.,
and Oliva, A. (2016). Comparison of deep neural
networks to spatio-temporal cortical dynamics of
human visual object recognition reveals
hierarchical correspondence. Sci. Rep. 6, 27755.
https://doi.org/10.1038/srep27755.

David, S.T., Kendall, M.G., and Stuart, A. (1951).
Some questions of distribution in the theory of
rank correlation. Biometrika 38, 131–140.

Deco, G., Tononi, G., Boly, M., and Kringelbach,
M.L. (2015). Rethinking segregation and
integration: contributions of whole-brain
modelling. Nat. Rev. Neurosci. 16, 430–439.
https://doi.org/10.1038/nrn3963.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and
Li, F.-F. (2009). ImageNet: A large-scale
hierarchical image database. 2009 IEEE
conference on computer vision and pattern
recognition, Miami, FL. https://doi.org/10.1109/
CVPR.2009.5206848.

Eickenberg, M., Gramfort, A., Varoquaux, G., and
Thirion, B. (2017). Seeing it all: convolutional
network layers map the function of the human
visual system. NeuroImage 152, 184–194. https://
doi.org/10.1016/j.neuroimage.2016.10.001.

Engel, S.A., Rumelhart, D.E., Wandell, B.A., Lee,
A.T., Glover, G.H., Chichilnisky, E.-J., and
Shadlen, M.N. (1994). fMRI of human visual
cortex. Nature 369, 525. https://doi.org/10.1038/
369525a0.

Epstein, R., and Kanwisher, N. (1998). A cortical
representation of the local visual environment.
Nature 392, 598–601. https://doi.org/10.1038/
33402.

Fei-Fei, L., Fergus, R., and Perona, P. (2004).
Learning generative visual modelsfrom few
training examples: an incremental Bayesian
approach tested on101 object categories.
Conference on Computer Vision and Pattern
Recognition Workshop, 178. https://doi.org/10.
1109/CVPR.2004.383.

Fei-Fei, L., Fergus, R., and Perona, P. (2007).
Learning generative visual models from few
training examples: an incremental Bayesian
approach tested on 101 object categories.
Comput. Vis. Image Underst. 106, 59–70. https://
doi.org/10.1016/j.cviu.2005.09.012.

Felleman, D.J., and Van Essen, D.C. (1991).
Distributed hierarchical processing in the primate
cerebral cortex. Cereb. Cortex 1, 1–47. https://
doi.org/10.1093/cercor/1.1.1.

Geirhos, R., Rubisch, P., Michaelis, C., Bethge, M.,
Wichmann, F.A., and Brendel, W. (2019).
ImageNet-trained CNNs are biased towards
texture; increasing shape bias improves accuracy

ll
OPEN ACCESS

20 iScience 24, 103013, September 24, 2021

iScience
Article

https://doi.org/10.1016/j.isci.2021.103013
https://arxiv.org/abs/1603.04467
https://doi.org/10.1126/science.aav9436
https://doi.org/10.1126/science.aav9436
https://openreview.net/forum?id=rkxcXmtUUS
https://openreview.net/forum?id=rkxcXmtUUS
https://doi.org/10.1371/journal.pcbi.1003963
https://doi.org/10.1371/journal.pcbi.1003963
https://doi.org/10.1016/j.cortex.2009.08.015
https://doi.org/10.1016/j.cortex.2009.08.015
https://arxiv.org/abs/1405.3531
https://arxiv.org/abs/1405.3531
https://doi.org/10.1038/srep27755
https://doi.org/10.1038/nrn3963
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1016/j.neuroimage.2016.10.001
https://doi.org/10.1016/j.neuroimage.2016.10.001
https://doi.org/10.1038/369525a0
https://doi.org/10.1038/369525a0
https://doi.org/10.1038/33402
https://doi.org/10.1038/33402
https://doi.org/10.1109/CVPR.2004.383
https://doi.org/10.1109/CVPR.2004.383
https://doi.org/10.1016/j.cviu.2005.09.012
https://doi.org/10.1016/j.cviu.2005.09.012
https://doi.org/10.1093/cercor/1.1.1
https://doi.org/10.1093/cercor/1.1.1


and robustness, arXiv:1811.12231 [cs.CV]. https://
arxiv.org/abs/1811.12231.

Griffin, G., Holub, A., and Perona, P. (2007).
Caltech-256 object category dataset. CalTech
Tech. Rep. 7694. https://resolver.caltech.edu/
CaltechAUTHORS:CNS-TR-2007-001.

Guclu, U., and van Gerven, M.A.J. (2015). Deep
neural networks reveal a gradient in the
complexity of neural representations across the
ventral stream. J. Neurosci. 35, 10005–10014.
https://doi.org/10.1523/JNEUROSCI.5023-14.
2015.

Haynes, J.-D., Lotto, R.B., and Rees, G. (2004).
Responses of human visual cortex to uniform
surfaces. Proc. Natl. Acad. Sci. U.S.A. 101, 4286–
4291. https://doi.org/10.1073/pnas.0307948101.

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Deep
Residual Learning for Image Recognition,
arXiv:1512.03385 [cs.CV]. http://arxiv.org/abs/
1512.03385.

Hermann, K.L., and Kornblith, S. (2019). Exploring
the origins and prevalence of texture bias in
convolutional neural networks, arXiv:1911.09071
[cs.CV]. http://arxiv.org/abs/1911.09071.

Horikawa, T., and Kamitani, Y. (2017). Generic
decoding of seen and imagined objects using
hierarchical visual features. Nat. Commun. 8,
15037. https://doi.org/10.1038/ncomms15037.

Huang, G., Liu, Z., van der Maaten, L., and
Weinberger, K.Q. (2016). Densely connected
convolutional networks, arXiv:1608.06993 [cs.CV].
https://arxiv.org/abs/1608.06993.

Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf,
K., Dally, W.J., and Keutzer, K. (2016).
SqueezeNet: AlexNet-level accuracy with 50x
fewer parameters and <0.5MB model size,
arXiv:1602.07360 [cs.CV]. https://arxiv.org/abs/
1602.07360.

Jia, Y., Shelhamer, E., Donahue, J., Karayev, S.,
Long, J., Girshick, R., Guadarrama, S., andDarrell,
T. (2014). Caffe: Convolutional Architecture for
Fast Feature Embedding. n Proceedings of the
22nd ACM international conference on
Multimedia (MM ’14), 675–678. https://doi.org/
10.1145/2647868.2654889.

Jozwik, K.M., Schrimpf, M., Kanwisher, N., and
DiCarlo, J.J. (2019). To find better neural network
models of human vision, find better neural
network models of primate vision. bioRxiv.
688390. https://doi.org/10.1101/688390.

Kanwisher, N., McDermott, J., and Chun, M.M.
(1997). The fusiform face area: a module in human
extrastriate cortex specialized for face
perception. J. Neurosci. 17, 4302–4311. https://
doi.org/10.1523/JNEUROSCI.17-11-04302.1997.

Kell, A.J.E., Yamins, D.L.K., Shook, E.N., Norman-
Haignere, S.V., and McDermott, J.H. (2018). A
task-optimized neural network replicates human
auditory behavior, predicts brain responses, and
reveals a cortical processing hierarchy. Neuron
98, 630–644.e16. https://doi.org/10.1016/j.
neuron.2018.03.044.

Khaligh-Razavi, S.-M., and Kriegeskorte, N.
(2014). Deep supervised, but not unsupervised,
models may explain IT cortical representation.

Plos Comput. Biol. 10, e1003915. https://doi.org/
10.1371/journal.pcbi.1003915.

Kourtzi, Z., and Kanwisher, N. (2000). Cortical
regions involved in perceiving object shape.
J. Neurosci. 20, 3310–3318. https://doi.org/10.
1523/JNEUROSCI.20-09-03310.2000.

Kriegeskorte. (2011). Pattern-information
analysis: from stimulus decoding to
computational-model testing. NeuroImage 56,
411–421. https://doi.org/10.1016/j.neuroimage.
2011.01.061.

Krizhevsky, A., Sutskever, I., and Hinton, G.E.
(2012). ImageNet classification with deep
convolutional neural networks. Advances in
Neural Information Processing Systems 25 (NIPS
2012). https://papers.nips.cc/paper/4824-
imagenet-classification-with-deep-
convolutional-neural-networks.

Kubilius, J., Schrimpf, M., Nayebi, A., Bear, D.,
Yamins, D.L.K., and DiCarlo, J.J. (2018). CORnet:
modeling the neural mechanisms of core object
recognition. bioRxiv. 408385. https://doi.org/10.
1101/408385.

Liu, C., Zoph, B., Neumann, M., Shlens, J., Hua,
W., Li, L.-J., Fei-Fei, L., Yuille, A., Huang, J., and
Murphy, K. (2018). Progressive neural architecture
search, arXiv:1712.00559 [cs.CV]. http://arxiv.org/
abs/1712.00559.

Margulies, D.S., Ghosh, S.S., Goulas, A.,
Falkiewicz, M., Huntenburg, J.M., Langs, G.,
Bezgin, G., Eickhoff, S.B., Castellanos, F.X.,
Petrides, M., et al. (2016). Situating the default-
mode network along a principal gradient of
macroscale cortical organization. Proc. Natl.
Acad. Sci. 113, 12574–12579. https://doi.org/10.
1073/pnas.1608282113.

Naselaris, T., Kay, K.N., Nishimoto, S., and
Gallant, J.L. (2011). Encoding and decoding in
fMRI. NeuroImage 56, 400–410. https://doi.org/
10.1016/j.neuroimage.2010.07.073.

Nayebi, A., Bear, D., Kubilius, J., Kar, K., Ganguli,
S., Sussillo, D., DiCarlo, J.J., and Yamins, D.L.K.
(2018). Task-driven convolutional recurrent
models of the visual system, arXiv:1807.00053 [q-
bio.NC]. http://arxiv.org/abs/1807.00053.

Nishida, S., Matsumoto, Y., Yoshikawa, N., Son,
S., Murakami, A., Hayashi, R., Nishimoto, S., and
Takahashi, H. (2020). Reduced intra- and inter-
individual diversity of semantic representations in
the brains of schizophrenia patients. bioRxiv.
132928. https://doi.org/10.1101/2020.06.03.
132928.

Paszke, A., Gross, S., Massa, F., Lerer, A.,
Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., Antiga, L., et al. (2019). PyTorch:
an imperative style, high-performance deep
learning library. Adv. Neural Inf. Process. Syst 32,
8026–8037.

Ponce, C.R., Xiao, W., Schade, P.F., Hartmann,
T.S., Kreiman, G., and Livingstone, M.S. (2019).
Evolving images for visual neurons using a deep
generative network reveals coding principles and
neuronal preferences. Cell 177, 999–1009.e10.
https://doi.org/10.1016/j.cell.2019.04.005.

Qian, N. (1999). On the momentum term in
gradient descent learning algorithms. Neural

Netw. 12, 145–151. https://doi.org/10.1016/
S0893-6080(98)00116–6.

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A.,
and Chen, L.-C. (2019). MobileNetV2: Inverted
residuals and linear bottlenecks,
arXiv:1801.04381 [cs.CV]. https://arxiv.org/abs/
1801.04381.

Schrimpf, M., Kubilius, J., Hong, H., Majaj, N.J.,
Rajalingham, R., Issa, E.B., Kar, K., Bashivan, P.,
Prescott-Roy, J., Schmidt, K., et al. (2018). Brain-
score: which artificial neural network for object
recognition is most brain-like? bioRxiv. 407007.
https://doi.org/10.1101/407007.

Sereno, M., Dale, A., Reppas, J., Kwong, K.,
Belliveau, J., Brady, T., Rosen, B., and Tootell, R.
(1995). Borders of multiple visual areas in humans
revealed by functional magnetic resonance
imaging. Science 268, 889–893. https://doi.org/
10.1126/science.7754376.

Shen, G., Horikawa, T., Majima, K., and Kamitani,
Y. (2019). Deep image reconstruction from human
brain activity. PLOS Comput. Biol. 15, 1006633.
https://doi.org/10.1371/journal.pcbi.1006633.

Simonyan, K., and Zisserman, A. (2014). Very deep
convolutional networks for large-scale image
recognition, arXiv:1409.1556 [cs.CV]. https://
arxiv.org/abs/1409.1556.

Spoerer, C.J., McClure, P., and Kriegeskorte, N.
(2017). Recurrent convolutional neural networks: a
better model of biological object recognition.
bioRxiv. 133330. https://doi.org/10.1101/133330.

Sporns, O., and Zwi, J.D. (2004). The small world
of the cerebral cortex. Neuroinformatics 2,
145–162. https://doi.org/10.1385/NI:2:2:145.

Storrs, K.R., Kietzmann, T.C., Walther, A., Mehrer,
J., and Kriegeskorte, N. (2020). Diverse deep
neural networks all predict human IT well, after
training and fitting. bioRxiv. https://doi.org/10.
1101/2020.05.07.082743.

Szegedy, C., Ioffe, S., Vanhoucke, V., and Alemi,
A. (2016). Inception-v4, inception-ResNet and the
Mpact of residual connections on learning,
arXiv:1602.07261 [cs.CV]. https://arxiv.org/abs/
1602.07261.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed,
S., Anguelov, D., Erhan, D., Vanhoucke, V., and
Rabinovich, A. (2014). Going Deeper with
Convolutions, arXiv:1409.4842 [cs.CV]. http://
arxiv.org/abs/1409.4842.

Yamins, D.L.K., and DiCarlo, J.J. (2016). Using
goal-driven deep learning models to understand
sensory cortex. Nat. Neurosci. 19, 356–365.
https://doi.org/10.1038/nn.4244.

Yamins, D.L.K., Hong, H., Cadieu, C.F.,
Solomon, E.A., Seibert, D., and DiCarlo, J.J.
(2014). Performance-optimized hierarchical
models predict neural responses in higher
visual cortex. Proc. Natl. Acad. Sci. 111, 8619–
8624. https://doi.org/10.1073/pnas.
1403112111.

Zhang, C.-L., Luo, J.-H., Wei, X.-S., and Wu, J.
(2018). In defense of fully connected layers in
visual representation transfer. Advances in
multimedia information processing (PCM 2017).
https://doi.org/10.1007/978-3-319-77383-4_79.

ll
OPEN ACCESS

iScience 24, 103013, September 24, 2021 21

iScience
Article

https://arxiv.org/abs/1811.12231
https://arxiv.org/abs/1811.12231
https://resolver.caltech.edu/CaltechAUTHORS:CNS-TR-2007-001
https://resolver.caltech.edu/CaltechAUTHORS:CNS-TR-2007-001
https://doi.org/10.1523/JNEUROSCI.5023-14.2015
https://doi.org/10.1523/JNEUROSCI.5023-14.2015
https://doi.org/10.1073/pnas.0307948101
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1911.09071
https://doi.org/10.1038/ncomms15037
https://arxiv.org/abs/1608.06993
https://arxiv.org/abs/1602.07360
https://arxiv.org/abs/1602.07360
https://doi.org/10.1145/2647868.2654889
https://doi.org/10.1145/2647868.2654889
https://doi.org/10.1101/688390
https://doi.org/10.1523/JNEUROSCI.17-11-04302.1997
https://doi.org/10.1523/JNEUROSCI.17-11-04302.1997
https://doi.org/10.1016/j.neuron.2018.03.044
https://doi.org/10.1016/j.neuron.2018.03.044
https://doi.org/10.1371/journal.pcbi.1003915
https://doi.org/10.1371/journal.pcbi.1003915
https://doi.org/10.1523/JNEUROSCI.20-09-03310.2000
https://doi.org/10.1523/JNEUROSCI.20-09-03310.2000
https://doi.org/10.1016/j.neuroimage.2011.01.061
https://doi.org/10.1016/j.neuroimage.2011.01.061
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
https://doi.org/10.1101/408385
https://doi.org/10.1101/408385
http://arxiv.org/abs/1712.00559
http://arxiv.org/abs/1712.00559
https://doi.org/10.1073/pnas.1608282113
https://doi.org/10.1073/pnas.1608282113
https://doi.org/10.1016/j.neuroimage.2010.07.073
https://doi.org/10.1016/j.neuroimage.2010.07.073
http://arxiv.org/abs/1807.00053
https://doi.org/10.1101/2020.06.03.132928
https://doi.org/10.1101/2020.06.03.132928
https://doi.org/10.1016/j.cell.2019.04.005
https://doi.org/10.1016/S0893-6080(98)00116&ndash;6
https://doi.org/10.1016/S0893-6080(98)00116&ndash;6
https://arxiv.org/abs/1801.04381
https://arxiv.org/abs/1801.04381
https://doi.org/10.1101/407007
https://doi.org/10.1126/science.7754376
https://doi.org/10.1126/science.7754376
https://doi.org/10.1371/journal.pcbi.1006633
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556
https://doi.org/10.1101/133330
https://doi.org/10.1385/NI:2:2:145
https://doi.org/10.1101/2020.05.07.082743
https://doi.org/10.1101/2020.05.07.082743
https://arxiv.org/abs/1602.07261
https://arxiv.org/abs/1602.07261
http://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1409.4842
https://doi.org/10.1038/nn.4244
https://doi.org/10.1073/pnas.1403112111
https://doi.org/10.1073/pnas.1403112111
https://doi.org/10.1007/978-3-319-77383-4_79


Zhuang, C., Kubilius, J., Hartmann, M.J., and
Yamins, D.L. (2017). Toward goal-driven neural
network models for the Rodent Whisker-
Trigeminal system. Advances in Neural
Information Processing Systems 30 (NIPS 2017).
https://papers.nips.cc/paper/6849-toward-goal-
driven-neural-network-models-for-the-rodent-
whisker-trigeminal-system.

Zhuang, C., Yan, S., Nayebi, A., Schrimpf, M.,
Frank,M.C., DiCarlo, J.J., and Yamins, D.L. (2020).
Unsupervised neural network models of the
ventral visual stream. bioRxiv. https://doi.org/10.
1101/2020.06.16.155556.

Zoph, B., Vasudevan, V., Shlens, J., and Le,
Q.V. (2018). Learning Transferable

Architectures for Scalable Image Recognition,
arXiv:1707.07012 [cs.CV]. https://arxiv.org/abs/
1707.07012.

ll
OPEN ACCESS

22 iScience 24, 103013, September 24, 2021

iScience
Article

https://papers.nips.cc/paper/6849-toward-goal-driven-neural-network-models-for-the-rodent-whisker-trigeminal-system
https://papers.nips.cc/paper/6849-toward-goal-driven-neural-network-models-for-the-rodent-whisker-trigeminal-system
https://papers.nips.cc/paper/6849-toward-goal-driven-neural-network-models-for-the-rodent-whisker-trigeminal-system
https://doi.org/10.1101/2020.06.16.155556
https://doi.org/10.1101/2020.06.16.155556
https://arxiv.org/abs/1707.07012
https://arxiv.org/abs/1707.07012
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KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead con-

tact, Yukiyasu Kamitani (kamitani@i.kyoto-u.ac.jp).

Materials availability

This study did not generate new unique reagents.

Data and code availability

d We used the fMRI data collected from Shen et al. (2019). The data are available in public repositories: raw

fMRI data are hosted at OpenNeuro (https://openneuro.org/datasets/ds001506) and preprocessed fMRI

data are provided at figshare (https://doi.org/10.6084/m9.figshare.7033577). The unit activations of the

DNNs as well as the decoded unit activations and the prediction accuracies are available at figshare

(https://doi.org/10.6084/m9.figshare.12401168). The stimulus images used in the fMRI experiment by

Shen et al. (2019) are available on request (https://forms.gle/ujvA34948Xg49jdn9).

d The code to reproduce the results in this study is available at GitHub (https://github.com/KamitaniLab/

BHscore). The BH scores can be calculated by a function in our code repository.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Deep neural networks

We compared 29 pre-trained DNNs in this study (Table 1). All DNNs were pre-trained on ImageNet ILSVRC

2012 dataset (Deng et al., 2009) to classify given images into 1000 object categories. We used AlexNet (Kriz-

hevsky et al., 2012), VGG-16, VGG-19 (Simonyan and Zisserman, 2014) , VGG-S, VGG-M, VGG-F (Chatfield

et al., 2014), ResNet-18, ResNet-34 (He et al., 2015), ResNet-50-v2, ResNet-101-v2, ResNet-152-v2 (He et al.,

2015), Inception-v1, Inception-v2, Inception-v3, Inception-v4 (Deco et al., 2015; Szegedy et al., 2016, 2014) ,

Inception-ResNet-v2 (Szegedy et al., 2016), SqueezeNet-1.0, SqueezeNet-1.1 (Iandola et al., 2016),

DenseNet-121, DenseNet-161, DenseNet-169, DenseNet-201 (Huang et al., 2016), NASNet-Mobile,

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Unit activation of DNNs This paper https://doi.org/10.6084/m9.figshare.12401168

Code for calculating the BH score This paper https://github.com/KamitaniLab/BHscore

Software and algorithms

Caffe Jia et al., 2014 http://caffe.berkeleyvision.org

TensorFlow Abadi et al., 2016 https://www.tensorflow.org/; RRID: SCR_016345

PyTorch Paszke et al., 2019 https://pytorch.org/; RRID: SCR_018536

Other

fMRI dataset (raw) Shen et al., 2019 https://openneuro.org/datasets/ds001506

fMRI dataset (preprocessed) Shen et al., 2019 https://doi.org/10.6084/m9.figshare.7033577

ImageNet (2011 fall release) Deng et al., 2009 https://image-net.org/challenges/LSVRC/2011/index.php

Caltech 101 Fei-Fei et al., 2004 http://www.vision.caltech.edu/Image_Datasets/Caltech101/

Caltech 256 Griffin et al., 2007 http://www.vision.caltech.edu/Image_Datasets/Caltech256/

ll
OPEN ACCESS

iScience 24, 103013, September 24, 2021 23

iScience
Article

mailto:kamitani@i.kyoto-u.ac.jp
https://openneuro.org/datasets/ds001506
https://doi.org/10.6084/m9.figshare.7033577
https://doi.org/10.6084/m9.figshare.12401168
https://forms.gle/ujvA34948Xg49jdn9
https://github.com/KamitaniLab/BHscore
https://github.com/KamitaniLab/BHscore
https://doi.org/10.6084/m9.figshare.12401168
https://github.com/KamitaniLab/BHscore
http://caffe.berkeleyvision.org
https://www.tensorflow.org/
https://pytorch.org/
https://openneuro.org/datasets/ds001506
https://doi.org/10.6084/m9.figshare.7033577
https://image-net.org/challenges/LSVRC/2011/index.php
http://www.vision.caltech.edu/Image_Datasets/Caltech101/
http://www.vision.caltech.edu/Image_Datasets/Caltech256/


NASNet-Large (Zoph et al., 2018), PNASNet-Large (Liu et al., 2018), MobileNet-v2-1.4-224 (Sandler et al.,

2019), CORnet-Z, CORnet-R, and CORnet-S (Kubilius et al., 2018) .

To characterize hierarchy in DNNs, we included several representative layers of each DNN in the analysis:

the first layer, the last fully-connected (FC) layer (referred to as the ‘‘category layer’’ in this study), the other

FC layers, all convolutional layers in DNNs without submodules (i.e., AlexNet, VGG-S, VGG-M, and VGG-F),

and the output layers of submodules (i.e., convolutional, residual, or inception blocks) in DNNs with sub-

modules. For residual blocks, we regarded the sum of skip layers as the output of the block. Hereafter,

‘‘layer’’ means the representative layers unless otherwise stated. As CORnet-R and CORnet-S have recur-

rent connections, we used outputs of the last time-step of these DNNs.

METHOD DETAILS

fMRI dataset

We used the functional magnetic resonance imaging (fMRI) dataset collected in Shen et al. (2019). The da-

taset, which is publicly available at OpenNeuro (https://openneuro.org/datasets/ds001506), includes fMRI

data from three human subjects. During fMRI scanning sessions, subjects viewed natural object images

selected from ImageNet (2011, fall release, Deng et al., 2009). The fMRI experiment was composed of

two types of sessions: training and test sessions. In training sessions, 1200 images selected from 150 cat-

egories were used. Each image was presented five times. In test sessions, 50 images selected from 50 cat-

egories were presented. Each image was presented 24 times. During the experiment, subjects performed

one-back repetition tasks. Voxel size was 2 3 2 3 2 mm, and TR was 2 s in the fMRI measurement. The fMRI

responses in the training and test sessions were used for training and test of decoders/encoders, respec-

tively (see Decoding analysis’’ and ‘‘Encoding analysis). The fMRI responses in test sessions were also used

for the representational similarity analysis in Figure S9.

Motion correction and anatomical-functional coregistration to individual brains were performed on

the fMRI signals with SPM (http://www.fil.ion.ucl.ac.uk/spm). After preprocessing, nuisance parameters

(head motion parameters and linear trend) were regressed out from the signal of each voxel. Then,

the signal amplitudes were normalized relative to the mean amplitude during the initial rest period

(24 s) of each run, and despiked by reducing extreme values (beyond G3 standard deviations in each

run). The signal time series were shifted by 4 s to compensate for hemodynamic delays. The fMRI

response to each image was obtained by averaging fMRI signals during the presentation block (8 s) of

each image.

Region of interest

Five visual areas (V1, V2, V3, V4, and higher visual cortex [HVC]) were included in the analysis. All regions of

interest (ROIs) were defined functionally on individual brains. V1, V2, V3, and V4 were delineated based on

standard retinotopy experiments (Engel et al., 1994; Sereno et al., 1995). The HVC was manually delineated

as a contiguous region covering the lateral occipital complex (LOC), the fusiform face area (FFA), and the

parahippocampal place area (PPA). The LOC, FFA, and PPA were identified by the conventional functional

localizer experiments (Epstein and Kanwisher, 1998; Kanwisher et al., 1997; Kourtzi and Kanwisher, 2000).

In a complementary analysis, we divided the HVC into three subregions based on the principal gradient

(Margulies et al., 2016). We aligned principal gradient maps into the individual brain space. Then, one-third

of voxels in HVC having the lowest, middle, or highest values of Gradient 1, which presumably corresponds

to unimodal-transmodal axis, were grouped as HVC-1, 2, and 3, respectively. We also divided the visual

cortex into either 5 or 10 ROIs based on Gradient 1 of the principal gradient.

Decoding analysis

For each individual unit in a DNN, we constructed a decoder to predict (decode) the unit activation to an

image from fMRI response patterns to the same image. We used linear regression with L2-regularization to

construct the decoders. The input feature of the decoder was an fMRI response pattern of 500 voxels in one

of the five ROIs. We selected the 500 voxels that showed the highest absolute correlations between their

fMRI signals and the target unit activations in the training sessions (Shen et al., 2019). The unit activations in

the first layers of DNNs were converted into absolute values, since both increments and decrements of

stimulus luminance strongly modulate fMRI signals in the early visual cortex (Haynes et al., 2004) and the
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absolute values of unit activations in the first layer are better predicted than raw values (Shen et al., 2019).

The decoders were trained with fMRI data in the training sessions for each subject. After the training of de-

coders, we predicted activations of the individual units from fMRI response patterns in the test sessions. In

the test fMRI data, responses of individual voxels to the same images were averaged across trials to in-

crease the signal-to-noise ratio of the fMRI signals. Thus, we obtained for each DNN unit 50 predicted acti-

vation values corresponding to 50 images in the test sessions. The prediction accuracy was evaluated as the

Pearson correlation coefficient between the actual and predicted unit activations across the test images.

For each DNN layer, activations of randomly selected 1000 units were predicted if the number of units

was more than 1000. Otherwise, activations of all units were predicted. We ran decoding of individual

DNN unit activations using fMRI response patterns from five ROIs in three subjects independently.

Encoding analysis

For individual voxels in the ROIs, we constructed an encoding model to predict the voxel response to an

image from unit activation patterns in a DNN layer to the same image. We used linear regression with

L2-regularization to construct the encoding models. For each layer, activations of 500 units were selected

in the same procedure as decoding analysis. As in decoding analysis, the unit activations in the first layer of

DNNs were converted into absolute values. The encoding models were trained with fMRI data in the

training sessions for each subject. After the training of encoding models, we predicted responses of the

individual voxels from DNN unit activation patterns to the images in the test sessions. Thus, for each voxel,

we obtained 50 predicted response values corresponding to 50 images in the test sessions. In the test fMRI

data, the responses of individual voxels to the same images were averaged across trials. The prediction

accuracy was evaluated as the Pearson correlation coefficient between the predicted and observed re-

sponses of voxels across the test images.

In the replication analysis of Schrimpf et al. (2018), the median of encoding accuracies across voxels in V4

and HVC was computed for each DNN layer. The encoding accuracies were obtained for fMRI data of each

subject, then averaged across subjects. For a given DNN, the highest encoding accuracy for V4 among the

DNN layers was defined as ‘‘fMRI V4 encoding accuracy’’ and the highest mean encoding accuracy for HVC

among the DNN layers was defined as ‘‘fMRI HVC encoding accuracy.’’

Brain hierarchy (BH) score

The decoding- and encoding-based brain hierarchy (BH) scores were computed with the results of the de-

coding and encoding analyses, respectively. Their mean was reported as the BH score. For calculation of

the BH score, the ROIs were assigned numbers as 1 to 5 from the lower to the higher visual areas (i.e., V1 (1),

V2 (2), V3 (3), V4 (4), HVC (5)). Similarly, the DNN layers in each DNN were assigned numbers from1 to N in

order from input to output (N is the number of layers in the DNN).

The decoding-based BH score was calculated for each DNN using the following procedure. We randomly

selected three layers from the representative layers except the first and last (category) layers. The five layers

(the selected three layers, the first layer, and the last layers) were included in the calculation of the BH score.

The layer selection and subsequent calculation of the decoding-based BH score was repeated 10,000 times

for each DNN. For each unit in the selected layers, we identified the ROI that had the highest prediction

accuracy (‘‘top ROI’’) based on the decoding analysis. Then, we applied an optional unit selection; units

in which prediction accuracy of the top ROI was not significantly higher than the chance level (t-test, p <

0.05, uncorrected) were excluded from the further analysis. The remaining units were pooled across the

DNN layers and subjects. The decoding-based BH score of a DNN was defined as the Spearman rank cor-

relation coefficient between the layer number and the top ROI number across units in the DNN.

The encoding-based BH score was computed for each DNNby swapping units and voxels in the calculation

of the decoding-based BH score. Unlike the decoding-based BH score, all representative layers were

included in the calculation of the encoding-based BH score. Based on the encoding analysis, we identified

for each voxel the layer that had the highest prediction accuracy (‘‘top layer’’). We then applied optional

voxel selection: voxels in which the prediction accuracy of the top layer was not significantly higher than

the chance level (t-test, p < 0.05, uncorrected) were excluded from the further analysis. The survived voxels

were pooled across the ROIs and subjects. The encoding-based BH score of a DNN was defined as the

Spearman rank correlation coefficient between the ROI number and the top layer number across voxels.
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The brain-to-brain BH score was computed by treating the brain of one target subject as a 5-layer DNN, in

which we regarded ROIs (V1, V2, V3, V4, and HVC) as DNN layers, and regarded fMRI voxels as DNN units.

The activity of each voxel of the target subject’s brain was predicted from brain activities in each ROI of two

other subjects’ brains. As with the original BH score, we selected the ROI with the highest prediction accu-

racy (top ROI) for each voxel in the target brain. Then, we excluded voxels in the target brain when their

prediction accuracy from the top ROI was not significant (ttest, p < 0.05, uncorrected). We defined the

brain-to-brain BH score as the Spearman rank correlation coefficient between the ROI number and top

ROI number across voxels in the target brain. We repeat this computation by changing the target subject

within three subjects. The mean brain-to-brain BH score across three subjects was reported in Figure 3.

Manipulation of DNN architecture

We manipulated the number of FC layers in AlexNet (Krizhevsky et al., 2012) by replacing the layers with

convolutional or FC layers. The default AlexNet had five convolutional, two FC, and one category layer.

All and the first FC layers were replaced with convolutional layers to create a DNN with zero and one FC

layer, respectively. The last one, two, and three convolutional layers were replaced with FC layers to create

a DNN with three, four, and five FC layers. DNNs with 0, 1, 2, 3, 4, and 5 FC layers achieved 0.55, 0.57, 0.56,

0.51, and 0.46 ImageNet top-1 accuracies, respectively.

To manipulate kernel sizes, we modified a DNN with six convolutional and one category layer. The kernel

sizes of the convolutional layers were changed from 1 3 1 to 6 3 6, where the 6 3 6 kernel is equivalent to

FC layers. DNNs with kernel size 1 3 1, 2 3 2, 3 3 3, 4 3 4, 5 3 5, and 6 3 6 achieved 0.53, 0.53, 0.56, 0.57,

0.57, and 0.57 ImageNet top-1 accuracies, respectively.

The presence of skip-connections was manipulated by replacing all convolutional layers in AlexNet with

residual blocks of ResNet-18 (He et al., 2015). The model with skip-connections achieved 0.64 ImageNet

top-1 accuracy. Similarly, the presence of branch-connection was manipulated by replacing all convolu-

tional layers in AlexNet with inception blocks of Inception-v1 (Szegedy et al., 2014). The model with

branch-connections achieved 0.58 ImageNet top-1 accuracy.

Tomanipulate the depth of a DNN, we inserted or removed additional convolutional layers into/from VGG-

19 (Simonyan and Zisserman, 2014). Note that the additional convolutional layers were not included in the

calculation of BH scores (i.e., the insertion of additional layers did not change the layer numbers). The

default VGG-19 had a depth of 19 (16 convolutional, two FC layers, and one category layer). The depth

was reduced to eight by removing convolutional layers in each of five convolutional blocks except the

representative layers. The depth was increased to 37 and 52 by inserting additional convolutional layers

in each convolutional block: 0, 6, 4, 4, and 4 layers were inserted in the first to fifth convolutional blocks

for depth of 37, and 5, 8, 8, 6, and 6 layers were inserted in the first to fifth convolutional blocks for depth

of 52. These models achieved 0.58, 0.72, 0.63, and 0.68 ImageNet top-1 accuracies, respectively.

All DNNs were trained with an image category classification task on the ImageNet ILSVRC 2012 dataset.

The batch size was 64 and the learning rate was 0.01, which was multiplied by 0.1 for every 20 epochs.

The cost function was cross-entropy with L2 penalty. The coefficient of the L2 penalty term was

5 3 10^(-4). DNN weights were optimized by gradient descent with momentum (Qian, 1999) with a mo-

mentum term of 0.9. Dropout operations were inserted into every fully-connected layer except for the

last layer. The dropout rate was set to 0.5. To prevent serious overfitting, we utilized early stopping based

on the validation set.

Feature importance analysis

We computed the proportion of input features (DNN unit or fMRI voxel) that contributed to prediction of at

least one of target features. Firstly, we computed correlation coefficients between each pair of target

feature and input feature. For each target feature, we ranked input features with the absolute value of

the correlation coefficients between the target feature and each input feature. We then performed a de-

coding/encoding analysis while adding the input features one by one in order of the input features’

ranking, and computed the prediction accuracy. We terminated this operation when the prediction accu-

racy reached 95% of that when all input features were used, and obtained the index of input features that

were not used for the prediction. We repeated this procedure for randomly selected 1000 target features,

and took the intersection (AND) of the indies for all target features. The input features included in the
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intersection did not contribute to the prediction of any target features. The proportion of input features

contributing to prediction was obtained by 1 – the proportion of the non-contributing features.

QUANTIFICATION AND STATISTICAL ANALYSIS

A permutation test was applied to examine whether the Spearman rank correlation coefficient between

the BH score and image recognition performance is significantly deviated from zero (Figure 3). The

tail probabilities of Spearman’s rho were computed using the Edgeworth series approximation (David

et al., 1951).
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