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Tuberculosis (TB) is a worldwide health problem; successful interventions such as
vaccines and treatment require a 2better understanding of the immune response to
infection with Mycobacterium tuberculosis (Mtb). In many infectious diseases, pathogen-
specific T cells that are recruited to infection sites are highly responsive and clear infection.
Yet in the case of infection with Mtb, most individuals are unable to clear infection leading
to either an asymptomatically controlled latent infection (the majority) or active disease
(roughly 5%–10% of infections). The hallmark of Mtb infection is the recruitment of immune
cells to lungs leading to development of multiple lung granulomas. Non-human primate
models of TB indicate that on average <10% of T cells within granulomas are Mtb-
responsive in terms of cytokine production. The reason for this reduced responsiveness is
unknown and it may be at the core of why humans typically are unable to clear Mtb
infection. There are a number of hypotheses as to why this reduced responsiveness may
occur, including T cell exhaustion, direct downregulation of antigen presentation by Mtb
within infected macrophages, the spatial organization of the granuloma itself, and/or
recruitment of non-Mtb-specific T cells to lungs. We use a systems biology approach
pairing data and modeling to dissect three of these hypotheses. We find that the structural
organization of granulomas as well as recruitment of non-specific T cells likely contribute
to reduced responsiveness.
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INTRODUCTION

Tuberculosis (TB) is caused by infection with Mycobacterium
tuberculosis (Mtb). It is one of the leading causes of death due to
infectious disease, killing 1.7 million people per year (1). The
pathologic hallmark of this infection is the formation of lung
granulomas, which are collections of host immune cells (e.g.
macrophages & T lymphocytes) that organize in an attempt to
contain and eliminate the infection (2–4). Although bacterial
infection preferentially occurs within macrophages, T cells are
key players in the proper functioning of granulomas, and are
necessary for macrophage activation (2, 5–7).

T cells play a central role in the host adaptive immune response.
CD4+ T cells are activated by binding MHC class II (MHCII)
complexes on the surface of antigen presenting cells like
macrophages. CD4+ T cells provide help for CD8+ T cells and
once activated, both CD4+ and CD8+ T cells serve a number of
immune roles such as cytotoxic function, regulatory function, and
cytokine production, (e.g. interferon-gamma (IFN-g) and TNF) that
recruit other immune cells and activate macrophages (8–11).
Activated macrophages kill Mtb and also produce cytokines and
chemokines that recruit other immune cells (2, 12, 13). Mtb-specific
T cells play an important role in controlling Mtb infection by
influencing the initiation and maintenance of the adaptive immune
response, leading to formation of lung granulomas (14, 15). T cells
have been shown to be necessary for control of Mtb infection in
studies in non-human primates (NHPs) and mice (16–20), and also
from studies from humans who are co-infected with HIV-1 and do
much worse. Since granulomas are the infection sites within lungs
and provide the potential for frequent interactions betweenMtb and
host immune cells, we expect them to be enriched in Mtb-
responsive T cells (i.e. producing cytokines in response to Mtb).
Surprisingly, it has been observed that in granulomas from non-
human primates, on average <10% of T cells are producing
canonical T cell cytokines (IFN-g, TNF, IL-2, IL-17, or IL-10)
throughout the course of Mtb infection (21). This low level of
cytokine-producing T cells could be one explanation for how
granulomas balance excessive inflammation with bacterial control.
Regardless, since 2 billion people in the world are infected with TB,
it is useful to understand this delicate balance of T-cell
responsiveness and why the frequencies of cytokine-producing T
cells in granulomas are lower than expected.

There are a few lines of thinking that have been explored to
date to explain these observed low levels of Mtb-responsive T cells
observed during infection. One hypothesis is that T cells may
become exhausted during Mtb infection, as exhausted T cells have
been described in other chronic infectious diseases (22–25).
However, we have shown through both experimental and
computational work that T cell exhaustion is limited in most NHP
TB granulomas (26). A second hypothesis is that T cells are down-
regulated directly by the action of Mtb. Mtb’s role in regulating parts
of the immune system has been established in studies involvingMtb-
derived glycolipids inhibiting pathways in antigen presentation (27–
31). Downstream, this would lead to reduced stimulation of T cells.
A third hypothesis is that the spatial organization of granulomas
affects the ability of T cells to reach macrophages and thus be
Frontiers in Immunology | www.frontiersin.org 2
activated via antigen presentation (32–34). The structural
organization of granulomas tends toward a typical pattern: Mtb
are mostly found within the caseous necrotic core or in epithelioid
macrophages adjacent to the core of granulomas, which is then
surrounded by layers of macrophages and lymphocytes (35). We
provided evidence that T cells had a higher likelihood of exhaustion
after penetrating deeper into the granuloma where they could
encounter Mtb antigen, but this penetration of T cells occurs
infrequently in established granulomas (26). Compounding T cell-
macrophage interaction dynamics is the recruitment of T cells into
granulomas. T cells localize to and are rapidly recruited into
mycobacterial granulomas in the absence of antigen recognition
(36–38). If the majority of T cells recruited are Mtb non-specific,
Mtb-specific T cells would be less likely to find macrophages and
become fully activated due to crowding. Thus, a fourth hypothesis is
that non-specific T cells are recruited to granulomas. During chronic
infections, there are ongoing signals that can recruit non-specific T
cells into lungs due to both the inflammatory nature of granulomas
and also the highly vascularized lung environment. In addition, it has
also been shown that 90% of non-Mtb-specific T cells are lung tissue
resident memory T cells (39, 40). Here we test hypotheses to
determine the potential contribution of Mtb modulation,
granuloma spatial organization, and T cell recruitment. Our goal is
to determine how these factors contribute, either alone or together, to
the relatively low levels of observed cytokine-producing T cells
established within granulomas during Mtb-infected NHPs.

To address these studies, we need an approach that can explore
and compare these hypotheses. The spatial organization of
granulomas is crucial to outcomes, as has been suggested in
NHPs, mice and rabbit studies (36, 41, 42). In addition,
temporal dynamics are important, tracking discrete cells and
bacteria as they evolve over the course of granuloma formation
and maintenance. Finally, events that participate in the immune
response to Mtb occur over biological scales ranging from
molecules to cells to tissue. Thus, our approach must
accommodate all of these features. To this end, we use a systems
biology approach, pairing computational multi-scale modeling
with experimental studies in NHPs. Our lab has previously
created a multi-scale (intracellular through tissue scales) agent-
based model (ABM), GranSim, that tracks bacteria and individual
immune cells as agents (26, 32, 33, 43–45). This model captures
the host response to Mtb and allows spatial tracking of granuloma
formation and function. It also tracks bacterial heterogeneity in
terms of growth and division by following each individual
bacterium within its micro-environments (intracellular,
extracellular and trapped within caseum) over time. Using an
agent-basedmodel has the additional advantage that it can capture
emergent behavior (in this case, the formation of the granuloma)
through rules governing immune cell interaction. Herein, we
modify GranSim to include an additional sub-model that tracks
intracellular-level dynamics of macrophage antigen presentation
to examine the impact of Mtb on antigen presentation and thus to
T cell outcomes within granulomas. To do this, we integrate our
previously published model of Mtb-mediated down-regulation of
MHCII presentation of peptides (46, 47) within each macrophage
in GranSim. This will allow us to explore mechanisms of Mtb
January 2021 | Volume 11 | Article 613638
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downregulation of antigen presentation on T-cell responsiveness.
At the same time, this multi-scale model can aid understanding of
how granuloma structure impacts macrophage and T cell
dynamics and also how recruitment to lung granulomas
balances T cell specificity/non-specificity. We pair our modeling
studies with datasets from NHP granulomas to calibrate and
validate our models and predictions.
METHODS

Immunohistochemistry and Imaging
Four randomly selected, formalin fixed paraffin embedded
(FFPE) granulomas were derived from 3 cynomolgus
macaques (Macaca fascicularis), necropsied at approx. 10-11
weeks post infection (Figures 1A–D), and were deparaffinized
and antigen retrieval was performed as previously indicated (35).
Granulomas were stained with cocktails of antibodies including
polyclonal rabbit anti-CD3 (Agilent Technologies, Santa Clara,
CA), IgG2a mouse anti-CD11c (clone 5D11; Leica Microsystems,
Buffalo Grove, IL). Primary antibodies were labeled with
fluorochrome-labeled secondaries including anti-isotype
Frontiers in Immunology | www.frontiersin.org 3
(IgG2a) specific antibodies (Jackson ImmunoResearch, West
Grove, PA). Coverslips were mounted with Prolong Gold
with DAPI (ThermoFisher Scientific) and the sections were
imaged on an Olympus FluoView confocal microscope (Center
Valley, PA) or Nikon e1000 epifluorescence microscope
(Nikon Instruments, Melville, NY) with Nikon NIS Elements
(Nikon Instruments).

Geographical Information Systems
to Extract T cell-Macrophage Interactions
in a Granuloma
Granulomas were obtained and stained as described above.
DAPI stained images were provided together with the
IHC. We applied an unsupervised classification, iso-cluster,
image-classification process to four randomly selected,
original immunohistochemically, stained NHP granuloma
digital microscopy images. This initial classification technique
generated between 28 and 45 classifications. Classes correspond
to different cell types, even portions of cells like cell borders,
caseum, cellular debris, sample background, and co-expression.
These initial classifications were collapsed to the single cell types
of interest. For accuracy assessment, the classified image was
superimposed onto the DAPI image to ensure that cell location
and size were correct. In addition, this process removed cellular
debris versus true cells. These classified raster images, where the
objects in the image are defined by individual pixels instead of
vectors, were then converted to vector-based or polygons and the
polygons were then assessed for classification errors. The two
different polygon images were subjected to a join technique that
recorded the locations where different polygons intersected.
From the classification process we created a raster, classified
image. This raster image was converted to a vector (polygons)
image (ArcPro 2.6). We extracted individual cell distributions by
cell type (T cells and macrophages only). We then performed a
spatial join (ArcPro 2.6) between the T cell/macrophage
distributions based on cell-cell interactions to determine
overlap and/or border interactions. The cells were marked on
the images, and the numbers of each type together with the
interactions were quantified.

Multi-Scale Model Overview
To test our three hypotheses and address how bacterial factors,
granuloma spatial organization and T cell recruitment lead to
reduced T-cell responsiveness, we create a next-generation
computational model. Briefly, the main model (mesoscale)
operates at the cellular/tissue scales, tracking host immune
cells and individual Mtb in the immune system environment,
leading to granuloma formation. GranSim is an agent-based
model (ABM) drawing on well-described cellular and pro- and
anti- inflammatory cytokine interactions that is continuously
updated and curated with the latest data. These dynamics are all
captured between immune cells and individual Mtb using
stochastic simulations, operating in two dimensions (2D) [with
versions working in three dimensions, but not used here (48)].
We now link an intracellular scale sub-model, capturing MHCII
processing and presentation by macrophages using a system of
ordinary differential equations (ODEs) previously described (46).
FIGURE 1 | Immunohistochemistry analysis of four non-human primates
(NHP) granulomas [shown in Panels (A–D)] examining spatial distributions of
both T cells and macrophages, and also where they intersect. Four distinct,
randomly chosen granuloma images with extracted cell distributions. Column
1 shows the immunohistochemically stained preparation for CD3 (green),
CD11c+ macrophages (red), and nuclei (dark blue). White points represent
Geographical Information Systems Technology (GIS) analyses of these images
revealing cell locations for T cells (Column 2), macrophages (Column 3), and
their intersections (Column 4), as follows. Rows represent four distinct
granulomas. The data for the cell numbers in these granulomas are given in
Table 2. On average, about 9.75% (median 8.6%, StDev is 4.5%) of T cells
interacted with macrophages.
January 2021 | Volume 11 | Article 613638
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The cellular/tissue scales and intracellular scale sub-model are
linked through the processes of IFN-g receptor ligand binding,
Mtb antigens, and MHCII Mtb-peptide complexes on
macrophage surfaces to activate T cells (Figure 2).

Cellular/Tissue Scale Model
Hybrid Multi-Scale Model (GranSim)
In this work we build an antigen presentation model into our
existing hybrid multi-scale agent-based model (ABM) of
granuloma formation, GranSim. GranSim has been curated
and used for testing hypotheses in TB since 2004. The model
has been developed in conjunction with extensive experimental
datasets regarding the immune response to M. tuberculosis
within the lungs of non-human primates (NHP), leading to the
formation of granulomas (32, 33) (see our detailed website http://
malthus.micro.med.umich.edu/GranSim for full model details,
all published manuscripts using this model and an executable
program). GranSim tracks the cellular immune response in lungs
following infection with Mtb that ultimately leads to emergence
of a granuloma (if the initial infection is not cleared). GranSim is
an agent-based (individual-based) model that is comprised of
five features:

Agents
Immune cells that are individually tracked as follows: four
macrophage states (resting, activated, infected, and chronically
infected- see below for more details), three T cell classes
(cytotoxic, IFNg producing, and regulatory), and cytokines and
chemokines IFN-g, TGF, IL10, TNF, CCL2, CXCL9, and CCL5.
In addition, individual bacterium are each tracked and are in one
of three environments leading to different growth states
(intracellular, extracellular and non-replicating trapped
in caseum).

The Environment
The model environment represents a section of lung tissue that is
4 mm x 4 mm in size, allowing for granulomas to grow to a size
that is average of what is observed in vivo. The grid is 2D
(although we have a 3D version available- see http://malthus.
micro.med.umich.edu/3D-GranSim/) and the model grid is
subdivided into 20 micron x 20 micron microcompartments.
20 microns is the average size of our largest immune cell class,
macrophages. The lung grid also is populated with blood vessels
that are placed on the grade based on NHP studies of healthy
lungs. These portals are where cells, chemokines, or cytokines
can enter the lung space.

Rules
Rules are based on probabilistic interactions between cells and
the lung environment, derived and validated on extensive
datasets of observed interactions of NHP immune cells and
molecules. The list of rules is extensive and it is housed on our
GranSim website.

Parameters
GranSim is parameterized by dozens of parameters that have
been estimated on datasets over the past 15 years. Further, we
Frontiers in Immunology | www.frontiersin.org 4
FIGURE 2 | Multi-scale model schematic showing the integration of the
intracellular scale model into the mesoscale cellular/tissue model. Within our
combined multi-scale model, the cellular/tissue scale is modeled with GranSim, an
agent-based model capturing dynamics of immune cells, effector molecules and
mycobacteria within lungs leading to formation of granulomas. Full cellular and
molecule dynamics are not shown for GranSim, only the places where the
intracellular model links with GranSim. For the intracellular model, 14 non-linear
ordinary differential equations (ODEs) are represented by this schematic for 14
variables (published previously and listed in Table S1 for reference here). GranSim
linking is accomplished via inputs to ODEs (green arrows) including the
concentration of free IFN-g (calculated based on T cell numbers) and concentration
of free Mtb antigen (calculated using the number of Mtb in a macrophage’s one
Moore neighborhood). The ODE output of MHCII-Mtb complexes on a
macrophage surface is linked back into GranSim (blue arrow). Once these
macrophages reach a threshold of surface MHCII-Mtb complexes, they are able
to activate T cells within their neighborhood.
January 2021 | Volume 11 | Article 613638
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study their values and impacts using both uncertainty and
sensitivity analyses. The last piece of an ABM is to define the
time steps of the fastest process occurring on the grid. Here, that
process is molecular diffusion, which is on a time scale of 6 s.
When simulated, GranSim computes rules and agents at the cell
and molecular scale and leads to emergent behavior of a
granuloma that reads out at the tissue scale. For an executable
file and detailed model rules, please see our website which is
continuously curated on a regular basis http://malthus.micro.
med.umich.edu/GranSim.

Intracellular MHCII Presentation Model
Antigen presentation occurs when an antigen presenting cell
presents foreign antigenic peptides to T cells to activate an
adaptive immune response. This process of antigen presentation
occurs within lymph nodes on a continual basis and in other
locations during infection. Within granulomas, activation of CD4
+ T helper cells depends on presentation of Mtb derived peptide–
MHC class II complexes (pMHCII) presented on the surface of
macrophages (13, 49). T cell activation is required for granulomas
to control infection, as it induces IFN-g secretion, which, in
conjunction with other factors, activates macrophages to kill
Mtb (13). This is the key step in Mtb cell-mediated immunity
and may help determine the outcome of infection (49). In baseline
GranSim, T cells are recruited to the site of the infection as already
activated, with their specificity based on parameter probabilities.
This tended to overshoot the proportion of activated T cells as we
identified previously in Figure S1 (21).

Previously, we created a model that describes MHC class
II-mediated antigen presentation by antigen-presenting cells
(46). This model is developed as an intracellular scale model
representing a single antigen presenting cell (e.g. a macrophage).
The model comprises 14 ODEs and was created in the context of
capturing datasets from multiple in vitro studies. The model
includes all of the intracellular events occurring during the
process of antigen presentation: INFg-receptor ligand binding,
leading to MHC class II transcription through CIITA and uptake
of Mtb antigens and the creation of host “self”-peptides, both
leading to MHCII peptide loading and expression on macrophage
Frontiers in Immunology | www.frontiersin.org 5
surface [see Table S1 for a full list of variables and ODE equations
from Chang et al. (46)]. This model was simulated over short time
scales as the process of antigen presentation, and the in vitro
studies that were used to develop this model, occurred on a time
scale of less than 100 h. This fast time-scale model is linked within
macrophages in our longer time-scale model, GranSim, that
represents approximately 1-year post-infection. This creates a
hybrid model that crosses space and time scales ranging from
intracellular to tissue and from minutes to months. The inclusion
of these intracellular dynamics calibrates the proportion of
activated T cells in GranSim to match T cell levels that we
identified previously in Figure S1 (21). Below we describe how
we linked these two model frameworks.

Linking Models
There is currently no standard way to link different models,
particularly models that are created with different formulations
(ODEs, ABMs, PDEs, etc.) (50). We connect the intracellular
antigen presentation scale model to the cellular/tissue scale
model, GranSim, in three ways. Figure 2 shows how the two
models are linked, and Table 1 shows two linking equations and
corresponding parameters for those processes.

1. MHCII transcription depends initially on IFN-g- derived from
CD4+ helper T cells binding to macrophages (50). Levels of
binding are thus controlled by the presence of T cells near a
macrophage. To link the ODEs and ABM (intracellular to
cellular), we determine this concentration by calculating the
number of T cells present in the neighborhood of a
macrophage at any given time. A neighborhood is defined as
a Moore neighborhood (nine grid squares) or the two-Moore
shell neighborhood (16 grid squares). Macrophages can
sample antigen from at least a two-Moore neighborhood
(see Table 1 for values and equations and calculations below).

2. The activation of T cells (CD4+ T helper cells) depends on the
presentation of Mtb peptide–MHCII complexes on
macrophage surface. The level of complexes seen on
macrophage surface depends on the concentration of Mtb
antigens present in the surrounding medium (50). Mtb
TABLE 1 | Equations and parameters for the new linking that are needed to combine the intracellular-scale model and GranSim.

Linking Equation description Equation

IFN-g Receptor Ligand Binding

Molar concentration of IFN-g in a Moore neighborhood of radius 2
around the macrophage (G)

(#. of g T cells in 1 Moore Neighborhood)·lIFN-g-MN1 + (#. of g T cells in Moore Shell Radius 2·lIFN-g-MN2)

Mtb Antigens

Molar concentration of Mtb lipid antigen in a Moore neighborhood
of radius 1 around the macrophage (A*)

(#. of bacteria in 1 Moore Neighborhood)·lMtb-MN1

Linking Parameter Parameter description Value

lIFN-g-MN1 Molar concentration of IFN-g in a 1 Moore neighborhood around a macrophage 2.0·10-9M
lIFN-g-MN2 Molar concentration of IFN-g in a Moore shell of radius 2 around a macrophage 5.7·10-10M
lMtb-MN1 Molar concentration of Mtb lipid antigen in a 1 Moore neighborhood around a

macrophage
4.5·10-8M

lMHC-bind Number of surface MHCII Mtb-peptide complexes required for binding T cells 1.2×102
January 2021 | Volume 11 | Art
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produces a variety of protein and glycolipid antigens.
Glycopeptidolipid antigen are some of the most persistent,
with only 1%–3% degradation after four days (51). To simulate
Mtb antigens, we use dead Mtb as a proxy (dead Mtb are
generated directly by macrophages killing them or indirectly
by cytotoxic T cells killing infectedmacrophages). We calculate
this concentration directly in GranSim by calculating how
many dead Mtb are present in the neighborhood of a
macrophage (see Table 1, and calculations below).

3. To analyze activation levels of T cells, we define how
macrophages interact with T cells at given time and space
points. A threshold number of Mtb peptide–MHCII on a
macrophage surface are needed to activate T cells, and we set
a binding threshold of 120 (52, 53). Only macrophages that
meet this threshold and are not chronically infected have an
ability to activate a T cell (this includes currently infected
macrophages and previously infected that cleared their
bacterial load). We connect the output of an ODE
representing the number of Mtb-MHCII complexes on the

surface of a macrophage (Table S1, variable M*
S ) to each

individual macrophage within GranSim. For a macrophage to
stimulate a T cell, it must be within a one-Moore
neighborhood of a macrophage that has a number of Mtb-
MHCII complexes that surpasses the binding threshold.
Linking Equation Calculations
First, we calculate the production of free, extracellular IFN-g.
We use the following translations to perform the calculation in
Table 1. IFN-g produced per T cell: 0.0001 U (54); IFN-g
molecular weight (mature dimer, biologically active): 34 kDa
(55); Volume of 1 grid cell: 8.0x10-12 L; Number of
compartments in 2-Moore shell of radius: 16; IFN-g U to mg:
2.x104 U = 1 mg (56). Therefore,

1) IFN-g produced/T cell: 1.5·1019 mol
2) IFN-g produced/T cell in one compartment: 1.8·10-8M
Thus, the Molar concentration of IFN-g in a 2-Moore

neighborhood (G), (where Tg is an IFN-g -producing T cell), is:
3) G = (#. of Tg)·2.0·10-9M + (#. of Tg) 5.7·10-10M
Similarly, we calculate production of extracellular Mtb

antigens: Mtb Antigen mature weight (approx., range 10–
40kDa): ~20 kDa (57, 58); Volume of 1 grid cell: 8.0x10-12 L;
Number of compartments in 1 Moore neighborhood: 9; Mtb
biomass: 1.96x10-13 g (52, 59); and Fraction of Mtb that are
lipids: 0.33 (59).

4) Approx. lipid antigens produced/dead bacteria:
3.2·10-18mol

5) Approx. lipid antigens produced/dead bacteria in one
compartment: 4.0·10-7M

Therefore, the Molar concentration of Mtb lipid antigen in a
1-Moore neighborhood is:

6) A* = (#. of bacteria)·4.5·10-8M

Parameter Estimation: Literature and
Uncertainty and Sensitivity Analysis
GranSim parameter values were estimated from literature
[described in detail in (33, 43, 44, 60–62)]. For the intracellular
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model, ODE parameter and initial condition values were also
estimated from the literature [Chang et al. (46). and shown again
in Tables S2 and S3]. Linking parameters are calculated as
shown above. If data were not available, we implemented
uncertainty analysis using a Latin hypercube sampling scheme
(LHS) [reviewed in (63, 64)]. We use LHS to sample and find
parameters for the ODEs that represent the dynamics within
the macrophages (intracellular) and also to calibrate GranSim
to experimental datasets. Extensive data on numbers of
macrophages, Mtb, and T cells were provided by the Flynn lab
as previously described (21, 33, 43, 49, 65). To narrow down
parameter ranges and mechanisms of interest, we identify critical
parameters that map to specific model mechanisms that impact
model outputs. To do this, we take a two-step process: we pair
LHS with Partial rank correlations (PRC) analysis (sensitivity),
which allows us to quantify the correlation of model outputs with
parameters, including those with non-linear relationships (63).
We do this by calculating partial rank correlation coefficients
(PRCCs) that are between -1 and 1 and indicate the strength of
the correlations. These are nonlinear correlations, so that is why
they are ranked. PRCCs p-values were corrected for multiple
testing using Bonferroni (66).

Mtb-Mediated Inhibition of Antigen
Presentation
Mtb may inhibit MHCII Mtb-antigen presentation within
macrophages by interfering with MHCII mRNA transcription,
antigen processing, MHCII maturation, and/or MHCII peptide
loading (30, 31, 46). To determine if these fast-time and short
physiological scale events manifested at the granuloma scale, we
tested the effects of inhibiting these four processes on MHCII
antigen-presentation on downstream T cell activation. To do
this, we examined a range of rates of down regulation of antigen
processing (Table S4) to be used with Michaelis–Menten
dynamics (Table S5), as done previously in (46).

T Cell Spatial Characteristics
Based on previous work, we have identified that the spatial
organization of granulomas can be a determinant in
granuloma outcomes (34). Thus, we separately explored the
spatial organization of granulomas and the role that may play
in reducing the number of Mtb-responsive T cells. To do this, we
use the combined ODE-ABM multi-scale model with no
inhibition of antigen-presentation processes. From these 500
simulations, 37 scenarios were removed as the bacterial
infection did not occur or did not generate T cells within the
first 50 days, leaving 463 simulated granulomas to be analyzed.
(Results using similar runs gave similar results.) We chose a
replicate run of GranSim that fit the median characteristics of the
463 GranSim simulations over the time scale of 200 days post
infection (Figure S2). These characteristics include: numbers of
macrophages, Mtb counts, proportion of activated T cells, and
average presentation of antigenic peptide–MHCII complexes on
macrophage surface (see example median runs chosen based on
these characteristics in Figure 3). We calculated minimum,
average, and maximum distance of immune cell populations
January 2021 | Volume 11 | Article 613638
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Millar et al. Limited T-Cell Activation in Mtb
based on their relation to the granuloma center of mass [as in
Renardy et al. (68)].

Modeling Recruitment of Mtb-Specific
Versus Non-Specific T Cells
All T cells in the model (three functional classes: IFN-g
-producing T cells (Tgammas), cytotoxic T cells (Tcyts), and
regulatory T cells (Tregs)) are recruited into GranSim as either
specific or non-specific T cells (62, 69). At each time step, at each
vascular source from where cells are recruited, T cell classes are
recruited as determined by the chemokine concentrations at each
vascular source. Three parameters (Tgam.probCognate,
Frontiers in Immunology | www.frontiersin.org 7
TCyt.probCognate and Treg.probCognate) determine the ratio
of Mtb-specific to non-specific T cells. Patankar et al. showed in
mice granulomas that 5%–20% of T cells are Mtb-specific (70).
Here, we varied the frequency of each Mtb-specific T cell class
from 1%-25% to capture a potential larger range occurring
within primates. Both specific and non-specific T cells enter
the grid in a Th0 state that requires further stimulation to fully
differentiate and perform effector function. Non-specific T cells
remain in a Th0 state in the granuloma throughout the
simulation and do not have the ability to kill Mtb. Both Mtb-
specific and non-specific T cells have the ability to move on the
grid and die from old age, or via TNF induced apoptosis.
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FIGURE 3 | Simulation output is consistent with NHP data. Time series plots showing the dynamics of both individual model outputs from the combined Multi-scale
model. Panels (A, B) shows the variables in the intracellular model over time, and Panel (C, D) show the time series of total populations of immune cells [shown together
with non-human primate (NHP) datasets from Wessler et al. (67)]. Panel (E) shows the CFU [shown together with NHP data sets from Wessler et al. (48)] and Panel (F) is
a time series snapshot at day 60 of the Multi-scale GranSim granuloma model, 2x2 mm scale. Cell types in Panel (F): Macrophages: resting (green), active (blue), infected
(orange), chronically infected (red); T cells: Mtb-specific (dark pink), non Mtb-specific (light pink); caseation (tan); extracellular bacteria (dark yellow).
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Macrophages with sufficiently bound surface MHCII receptors
(larger than the MHCII binding threshold) can activate Mtb-
specific T cells in their neighborhood.

Computer Simulations and Visualization
The 14 equation ODE model describing intracellular antigen
presentation dynamics is solved within each macrophage within
GranSim along with the new equation terms linking models for
each model time step. If the number of surface bound MHC II
receptors of a macrophage is at or above a threshold (parameter
MHCII Binding Threshold), then any specific Th0 cell in the 1-
neighborhood of a macrophage’s transitions from the Th0 state to
an active state. GranSim was implemented in C++ with Boost and
FFTw libraries. Partial differential equations describing diffusion
are solved using Alternating Direction Explicit method. MHCII
dynamic ODEs are solved using Runga-Kutta 4 method.
Simulations for parameter sweeps were run without graphical
visualization. The graphics visualization version was then used to
load saved simulation states and generate graphics images to
visually track granuloma formation. Computational model
simulations were performed on XSEDE’s Comet cluster and
NERSC’s Cori and Edison systems. For details on the system we
use see https://www.sdsc.edu/support/user_guides/comet.html.
RESULTS

Our goal is to study three key hypotheses explaining the
relatively low frequency of T cells producing cytokines in TB
granulomas. We test each hypothesis individually using both
temporal and spatial modeling and appropriate control studies.
In some instances, we have data that have been derived herein to
provide support for our predictions.
Frontiers in Immunology | www.frontiersin.org 8
Hypothesis 1: T Cells Are Down-Regulated
Directly by the Action of Mtb
To explore this hypothesis, we include the role of intracellular
dynamics of MHCII-mediated antigen presentation within
macrophages within our multi-scale model of granuloma
formation, GranSim. We then test four different types of
down-regulation by Mtb on antigen presentation individually
and combine to observe the effects on downstream T cell
activation. As a control, we implement no downregulation (as
in the GranSim model without the submodel in place).

We performed 500 simulations using a wide range of
biologically relevant parameters values (generated by LHS, see
Methods). Figure 3 shows outputs for both the intracellular scale
model and cellular/tissue scale model for different variables of
interest. Model dynamics agree with datasets derived from NHP
studies on granulomas and other in vitro studies for intracellular
dynamics (71–73). We also compared our model predictions to
GranSim without MHCII presentation dynamics to confirm our
model behaved accurately (positive control) (with values in
Table S5 set to 1, Figure S3). Lastly, we calculated the
numbers of Mtb-responsive T cells for 500 granulomas and
compared it with data derived from 50 granulomas from an
NHP study (Figure 4) (21).

MHC Self-Derived Peptides Increase T Cell
Activation When MHCII Peptide Loading Is Inhibited
We performed a sensitivity analysis on the intracellular-scale
model (without Mtb assisted downregulation of MHCII
presentation) and identified several parameters correlated with
MHCII-mediated antigen presentation (Figure S4). We found
that increasing Mtb antigen processing rates by macrophages
leads to increased levels of MHCII-Mtb presentation, but
that these effects waned by 75 days post infection (Figure S4).
A B

FIGURE 4 | Experimental and computational models both reveal low levels of Mtb-responsive cells producing interferon-gamma (IFN-g) within the granuloma. Panel
(A) shows the experimental proportion of T cells exhibiting an IFN-g response in non-human primates from Gideon et al. (21), from 50 granulomas derived from 12
non-human primates (NHPs). Panel (B) shows our simulated prediction of the proportion of IFN-g producing T cells in 500 simulated granulomas over the 28 weeks
course of infection grouped to match the NHP dataset.
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This matches general trends predicted in (46). We also found
that increases in Mtb antigen degradation or increases in
MHCII-Mtb antigen dissociation leads to decreased MHCII-
Mtb presentation on the surface of macrophages, also waning by
75 days post infection (Figure S4). At the 75 days post in
infection, Mtb levels within granulomas have leveled off, likely
leading to diminishing returns for macrophage MHCII-Mtb
presentation (Figure 3A). However, we did not identify
correlations of antigen presentation parameters with a critical
downstream effect, namely, levels of activated T cells within
simulated granulomas. Previously a number of labs had
identified different pathways in the antigen processing and
presentation of MHCII-peptides by macrophages that were
inhibited by Mtb (30, 31). Chang used the single cell model to
study how Mtb affects certain processes of MHCII presentation
and specifically studied Mtb interference of MHCII
transcription, MHCII maturation (CIITA translation rate),
antigen processing, and MHCII peptide loading (46). We
explored these same four processes within the linked multi-
scale model, where we tested a range for the maximum rate of
Mtb down-regulation of each of the processes, at saturating
bacterial levels, ranging from 25% to 100%.

Of the four processes that we studied for inhibition by Mtb,
we found that reducing MHCII peptide loading was the only
process that had a significant effect on T-cell activation levels
(Figure S5). When Mtb acts to down regulate MHC II peptide
loading, as the degradation rate of peptide-MHC complexes
increases, all T cell classes showed increased levels of
activation, but only after 100 days post infection (not shown,
p < 0.0005). At this point in the infection as Mtb levels plateau
(see Figure 3E, day 75), degrading peptide-MHC complexes may
help remove MHCII complexes loaded with host “self”-peptide.
Continually degrading these complexes may help cycle through
peptides quicker, making it more likely that MHCII are loaded
with Mtb-peptides. This cycling through of peptides may be the
only way to maintain a certain threshold of MHCII complexes
presenting Mtb when peptide loading is greatly inhibited and
Mtb levels have fallen. However, this contribution is small when
observed as a proportion of activated T cells (Figure S5). As a
control, we also performed a sensitivity analysis on Mtb-induced
downregulation of MHCII presentation for each of the processes,
varying down regulation from 1% to 100% (Figure S6). Any
significant correlations with T-cell activation were small and
transient, suggesting that these processes contribute very little.

Although previous wetlab and modeling studies showed that
mycobacteria significantly inhibit antigen presentation processes,
the focus of these in vitro studies was on less than 100 h (30, 31,
46). However, our results suggest that bacterial mechanisms alone
do not account for the observed low T-cell responsiveness levels of
cytokine production observed in NHPs at a granuloma scale (21).

Hypothesis 2: Spatial Organization of
Granulomas Affects the Ability of T Cells
to Reach Macrophages and Thus Be
Activated Via Antigen Presentation
We test a second hypothesis, namely that the spatial arrangement
of cells within granulomas may create insufficient numbers of
Frontiers in Immunology | www.frontiersin.org 9
interaction opportunities between macrophages and T cells. This
would imply that even if Mtb downregulation of processes is
important, the chances for impact are few. In other words,
granuloma spatial characteristics may contribute to low T cell
responsiveness (26).

To explore this idea, we used a two-pronged approach
analyzing both experimental and simulated granulomas to better
understand the spatial arrangements of immune cells. First, we
randomly selected four experimental immunohistochemistry
(IHC) images derived from four distinct NHP granulomas to
directly identify and quantify the spatial organization between T
cells and macrophages. We applied a novel approach using
Geographical Information Systems Technology (GIS) similar to
what we have done previously to analyze cell composition of
granulomas [see Methods and Pienaar et al. (74)]. Here we not
only identify the T cells and macrophage populations, but we
additionally quantified the interaction overlap between T cells and
macrophages, defined where these two cell boundaries intersect on
the IHC image. We found that T cell-macrophage interactions
occurred for, on average, only about 9.75% of the T cells identified
(median: 8.6%, StDev: 4.5%), for at least the four granuloma that
we examined (See Table 2).

Next, we used simulated granulomas and performed the same
analysis to predict spatial locations of interactions between T cells
and activated macrophages. For this, we simulated GranSim and
controlled for bacterial inhibition as a factor by removing all
possible Mtb-mediated down-regulation of MHCII presentation
processes. We performed 500 simulations of granulomas and ran
them out for 200 days post virtual infection. For each day during
the virtual infection, we calculated median counts of T cells, new
T-cell activation events, and numbers of distinct T cells that
interacted with at least one macrophage in each of the 1-day
intervals. Similar to the NHP granuloma T cell- macrophage
interactions (Figure 1), we observed a similar order of magnitude
difference between numbers of T cells and T cell-macrophage
interactions, as well as new T cell activation events (Figure 5).
This last feature is something we can uniquely track in GranSim.
Distinct T cells that interacted with at least one macrophage
occurred for only about 10% (with a range of 0%–22%, StDev:
4.4%) of all T cells identified for a given time point at 11-weeks
post virtual infection and slowly declined to about 5% at 25-weeks
post virtual infection (Figure S7). As a control, we compared
model predictions of T cells activation to GranSim with varying
‘flexibility of T-cell density’ as follows. We allowed the maximum
number of T cells that can fit within one grid compartment to
vary from 2 to 5, 2 being the default negative control (Figure S8).
Increasing the maximal allowable T cell density within a grid
space did increase the proportion of activated T cells, but resulted
in values that did not capture most of the data observed in the
NHP study (21).We also performed a sensitivity analysis on T cell
density over the same range (Figure S9). Increasing the density of
T cells is correlated with increasing T cell activation. However,
increasing T cell density did not result in higher Mtb clearance. As
T cell density increased, we saw a stabilizing effect on Mtb CFU
after day 50 (Figure S10). This is likely due to increased crowding
on the grid, where T cells can slip by, but larger macrophages
become stuck, making it more difficult to find and kill Mtb.
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The Majority of T Cells Are Not Being Stimulated
Secondly, we test that the majority of T cells are not being
stimulated. Both wetlab and computational studies to support
the idea that within granulomas, T cells are often not sufficiently
close to macrophages to become activated (32, 33). We can use
our simulations to determine how far each cell type is from the
center of a granuloma. For each day of the virtual infection, we
used GranSim to calculate median proportions of T cells found
within both the average and maximum distance of macrophages
from the granuloma center of mass [as in Renardy et al. (68)].
These numbers are compared with the proportion of activated T
cells (Figure 5B). Within our simulations, roughly a third of T
cells travel deep enough within the granuloma to have the
possibility of reaching activated macrophages. Of these, about
half made it past the average distance of T cell stimulating
macrophages from the granuloma center of mass, increasing
their chance of encountering a T cell stimulating macrophage
(Figure 5B).

To get a more detailed look at the simulated granulomas and
spatial distributions of cells, we extracted the coordinates of all
macrophage and T cell agents in our simulated granuloma (see
Methods). In Figure 6, the distribution of macrophages (Figure
6A) and T cells (Figure 6B) are drawn in relation to the
granuloma center of mass. The area shaded gray is the
Frontiers in Immunology | www.frontiersin.org 10
distribution of activated T cells. At the height of T cell
activation (occurring about 7-weeks post infection), almost all
activated T cells (Figure 6A, shaded gray) can be found within
the spatial region of macrophages that are able to stimulate T
cells. That is, very few activated T cells are found near activated
macrophages. This distribution of activated T cells can be
divided further, with two thirds residing within the average
distance of activated macrophages from the granuloma center
of mass. About 90% of the activated T cells are found within the
average Mtb-specific T cell distance from the granuloma center
of mass (Figure 6B). In general, the distribution of activated T
cells closely follows the distribution of activating macrophages.
Low T cell stimulation, taken together with limited T cell access
to macrophages and an observed increase in T cell activation by
increasing T cell density suggest that spatial mechanisms play a
major role in the observed low T-cell responsiveness levels of
cytokine production observed in NHPs at a granuloma scale.

Hypothesis 3: The Majority of T Cells
Within Granulomas Are Non-Mtb Specific
To test the hypothesis that the majority of T cells within
granulomas are non-Mtb Specific, we focus on the spatial
distribution of Mtb-specific T cells (Figure 6). Given previous
studies showing that T cells are recruited to macrophages
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FIGURE 5 | Simulated T cell/Macrophage Interactions in time Shows Spatial Analysis of Simulated Granulomas. Panel (A): Median count T cells over the course of
Mtb infection compared with the median count of distinct T cells that interact with macrophages and new T cell activations per time step. Panel (B): Proportion of T
cells found within the maximum boundary and average distance of antigen-presenting macrophages (measured from the granuloma center of mass) as compared
with the proportion of total activated T cells (all activated T cells are Mtb-specific). These distances are shown spatially in Figure 6.
TABLE 2 | Geographical Information Systems Technology (GIS) analysis identifies numbers of cells of two types, and numbers of contacts from four
immunohistochemistry (IHC) granulomas.

Granuloma CD3 CD11c CD3/CD11c Ratio Contacts to T cells

9714_30 4,969 9,876 491 0.098
17613_37 15,448 3,943 1,127 0.073
17613_51 8,612 4,496 1,397 0.162
20612_29 3,284 5,535 197 0.060
January 2021 |
For the four IHC images of granulomas analyzed in Figure 1, we used GIS to count the T Cells (CD3) and Macrophage (CD11c), cell distributions and their ratios. We also identified where
the two cell types intersected. Intersections are defined as cell boundaries that touched or overlapped on the IHC image.
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indiscriminately (36–38), we expanded upon our study of the
composition of Mtb-specific T cells within simulated
granulomas. We use our multi-scale model to determine the
proportion of Mtb-specific T cells within granulomas over the
course of infection as compared to non-specific T cells present by
comparing which frequencies match the dataset derived from
NHP. To do this, we varied the frequency of Mtb-specific T cell
classes from 1%-25% to capture a potential larger range
occurring within primates (70). For each day of virtual
infection, we used GranSim to calculate median, numbers, and
proportions of Mtb-specific T cells versus non-specific T cells
found within simulated granulomas (Figure 7). Within our
simulations, non-Mtb-specific T cells greatly outnumber Mtb-
Frontiers in Immunology | www.frontiersin.org 11
specific T cells (Figure 7A). The proportion of Mtb-specific T
cells peaks at around day 40 at about 20% (Figure 7A) and
declines to about 10% by 200 days post virtual infection.

Given the low number of Mtb-specific T cells within
granulomas, we looked at how these simulations matched with
NHP Mtb CFU data (Figure 7B). Highlighted in red are
simulations where the probability of Mtb-specific T-cell classes
recruited is allowed to exceed 10% (all other simulations are
gray). Allowing recruitment of a great portion of Mtb-specific T
cells results in the majority of granulomas sterilizing by day 100
(226/229 = 0.987). The red simulations (Figure 7B) also overlap
with relatively few of the NHP CFU data points. This suggests
that low levels of Mtb-specific T cells are what likely is present
A B

FIGURE 6 | Spatial analysis of granulomas showing distances between macrophages and T cells. Proportional distances of average maximum, and minimum
(A) activated macrophages presenting antigen or (B) Mtb-specific T cells from the granuloma center of mass (7-weeks post infection). Maximum and minimum
distances shown as solid circles, average distances show as dotted circles. Gray shaded areas encompass all activated Mtb-specific T cells present. Percent of all
activated T cells is shown between minimum and average, as well as average and maximum distances for both (A) activated macrophages presenting antigen and
(B) Mtb-specific T cells.
A B

FIGURE 7 | Varying levels of Mtb-specificity in granuloma T cells to match non-human primate (NHP) studies. Panel (A): The proportion of Mtb-specific T cells over
the course of virtual infection. Panel (B) shows the CFU [shown together with 1,994 NHP granulomas (black circles)]. Highlighted in red are simulations where the
probability of Mtb-specific T-cell classes recruited are allowed to exceed 10% (up to 25%). All other simulations are gray (1%–10%).
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within granuloma, leading to the observed NHP Mtb CFU
datasets (Figure 7B). Any further increases in levels of Mtb-
specific T cells within granulomas leads to sterilization of 99% of
all granulomas, which is not a typical outcome; more typically
around 50% (42). As a control, we also performed a sensitivity
analysis on Mtb-specific T cell proportions for each class of T
cells represented in GranSim, varying specificity from 1% to 25%
(Figure S9). The probability of IFN-g producing T cells being
Mtb-specific had the greatest effect on T cell activation and Mtb
clearance. When T cells were first recruited, they had a strong,
positive effect on the number and proportion of activated T cells.
By day 50, this shifted to a negative correlation, due to the small
numbers of activated T cells seen at this stage of infection.
Increasing Mtb-specific IFN-g producing T cells also increased
the clearance of Mtb, matching the sterilization observed in
Figure 7B.

Combining the 3 Hypotheses
We performed a sensitivity analysis, varying parameters for all
three hypotheses at the same time to search for combined effects,
using the previously specified parameter ranges (Figure S11). In
general, correlation patterns for these input parameters in
combination were similar to those seen when simulated
separately (Figures S6 and S9). One difference we observed is
that parameters controlling the proportion of Mtb-specific T
cells continued to have a positive effect on the number and
proportion of activated T cell past day 50. Together, these results
suggest that the proportion of Mtb-specific T cells influences the
observed low T-cell responsiveness levels of cytokine production
observed in NHPs at a granuloma scale and the other hypotheses
may help extend these effects over time.
DISCUSSION

Over 90% of Mtb infections in humans are well controlled and
asymptomatic, known as Latent TB infection (LTBI), indicating that
the immune response to Mtb, which is characterized by granuloma
formation, is relatively successful at containing infection.
Cynomolgus macaques also present with active or latent TB. As
the majority of granulomas in both latent and even active NHPs
eventually sterilize (42), this means that granulomas (on an
individual basis) have the ability to clear infection. It is surprising
that low T-cell activation levels through measuring IFN-g and other
cytokine responses have been observed within non-human primate
granulomas (21). There are a number of hypotheses as to why low
numbers of responsive T cells might be present in TB granulomas,
including T cell exhaustion, Mtb-mediated downregulation of
antigen presentation by macrophages, the spatial organization of
cells within granulomas and the presence of non-Mtb specific T
cells. We previously explored exhaustion; however, our results
indicate that it cannot explain the observed low levels (26).
Herein we explored the other three hypotheses as to why the
numbers of Mtb-specific T cells are low. First, we focused on
macrophages and their role in this outcome: We asked whether
Mtb was down-regulatingMHCII presentation of Mtb antigens and
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whether that reduced T cell activation. At the scale of the entire
granuloma, we did not see significant differences in MHCII
presentation of Mtb antigens by macrophages, with or without
Mtb down-regulating of MHCII presentation (Figure S5). Previous
work suggesting that inhibition byMtb was a key player in reducing
MHCII presentation were based on studies that spanned time scales
of 1-100 h, while granulomas survive for months to years (30, 31,
46). The dynamics observed on the scale of a few hours may be
washed out given the extended lifespan of macrophage and Mtb-
dynamics with granulomas. Further, even if large scale reductions in
antigen presentation are occurring, our further studies indicate that
there are insufficient interactions occurring between T cells and
macrophages for that to manifest as a key factor.

Although we did not see a significant decline in MHCII
presentation of Mtb antigens on the surface of macrophages at
any given time, we did observe that only 5-10% of macrophages
in our simulations were capable of activating T cells. In GranSim,
only macrophages that have contact with both IFN-g (via Stat 1)
and Mtb or TNF (via NFkB) can present Mtb antigens via
MHCII. Macrophages must continually receive those stimuli
until they surpass an MHCII surface level threshold required
to activate T cells (53). These activated macrophages were
spatially located mostly within the center of our simulated
granulomas, where they would have access to Mtb and Mtb
antigens. Since many macrophages did not receive stimuli
necessary for MHCII Mtb-antigen presentation, it is not
surprising that the inhibition of antigen presentation by Mtb
was minimal at the tissue scale. It is also possible that since our
model does not account for the effect of chemokines attracting T
cells to antigen presenting cells, and Mtb antigens do not include
secreted antigens, antigen concentration and T cell numbers
responsive to infection may be underestimated. However, in
previous work, we have examined this idea of APCs secreting
chemokines to attract T cells, and have shown that it leads to
tremendous crowding around APCs, limiting stimulation (75).

Since direct inhibition of antigen-presentation by Mtb was
insufficient to reduce T cell responsiveness, we explore the second
hypothesis of how granuloma spatial structure may affect T cell
activation. Our analysis of four HIC images from NHP
granulomas suggest that there are limited interactions between T
cells and CD11c+ macrophages within granulomas, and further
analysis with additional granulomas is warranted. Previous studies
have also shown that within granulomas, T cells are highly motile
but restricted by space, with movement occurring mostly at the
borders of the granuloma (32, 33, 37). In addition, the typical
structure for a granuloma is a lymphocytic cuff surrounding
macrophages and other cells including bacteria and more
centralized necrosis (76, 77). All activated macrophages within
our simulations are located near the center of granulomas and
most T cells are unable to reach them. In fact, only about 5% of all
T cells in GranSim interact with macrophages at any given time.
Activated T-cell life spans are short (on average 3 days), so large
numbers are unlikely sustainable. It should be noted that T cells
can have functions other than cytokine production, and our study
used only data on T cell production of IFN-g. Assessing other T
cell effector functions, such as other cytokines and cytotoxic
January 2021 | Volume 11 | Article 613638

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Millar et al. Limited T-Cell Activation in Mtb
potential, could result in an increase in numbers of T cells that are
responsive to the infection. Within this study, low T cell
stimulation, taken together with limited T cell access to
macrophages and an observed increase in T cell activation by
increasing T cell density suggest that the structural organization of
the granuloma seems to impact the T cells in a significant manner.
However, that does not rule out that other factors are playing a
simultaneous role. What we have shown is that the spatial effects
are necessary condition for this reduction in T cell responsiveness;
however, it could certainly hold true that these other factors are
also playing a role in augmenting those dynamics, albeit less
significant. Our combined analysis of all three hypotheses
simultaneously confirmed this.

Continuing with the idea of limited T cell-macrophage
interaction dynamics, we explore the issue of recruitment of
Mtb-specific T cells into granulomas. Previous studies have
shown that T cells localize to and are rapidly recruited into
mycobacterial granulomas in the absence of antigen recognition
(36–38). One study found around 5-20% of CD4+ T cells
recognize Mtb-infected macrophages by 19- to 22-weeks post
infection (70). Comparatively in GranSim, 10%–20% T cells are
Mtb-specific T cells 7- to 28-weeks post infection, with only Mtb-
specific T cells given activation capabilities. When these
percentages increase in GranSim, T cell activation goes up and
the vast majority of granulomas are sterilized. Given that such a
small percentage of T cells can recognize Mtb antigen, along with
the limited migration of T cells, these two factors combine to
make T-cell activation a rarer occurrence than one would expect.
As most granulomas can sterilize or greatly reduce bacterial
numbers, this level of T cell activation may generally be effective
in conjunction with other help from the immune response.
However, if specificity and location could be affected in a
direct way, the numbers of activated T cells would increase
and infection would likely be cleared within all granulomas. An
appropriate vaccine could lead to this outcome.
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