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Abstract: Background: Diagnostic methods for the early identification of ovarian cancer (OC)
represent an unmet clinical need, as no reliable diagnostic tools are available. Here, we tested
the feasibility of electronic nose (e-nose), composed of ten metal oxide semiconductor (MOS) sensors,
as a diagnostic tool for OC detection. Methods: Women with suspected ovarian masses and healthy
subjects had volatile organic compounds analysis of the exhaled breath using e-nose. Results:
E-nose analysis was performed on breath samples collected from 251 women divided into three
groups: 86 OC cases, 51 benign masses, and 114 controls. Data collected were analyzed by Principal
Component Analysis (PCA) and K-Nearest Neighbors’ algorithm (K-NN). A first 1-K-NN (cases
vs. controls) model has been developed to discriminate between OC cases and controls; the model
performance tested in the prediction gave 98% of sensitivity and 95% of specificity, when the strict class
prediction was applied; a second 1-K-NN (cases vs. controls + benign) model was built by grouping
the non-cancer groups (controls + benign), thus considering two classes, cases and controls + benign;
the model performance in the prediction was of 89% for sensitivity and 86% for specificity when
the strict class prediction was applied. Conclusions: Our preliminary results suggested the potential
role of e-nose for the detection of OC. Further studies aiming to test the potential adoption of e-nose
in the early diagnosis of OC are needed.
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1. Introduction

It is estimated that over 22,000 new cases of ovarian cancer (OC) will be diagnosed and that 14,000
women will die of this disease in 2020 only in the U.S. OC is the fifth most common cancer in women
and the most common cause of gynecologic cancer deaths, thus being one of the most lethal cancers
in women [1]. Nearly three cases out of four were diagnosed in the advanced stage of the disease
(International Federation of Gynecology and Obstetrics (FIGO) stage III or IV) at presentation [2].
The absence of valid screening programs and the rapid spread through the peritoneal surface represent
the main determinants for ovarian cancer lethality. In fact, to date, no screening test is accurate
and reliable enough to detect OC in women. Growing evidence suggested that clinical examination,
transvaginal ultrasound, and CA-125 dosage are not enough to detect early-stage OC in the general
population [3]. Recently, the Food and Drug Administration (FDA) has provided recommendations
against the use of currently offered tests for OC screening, stating that these tests should not be used
due to the high rate of false results [4].
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Accumulating evidence has shown that analyzing the volatile organic compounds (VOC) in
biological fluids such as blood, urine, and breath might provide promising biomarkers for several
diseases, including solid tumors [5–7]. VOCs are gaseous molecules that can be sampled quickly and
non-invasively from breath. They can originate either from within the body (endogenous VOCs) or
from external sources, including medications and environmental exposure (exogenous VOCs). As
other gasses (including O2 and CO2), VOCs pass from the bloodstream into the lungs. Nowadays,
breath analyses are applied in medicine and clinical pathology as a non-invasive and comfortable way
for individual health state evaluation [8–11]. Recently, e-nose has been used in breath analysis for
the diagnosis of renal diseases, diabetes, asthma [8–11]. The application of the e-nose has extended
in oncology, specifically in patients with lung cancer, and has also been investigated in the prostate,
colonic, breast, and head and neck cancers with promising results [12–19]. Growing evidence suggests
that cancer metabolism alters the volatile part of the metabolome that are present in various body
fluids, including tissues, blood, and breath [20–22]. The central hypothesis of our work is that, since
OC has characteristics of a systemic disease, it is possible that metabolomes produced by cancer cells,
might be detected in the exhaled breath of OC patients. In the present paper, we aimed to collect
preliminary data to determine whether this technology could be used as a diagnostic tool to triage
patients with OC.

2. Results

Two hundred eighty-eight (288) exhaled breath samples were collected during the experimentation.
Data from 37 patients were excluded since 28 samples were not analyzed on the same day of sample
collection, and nine patients were excluded since they did not match inclusion criteria. Then, 251
subjects met the inclusion criteria and were included in the final analysis. The study population
was divided into three main groups: (1) controls—healthy subjects without adnexal masses (114
patients; 45.4%); (2) OC cases—women with malignant adnexal masses (86 patients; 34.3%); (3)
benign disease—women with suspect adnexal masses with evidence of benign disease at histological
evaluation (51 patients; 20.3%). The main characteristics of the study population are displayed in Table
S1. Histopathological diagnosis of malignant masses included: high-grade serous ovarian cancer (n =

63), low-grade serous ovarian cancer (n = 8), mucinous ovarian cancer (n = 5), ovarian carcinosarcoma
(n = 2), endometrioid ovarian cancer (n = 2), and other malignant entities (n = 6). The whole population
of OC cases included 32 (37.2%) patients with early-stage disease (i.e., stage I–II), and 54 (62.8%)
patients with advanced-stage OC. Details of the histopathological findings are reported in Table S2.

2.1. E-Nose Analysis and Sensor Selection

Figure 1 shows the sensor signals collected during the sampling phase on a case (a) and a control (b)
sample. The x-axis represents the sampling time, while the sensor responses are reported on the y-axis.
As displayed in Figure 1, the sensor responses gradually increased during sampling, reaching a plateau
after 15–20 s. From the histograms representing the responses collected after 40 s of sampling, it is
possible to notice that the sensor signals were lower for the control sample, while for the OC case, three
sensors (S2, S6, and S7) showed significantly increased signals. To select the MOS sensors relevant for
OC cases detection, an interval plot was primarily built on the e-nose dataset transformed by column
autoscaling to eliminate the numerical differences between variables. The interval plot shows the 95%
confidence interval for the mean value of each group. The difference among groups is statistically
relevant only if there is no overlap of the indicator bars, and the width of the intervals correlates with
the amount of variation in the data.

Figure 2 shows the comparison performed on data collected by each e-nose sensor for two groups
(OC cases, including early and advanced stage, and controls). A statistically significant difference
between cases and controls was highlighted for eight sensors, while for two sensors (S4 and S10),
the overlapping of the indicator bars showed that the two classes were not different at the given
level of confidence (α: 0.05). Furthermore, controls were characterized by small intervals showing
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more consistent data and less variation, while the wide intervals of OC cases indicated a significantly
higher variation.Cancers 2020, 12, x  3 of 13 
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Figure 1. Metal oxide semiconductor (MOS) sensor signals for a case (a) and control (b) sample.
The histograms represent the responses after 40 s of sampling for the 10 e-nose sensors (S1–10).
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Figure 2. Interval plot of electronic nose data set for the ovarian cancer (OC) cases (red) and controls
(green).
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A further Principal Component Analysis (PCA) elaboration was applied to data collected by
the eight selected metal oxide semiconductor (MOS) sensors, to identify the most informative sensors
useful in discriminating OC cases from non-cancer samples (i.e., controls and benign disease). Figure 3
displays the PCA score plots (a1 and a2) and loading plots (b) of the data collected on OC cases (red),
benign disease (yellow), and controls’ (green) samples.
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Figure 3. Principal Component Analysis(PCA) score plots (a1,a2) and loading plot (b) of electronic
nose data collected on control (green), benign (yellow), and case (red) samples. In the score plot (a1)
empty symbols are for premenopausal (pre-m) patients, and full symbols are for postmenopausal
(post-m) patients. In the score plot (a2) empty black symbols are for early-stage patients. Two score
pots were elaborated to: i. discriminate premenopausal and postmenopausal patients (Figure 3(a1)). ii.
evaluate the plot distribution for early-stage ovarian cancer (OC) patients (Figure 3(a2)).

As shown in Figure 3(a1), control samples (full and empty green symbols) are grouped in
the negative part of the first Principal Component (PC) and are well discriminated by OC cases (full
and empty red symbols), characterized by higher PC1 scores and more dispersed along with the first
and second PCs. Notably, the overlap between these two groups is very limited. Benign disease
samples (full and empty yellow symbols), located in the middle of the plot, show partial overlap with
both cases and controls. No grouping can be highlighted considering the pre- (empty symbols) and
post (full symbols) menopausal patients.

In Figure 3(a2), early-stage patients are put in evidence (empty black symbols) to evaluate their
distribution in the plot. Early-stage patients are dispersed in the right side of the plot along with
cases, thus highlighting the ability of the e-nose to recognize them as cases and to discriminate early
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stages from healthy controls and benign. The loading plot (Figure 3b) identified four sensors, which
were more suitable to discriminate among different samples: S1 sensor was selected for its ability to
characterize control samples; S2, S6, and S7 sensors were selected for their ability to discriminate OC
cases through significantly increased response signals. The ability of the e-nose in identifying OC
cases was irrespective from the CA125 levels (data not shown) and from the tumor size (≤3/>3 cm)
(Figure S1). The e-nose was able to discriminate OC cases based on their histology (high-grade serous
vs. other). Although all OC cases were clustered in the same group, cases characterized by non-serous
histology were homogeneously grouped on one corner of the OC group, thus suggesting that e-nose
could potentially discriminate among different histology and biology (Figure S2).

2.2. K-Nearest Neighbours Models Development

The predefined groups were used as a-priori information (Y) to build classification models based
on the e-nose data collected by the four selected sensors (X). The applied classifier (KNN) was evaluated
by three metrics: sensitivity, specificity, and accuracy. These were computed on the basis of four factors
(Table S3): True Positive (TP), False Positive (FP), True Negative (TN), and False Negative (FN). Two
models were elaborated to discriminate between OC cases and non-cancer patients. Both models were
developed using strict and most probable prediction approaches for a class assignment. A first 1- K-NN
(cases vs controls) model was developed to discriminate between OC cases and controls (Table 1).

Table 1. Figures of merit for the K-Nearest Neighbors (KNN) model developed for cases vs. controls:
sensitivity (Sens), specificity (Spec), and accuracy (Acc) are reported for the strict and the most probable
assignation of the classes.

Model
Calibration Cross-Validation Prediction

Classes N Sens Spec Acc Sens Spec Acc N Sens Spec Acc

Strict
prediction

Cases 58 91% 95% 93% 93% 99% 95% 28 93% 100% 96%

Controls 76 95% 91% 93% 96% 90% 95% 38 100% 93% 96%

Global 134 94% 93% 93% 95% 93% 95% 66 98% 95% 96%

Most
probable

prediction

Cases 58 100% 100% 100% 93% 96% 95% 28 100% 100% 100%

Controls 76 100% 100% 100% 96% 93% 95% 38 100% 100% 100%

Global 134 100% 100% 100% 95% 94% 95% 66 100% 100% 100%

The model was built using a calibration dataset of 58 cases and 76 controls, which was internally
validated (cross-validation). The sensitivity, specificity, and accuracy of the strict class prediction
approach were 95%, 93%, and 95%, respectively. Two out of the nine misclassified patients were
early-stage patients, while the other 21 early-stage patients included in the cross-validation were
correctly recognized as OC cases.

The remaining e-nose data (28 cases and 39 controls) were used to test the model capability in
prediction, and confirmed its reliability to discriminate cases from controls (98% of sensitivity, 95%
of specificity, and 96% of accuracy). Only a single early-stage patient was misclassified as a control,
while the other eight early-stage patients included in the prediction test set were correctly assigned
to OC cases. The most probable class assignation gave a perfect prediction of both classes, with
a 100% accuracy.

A second 1-K-NN (cases vs. controls + benign) model was built by grouping the two non-cancer
groups (benign disease and controls). The two classes considered in this model were: OC cases (n = 86)
and controls (n = 114) plus benign disease (n = 51). The original dataset was split into a calibration set
(70% of the data) and a test set (30% of the data). The model performance was tested in cross-validation
and prediction. When the class prediction was applied, a sensitivity of 86%, a specificity of 84%, and
an accuracy of 85% were achieved in cross-validation. Four out of 23 early-stage patients and two out
of 14 patients with tumor size ≤ 3 cm were misclassified in the cross-validation phase. The prediction’s
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performance of this model had 89% sensitivity, 86% specificity, and 87% accuracy. In this validation
phase, only one out of nine early-stage patients was misclassified. The most probable class assignation
gave a perfect prediction of both classes, with a 100% accuracy (Table 2).

Table 2. Figures of merit for the KNN model developed for cases vs. controls + benign: sensitivity
(Sens), specificity (Spec), and accuracy (Acc) are reported for the strict and the most probable assignation
of the classes.

Model
Population Calibration Cross-Validation Prediction

Classes N Sens Spec Acc Sens Spec Acc N Sens Spec Acc

Strict
prediction

cases 58 79% 89% 84% 81% 89% 85% 28 82% 93% 87%

controls 110 89% 79% 84% 89% 81% 85% 55 93% 82% 87%

global 168 86% 83% 84% 86% 84% 85% 83 89% 86% 87%

Most
probable

prediction

cases 58 100% 100% 100% 81% 89% 85% 28 100% 100% 100%

Controls
+ benign 110 100% 100% 100% 89% 81% 85% 55 100% 100% 100%

global 168 100% 100% 100% 86% 84% 85% 83 100% 100% 100%

3. Discussion

The present study investigated the role of e-nose as a diagnostic tool for the detection of OC,
thus reporting several noteworthy findings. First, e-nose could discriminate between breath samples
collected from OC cases and non-cancer patients, albeit in a small and limited cohort of patients.
Second, our study identifies four specific e-nose sensors, which can have a potentially relevant
role in the detection of OC cases. Third, our models are characterized by high levels of sensitivity,
specificity, and accuracy for the analyzed cohort of samples. Additionally, we observed that e-nose
could discriminate between early-stage and advanced OC and controls, also regardless of patients’
age. However, this observation was limited due to the small numbers, unequal distribution of cancer
subtypes, and the low prevalence of the early-stage disease in our cohort.

The exhaled breath contains hundreds of VOCs, which reflect the metabolic processes of both
normal and cancer cells, and can be detected by the e-nose technology. The feasibility of the e-nose in
the diagnostic workup of several diseases has been investigated, suggesting that potentially e-nose
might discriminate among types of different diseases [12–21]. There is a growing body of literature
suggesting that e-nose could be considered a useful tool for the early detection of lung and head
and neck cancers [15,19,20,23]. A recently published review and meta-analysis on 14 studies testing
the e-nose in patients with lung cancer, suggested that this method has high (>80%) sensitivity and
specificity in discriminating between patients with lung cancer and healthy subjects [9]. In the field
of oncology, e-nose might be useful not only from a diagnostic point of view but also for monitoring
disease response during treatment [24]. Recently, de Vries observed that the e-nose assessment was
effective for the non-invasive prediction of a patient’s disease response during immunotherapy [24]. In
a prospective study on 143 non-small cell lung cancer patients, e-nose allowed baseline discrimination
between responders and non-responders to immune checkpoint inhibitors, with potential implications
in predicting response to treatment [24].

An in vitro study tested e-nose for the detection of OC [25]. This study compared samples of
high-grade serous OC with samples of healthy tissues (adnexal and uterine tissues). They observed
that the e-nose correctly classified 84.4% and 86.8% of cancer and healthy tissues, respectively [25].
More recently, Amal et al. performed a pilot study testing the role of e-nose in OC prediction [26].
This study analyzed samples and data of 182 women, with the following distribution among groups:
48 OC patients, 48 controls, and 86 patients with benign disease. The nanoarray output showed
the potential utility of e-nose in discriminating between OC patients and controls (79% sensitivity,
100% specificity, and 89% accuracy) [26]. These preliminary results highlighted that efforts are needed
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to improve the sensitivity and accuracy of the e-nose. Here, we developed two models that could
improve the diagnostic value of e-nose.

Screening and diagnostic methods for early diagnosis of OC represent an unmet clinical need, as
no reliable screening and diagnostic devices are available. Since the diagnosis of OC is challenging,
investigation of new a highly sensitive (at least 80%) and specific (as close as possible to 100%) test
is paramount. We auspicate that the adoption of e-nose (in addition to conventional tests) would be
useful in triaging patients needing further diagnostic and therapeutic procedures. Based on the results
of the present exploratory study, the proposed approach seems to be promising; but it needs further
validation. Besides, even in the presence of benign gynecologic disease, the 1K-NN model approximates
quite satisfactorily the target values established for specificity and sensitivity when a strict prediction
approach was applied, while for the most probable prediction approach, the target values are satisfied.

In the present paper, we performed a preliminary analysis evaluating the use of the e-nose in
detecting OC. Our paper highlighted that the specificity in discriminating between OC and benign
lesions was 86%. Although specificity is not very high, it is similar to those achieved with other
available models. In particular, the IOTA group (International Ovarian Tumor Analysis) elaborated
models to identify early-stage OC. In a recent paper, the IOTA group compared the performance of
the Simple Rules Risk (SRR), and the Assessment of Different NEoplasias in the adneXa (ADNEX)
model. This model was based on ultrasound, CA125 levels, and several other anamnestic features. At
a 1% risk cut-off, specificity for SRR was 38.0% (35.5% to 40.6%), and for ADNEX was 19.4% (17.4% to
21.5%). At a 30% risk cut-off, specificity for SRR was 81.1% (79% to 83%), and for ADNEX was 84.5%
(82.6% to 86.3%). The specificity reported with e-nose is higher than the specificity provided with these
models, which is quite low [27]. Moreover, as evidenced in Table 2, the most probable class assignation
gave a perfect prediction of both classes leading to 100% sensitivity and specificity.

E-nose achieved higher specificity values than those obtained based on a combination of CA125
levels and ultrasound. It is not surprising, since ultrasound and CA125 are not characterized with high
specificity. Moreover, we can speculate that a new diagnostic algorithm, incorporating e-nose data with
anamnestic, clinical, radiological (i.e., ultrasound) and humoral (i.e., CA125) features, would improve
the specificity of this test that allows us to identify patients with OC in the early phase of the disease.
The main strength of the present investigation includes the prospective evaluation of consecutive
women diagnosed with suspected ovarian masses (including OC and benign ovarian masses) and
healthy subjects. Other strengths of the study are: (i) the possible application of a simplified e-nose
(based on the four selected sensors) that represents an innovative and promising tool for screening,
diagnosis, and prognosis of patients with OC; and (ii) the development of two mathematical models
that might be applied to simplify the interpretation of the results provided by e-nose.

Six points of our study deserve to be addressed. First, we observed that altered VOCs is a symptom
of OC; therefore, the next step will be to investigate in a large population if altered VOCs might be
predictive for higher risk of developing OC in comparison to normal VOCs, allowing to identify
patients at risk, regardless the presence of ovarian masses. Second, the presence of different types of
OC may have influenced the findings of the current study; future studies should stratify the results
according to disease histology to assess potential differences in the e-nose detection accuracy. Third,
the impact of other tumors (e.g., lung cancer) on the VOCs has to be tested to investigate the potential
confounding effects on VOCs. Fourth, the inherent biases related to the relatively small sample size
requires further studies to confirm the clear efficacy profile of e-nose. Fifth, further evidence is needed
to assess the role of e-nose for screening and diagnostic purposes. Finally, our study suggested that
the size of the tumor (<3cm vs. >3 cm) did not impact on the diagnostic ability of e-nose. However,
further investigations are needed to assess the possible existence of the “lower detectable volume”
and to clarify the effective diagnostic value of e-nose in the early phase of the disease. It is important
to highlight that our results should be considered preliminary. This is a preliminary experience to
determine whether this technology could successfully triage patients with OC. Further evidence is
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warranted to evaluate the real advantages of adopting e-nose and how to improve the specificity of
this approach.

4. Methods

4.1. Ethical Approval and Recruitment of Subjects

This is a case-control prospective study. The Institutional Review Board (IRB) approved this
study (INT-D237354: 011/11). The study population included all consecutive patients with adnexal
masses treated at the National Cancer Institute (Milan - Italy) from 1 March 2018 to 30 April 2019. All
the patients signed written consent for research purposes. The exclusion criteria were: age < 18 years,
presence of synchronous solid cancer (within five years), surgery for recurrent disease, and consent
withdrawn. All consecutive patients diagnosed with adnexal masses scheduled to have surgery were
included in the study. Additionally, we included a control group of healthy subjects without ovarian
abnormalities. All the controls had a negative ultrasonographic examination. According to the study
protocol, all exhaled breaths were analyzed on the same day of sample collection. OC patients included
in the study had staging surgery or cytoreduction according to the disease characteristics. Details
regarding our surgical practice were reported elsewhere [28,29]. The stage of the disease and grading
were assessed using the International Federation of Obstetrics and Gynecologists (FIGO) system.
Histological subtypes were reported according to the World Health Organization (WHO) system [29].
Patients with adnexal masses were tested the day before surgery, while healthy controls were tested at
their convenience. No patient was under active oncologic treatments. The present research follows both
the STARD and Transparent Reporting of a multivariable prediction model for Individual Prognosis or
Diagnosis (TRIPOD) guidelines for a study investigating diagnostic accuracy [30,31]. The objective of
the adoption of the STARD and TRIPOD guidelines is to improve the completeness and transparency
of the reporting of studies of diagnostic accuracy, to allow readers to assess the potential for bias in
the study (internal validity), and to evaluate its generalizability (external validity) [30,31].

4.2. Sample Collection

The sample collection started without specific conditions since 2016. A preliminary feasibility
study was conducted collecting data from 150 patients. The evaluation of these preliminary data
allowed the identification of the correct sampling condition and its reliability (data regarding our
preliminary experience are reported in Table S1). For the present work, e-nose data were collected from
1 March 2018, to 30 April 2019. During this period, exhaled breath samples were collected between
7.00 and 7.30 a.m. from fasting patients (i.e., patients were not allowed to take any food and beverages,
except water, since midnight before sampling. Similarly, smoking was not allowed since the night
before sampling. An accurate description of the method used for the collection of exhaled breath
is reported elsewhere [17]. Briefly, subjects breathed through a Teflon mouthpiece in a homemade
Nalophan bag (30 × 20 cm) taking care to evaluate alveolar breath that refers to the last portion of
the exhaled breath, expelled from within the lungs and the lower-airways, which have undergone
gaseous exchange with the blood in the alveoli. A healthy adult expires approximately 500 mL air
with each breath, of which the first 150 mL consists of dead-space air (no transfer of oxygen) from
the upper air ways and nasopharynx. Therefore, patients and controls were asked to perform a single
slow vital capacity breath, to trap the last 350 mL of exhaled breath. Breath samples were analyzed by
e-nose on the same collection day.

4.3. Electronic Nose Analysis

Measurements of breath samples were performed by a commercial and portable e-nose (PEN 3,
Win Muster Airsens Analytic Inc., Schwerin, Germany). The sensor array is composed of 10 Metal Oxide
Semiconductor (MOS) sensors of different chemical composition, thickness and working temperature,
to provide sensitivity and selectivity towards volatile compounds as indicated by the instrument
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supplier: S1 (aromatic compounds), S2 (broad-range compounds, polar compounds, nitrogen oxides,
and ozone), S3 (ammonia, aromatic compounds, aldehydes, and ketones), S4 (hydrogen), S5 (alkanes,
aromatic compounds, and less polar compounds), S6 (methane and broad-range compounds), S7 (sulfur
compounds, terpenes, and sulfur organic compounds), S8 (alcohols, partially aromatic compounds,
and ketones), S9 (aromatic compounds and sulfur organic compounds), and S10 (methane). During
the sampling procedure, the breath samples contained in the bags were pumped over the sensor
surfaces for 50 seconds (sampling time) during which the sensor responses were recorded; the flow rate
was set at 400 mL/minutes. After sample analysis, the sensors were purged for 180 seconds with filtered
air (purging time), then, before the next sample injection, the sensor baselines were re-established
for 5 seconds. The sensor response corresponded to the fractional value obtained by subtracting
the resistance signal of the baseline (R0-ohm) from the resistance signal of the sensors (R-ohm) and
dividing by the resistance signal of the baseline (R0), thus providing a dimensionless, normalized
response. Data were acquired after 40 seconds of sampling. Each breath sample was analyzed in
duplicate, and the average of the sensor data was used for the statistical elaboration. Biostatisticians
who analyzed e-nose data were blinded (i.e., not aware of the patients’ diagnoses) when performing
the analyses.

4.4. Statistical Analysis

The e-nose data were transformed by column autoscaling and then explored by basic descriptive
statistics and by multivariate statistical techniques as Principal Component Analysis (PCA) and
the K-Nearest Neighbors’ algorithm (K-NN). PCA is an unsupervised exploratory procedure that
allows us to explore in a reduced space the data structure and the relationships between objects
and variables, thanks to graphical outputs (i.e., score plot, loading plot, and bi-plot) [32,33]. To
develop the classification models, the K-Nearest Neighbors’ algorithm (K-NN) was used. K-NN is
a simple non-linear classification approach based on Euclidean distance; it is one of the less prone
to overfitting thanks to the simplicity of its algorithm, which does not include the optimization of
numerous parameters and does not require any assumptions on the underlying data distribution. In
detail, K-NN predicts the class membership of a sample based on the class of the K nearest sample(s)
in the multidimensional space; in this work, a K value of 1 was applied. Before the development of
the classification models, each dataset was split by the Kennard–Stone algorithm [32–34] into a training
and a test set composed of about 70% and 30% of the original samples, respectively. The training dataset
was used for the classification rule development, and the internal validation by cross-validation with
five cancellation groups, whereas the test set was used to test the model’s performance in the prediction.
The class predictions are based on predicted class probabilities for samples; different approaches can
be applied to assign a sample to a specific class. In this work we applied two strategies, namely
strict class prediction and most probable prediction. Strict class prediction assigns each sample to
a specific class if the belonging probability is greater than a specified threshold probability value (p
> 0.5) for one and only one class. This approach leads to the possibility of unassigned or multiple
assignments of the samples. Indeed, if a sample has a probability lower than the threshold for the two
classes, no class could be assigned to the sample. On the contrary, if a sample exceeds the threshold
in the two considered classes, it will be assigned to both. This prediction provides the most safety
in-class assignment but could lead to poorer figures of merits. Moreover, the most probable approach
has been applied to assign samples to classes. In this case, samples are assigned to the class reaching
the highest probability regardless of the magnitude of that probability. Even if more than one class
has a probability higher than 0.50, the sample will be assigned to the one with the highest probability;
likewise, if all probabilities are below 0.50, the sample will be assigned to the one with the largest
probability. This approach is advantageous if there is a need for a class assignment and if "no class" or
“multiple class” has no meaning. In our case, this approach is adequate since we must assign samples
in the predefined classes.
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For both approaches, the classification performance was evaluated by considering the accuracy,
corresponding to the probability of doing a correct classification; the sensitivity, corresponding to
the probability to classify a subject as a case when this is true (true positive rate); the specificity,
corresponding to the probability of classifying a subject as control when this is true (true negative rate).
All the data analyses were performed under the Matlab environment (R2017b, The Mathworks Inc.,
Natick, MA, USA), eventually using the PLS toolbox (ver. 8.5, Eigenvector Research Inc., Manson, WA,
USA) software package.

5. Conclusions

Our data suggest that e-nose is a non-invasive, appealing technique that might be useful during
an OC workup. To date, our data should be considered preliminary. They represent the basis for
further studies. Further large prospective studies are needed to confirm our data. OC represents
a group of heterogeneous diseases [35–40]; therefore, further investigations are needed to evaluate
the applicability of e-nose in detecting various OC types. The new perspective is the implementation
of this device in the new collection of exhaled breath samples on a larger population to validate
these results and build more robust classification models. Additionally, further investigations would
evaluate the role of e-nose alone and in combination with other diagnostic tools, such as the ROMA
and ADNEX models.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/9/2408/s1,
Figure S1: The impact of tumor size on e-nose signals, Figure S2: The impact of histology on e-nose signals, Table
S1: Baseline patients’ characteristics, Table S2: Final histological diagnosis for patients with adnexal masses who
had surgery, Table S3: Generic confusion matrix identifying true positive (TP), false positive (FP), true negative
(TN), false negative (FN) and the reference equation to calculate sensitivity (SENS) and specificity (SPEC).
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