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Circular RNAs (circRNAs) are covalently closed RNAs that function in various

physiological and pathological processes. CircRNAs are widely involved in the

development of cardiovascular disease (CVD), one of the leading causes of morbidity

and mortality worldwide. CircHIPK3 is generated from the second exon of the HIPK3

gene, a corepressor of homeodomain transcription factors. As an exonic circRNA

(ecRNA), circHIPK3 is produced through intron-pairing driven circularization facilitated

by Alu elements. In the past 5 years, a growing number of studies have revealed

the multifunctional roles of circHIPK3 in different diseases, such as cancer and CVD.

CircHIPK3 mainly participates in CVD pathogenesis through interacting with miRNAs.

This paper summarizes the current literature on the biogenesis and functions of

circHIPK3, elucidates the role of circHIPK3 in different CVD patterns, and explores

future perspectives.

Keywords: circular RNAs, circHIPK3, cardiovascular disease, pathogenesis, underlying mechanisms

INTRODUCTION

Non-coding RNAs are a group of RNAs that do not encode proteins, such as tRNA, rRNA,
microRNA (miRNA), snRNAs, snoRNAs, long non-coding RNA (lncRNA), circRNA, etc. Several
recent studies on miRNAs and lncRNAs illustrate their biological functions (1–6). CircRNAs were
first discovered in 1976 in plant viruses (7), and were considered to have no function for a long
time (8–10). However, with the rapid development of research methods and technologies, it has
been proven that circRNAs have essential biological functions. They participate in the occurrence
and development of many diseases, such as cancer (11–15) and CVD (16–20). There are several
patterns of CVD, some of which could be fatal, such as myocardial infarction (MI), heart failure
(HF) and coronary heart disease (CAD).

CircRNAs function through four different mechanisms: acting as miRNA or RNA binding
protein (RBP) sponges (15, 21, 22), regulating the expression of their parental genes (23, 24), or
acting as templates for protein translation (13, 25). CircHIPK3 is one of the most studied circRNAs
in the past 5 years (26–30). CircHIPK3 was first determined to have biological functions in cancer
studies (26, 31). Subsequently, its role in CVD was also established (32–34). In this review, we
summarize the current knowledge on the biogenesis and underlying mechanisms of circHIPK3,
and review the role of circHIPK3 in CVD for the first time.

BIOGENESIS OF CIRCRNAS

CircRNAs are covalently circularized RNAs. CircRNAs are usually ∼500 nt in length (35) and
have high stability due to their covalently closed structures (15). CircRNAs are comprised of three
different types: ecRNAs (36), exon-intron circRNAs (EIciRNAs) (24) and circular intronic RNAs
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(ciRNAs) (23). EcRNAs can be transported into cytosol (21, 37),
whereas the other two types of circRNAs are confined to the
nucleus due to their intron sequences (21, 23, 37).

CircRNAs can be generated through four different
mechanisms. In the lariat-driven circularization model, only

ecRNAs are produced. The GU motif in the 5
′

end of introns
(splice donor) and the AG motif (splice acceptor) in the 3

′

end
of introns can form a lariat. The lariat will be spliced by the
splicesome and then ecRNAs will be made (38, 39) (Figure 1A).
In the intron-pairing driven circularization model, either
ecRNAs or EIciRNAs are generated. Intronic RNA base motifs,
such as Alu repeats, can pair with the reverse complementary
sequences to trigger direct cyclization. Circularization will cause
the formation of EIciRNAs (introns retained) or ecRNAs (introns
removed) (38) (Figure 1B). In RBP-mediated circularization,
either ecRNAs or EIciRNAs are generated (22, 40). RBPs, such
as muscleblind (MBL) proteins and Quaking (QKI) (22, 40), can
dimerize to form a bridge that will pull two flanking introns close
together, thereby stimulating backsplicing (Figure 1C). CiRNAs
are formed from a different mechanism. GU-rich sequences close
to the 5

′

splice site of introns can bind with C-rich sequences
close to the branch (23). The binding facilitates the formation of

FIGURE 1 | circRNA biogenesis. (A) Lariat-driven circularization model. The splice donor and acceptor can be bound to form exon-containing lariats. Further splicing

will generate exonic circRNAs (ecRNAs). (B) Intron pairing-driven circularization model. This model is facilitated by the complementary pairing of RNA base motifs

(e.g., Alu repeats) in introns. EcRNAs or Exon-intron circRNAs (EIciRNAs) can be formed by this model. (C) RNA binding protein (RBP)-driven model. RBPs can bind

with each other and serve as a bridge of pre-mRNAs. Bridging can facilitate the formation of ecRNAs or EIciRNAs. (D) Circular intronic RNA (ciRNA) is formed by

Fwith other sequences eliminated by spliceosomes.

ciRNAs with the other exonic and intronic sequences eliminated
by spliceosomes (Figure 1D).

BIOGENESIS AND MECHANISMS OF
ACTIONS OF CIRCHIPK3

CircHIPK3 is an exonic circRNA, generated from the second
exon of the homeodomain-interacting protein kinase 3 (HIPK3)
gene that is located on chromosome 11p13 of humans (26).
HIPK3 is one of the corepressors of homeodomain transcription
factors (41). CircHIPK3 is conserved among humans, mice and
other mammals (26, 42, 43).

CircHIPK3 is produced through intron-pairing driven
circularization with the help of Alu repeats (Figure 2) (26,
44). As an ecRNA, circHIPK3 can be transported into the
cytoplasm and is mostly cytoplasm-located. CircHIPK3 is widely
expressed in various tissues, such as the heart, lung and colon
(26), consistent with its roles in CVD (32, 43–46), cancers
(12, 27, 28, 47), and neuronal diseases (48, 49). CircHIPK3
mainly functions through sponging miRNAs (32, 34, 43, 44, 50).
CircHIPK3 can be wrapped in exosomes to facilitate cell-to-cell
communication (43, 51–53).
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FIGURE 2 | Biogenesis of circHIPK3 and the roles of circHIPK3 in CVD. CircHIPK3 is an ecRNA produced with the help of Alu repeats. CircHIPK3 is transported into

the cytoplasm and functions as an miRNA sponge. CircHIPK3 can suppress the pathogenesis of atherosclerosis, myocardial injury, and myocardial infarction.

CircHIPK3 can also promote the pathogenesis of cardiomyopathy, myocardial fibrosis, myocardial injury, myocardial dysfunction, and heart failure.

CIRCHIPK3 AND CVD

Atherosclerosis
Atherosclerosis is an immune-inflammatory vascular disease
that is usually chronic, and has a complex etiology (4, 54).
Atherosclerosis is the underlying pathophysiological mechanism
behind CAD and may lead to more severe heart diseases
such as HF and MI (4, 54). Lipid metabolism disorders
result in inflammatory signaling and significantly contribute to
atherogenesis (55). Excessive low-density lipoprotein cholesterol
(LDL-C) or oxidized low-density lipoprotein (ox-LDL) can
promote atherogenesis (56). Autophagy is closely related to
atherosclerosis, and its specific role is cell-type dependent (57).
For example, autophagy in endothelial cells (EC) and vascular
smooth muscle cells is protective against atherosclerosis (57).
Various non-coding RNAs are involved in atherosclerosis, such
as miRNAs (58, 59) and lncRNAs (60, 61). CircHIPK3 has also
been found to be involved in atherosclerosis (46).

Wei et al. constructed an atherosclerotic model in mice with
a high-fat diet (46). CircHIPK3 expression was decreased in

the atherosclerotic mice, and autophagy was suppressed. Human
umbilical vein endothelial cells (HUVECs) were treated with ox-

LDL to construct an in vitro (outside the living experimental

animals and in an artificial environment) atherosclerotic model.

It has been established that miRNAs play an important role in

EC autophagy (62, 63). CircHIPK3was downregulated in ox-LDL

treated HUVECs. Ox-LDL treatment could suppress autophagy.

However, overexpression of circHIPK3 reverses the inhibitory

effect of ox-LDL treatment on cell autophagy. CircHIPK3 could
induce cell autophagy and improve atherosclerotic symptoms in

an atherosclerotic cell model. Bioinformatics prediction analyses,

dual luciferase assays, and RNA pull-down assays have shown

that circHIPK3 could be a sponge of miR-190b. The effect of

circHIPK3 on autophagy and atherosclerosis was inhibited by

miR-190b overexpression (46). Further analyses showed that
autophagy-related protein 7 (ATG7) was a direct target of miR-
190b (64, 65). Previous studies have shown that deletion of ATGs
(i.e., ATG5 and ATG7) can aggravate atherosclerosis (63, 66, 67).
ATG7 downregulation reduced the autophagy level. CircHIPK3
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knockdown led to decreased expression of ATG7. Knockdown
of ATG7 and overexpression of miR-190b inhibited the function
of circHIPK3 in autophagy. Therefore, circHIPK3 plays an
antiatherosclerotic role by increasing autophagy via targeting the
miR-190b-ATG7 pathway (46).

Myocardial Infarction
MI is characterized by blockage of blood flow in coronary
arteries, usually caused by blood clots forming on atherosclerotic
plaques (20, 68). MI results in myocardial ischemia and damages
the heart muscle (20, 68). A variety of non-coding RNAs function
in the pathogenesis of MI (69–74). Recently, circHIPK3 has been
shown to participate in MI (43, 53).

Si et al. found that circHIPK3 could promote CMproliferation
and endothelial activation in the heart with MI through
different mechanisms (43). The expression levels of circHIPK3
were significantly higher in fetal and neonatal hearts than
in adult hearts, especially in the CMs of myocardial tissues.
Gata4, a transcription factor responsible for CM proliferation
and cardiac regeneration, could directly interact with the
promoter of circHIPK3. Knockdown of Gata4 resulted in
downregulation of circHIPK3. Overexpression of circHIPK3
promoted CM cell proliferation and suppressed apoptosis.
Moreover, circHIPK3 overexpression could increase human
coronary artery endothelial cell (HCAEC) proliferation and
promote HCAEC tube formation and migration, implying a
role of circHIPK3 in maintaining HCAEC function (43). In
MI adult mice model, overexpression of circHIPK3 in the peri-
infarcted area activates CM mitosis 14 days after MI. These
findings suggest that circHIPK3 promotes CM regeneration.
Furthermore, overexpression of circHIPK3 in the infarcted zone
of MI mouse hearts could promote angiogenesis, reduce the
scar size, and markedly elevate the myocardial perfusion score
and cardiac pumping capacity. In P0 neonatal mouse hearts
with MI, circHIPK3 knockdown significantly decreased the
cardiac pumping capacity and increased the scar area (43).
CircHIPK3 knockdown in the infarcted heart of neonatal MI
mice reduced the proliferation and promoted the apoptosis of
CMs. All of these results demonstrate that circHIPK3 could
promote cardiac regeneration and improve cardiac function after
MI. Subsequent experiments found that circHIPK3 could bind
to miR-133a (a miRNA essential for heart development and
protection) in HCAECs (43). MiR-133a was found to interact
directly with connective tissue growth factor (CTGF), a growth
factor involved in angiogenesis (75, 76). Overexpression of
circHIPK3 significantly increased the level of CTGF, whereas
miR-133a mimics attenuated this effect. In mouse hearts
with MI, miR-133a overexpression significantly destroyed the
improvement effect on angiogenesis induced by circHIPK3.
These results suggest a regulatory role of the circHIPK3-miR-
133a-CTGF axis in HCAEC function and angiogenesis. However,
in CMs, circHIPK3 did not act as a miRNA sponge (43). RNA-
Protein Interaction Prediction (RPISeq) and western blotting
confirmed the interaction between circHIPK3 and Notch1
Intracellular Domain (N1ICD) protein, an important regulator
of CM proliferation (77, 78). CircHIPK3 promoted N1ICD
acetylation and elevated N1ICD stability, thereby preventing its

degradation. CircHIPK3 knockdown reduced the level of N1ICD
and inhibited CM proliferation (43). These findings indicate
that circHIPK3 could promote CM proliferation by modulating
N1ICD stability (43). In conclusion, circHIPK3 could activate
endothelial cells through sponging miR-133a and promote CM
proliferation by regulating N1ICD protein modification in MI
hearts, suggesting that circHIPK3 may be a novel therapeutic
target for the prevention of heart failure post-MI (43).

Wang et al. reported a role of exosomal circHIPK3 released
from hypoxia-induced CMs in the regulation of cardiac
angiogenesis after MI (53). Hypoxic exosomes (HPC-exos)
(circHIPK3) released from CMs were delivered to the border
area of MI. After 4 weeks, MI mice were found to have elevated
cardiac pumping capacity and increased myocardial vascular
density in the infarcted region. HPC-exos (circHIPK3) treatment
relieved their symptoms of cardiac fibrosis. Under oxidative
conditions, HPC-exos (circHIPK3) could promote angiogenesis
by facilitating the migration and proliferation of cardiac
endothelial cells. In addition, HPC-exos (circHIPK3) could
induce tube formation. Hydrogen peroxide treatment decreased
the expression of circHIPK3, whereas HPC-exo (circHIPK3)
pretreatment significantly rescued the circHIPK3 level. In cardiac
endothelial cells subjected to oxidative stress, overexpression of
circHIPK3 in HPC-exos remarkably enhanced cell proliferation
and migration ability. circHIPK3 was validated to bind to miR-
29, which directly targets vascular endothelial growth factor
A (VEGFA) (53), an angiogenesis-related factor (79). MiR-29a
could significantly suppress the proliferation and migration of
cardiac endothelial cells, inhibit tube formation, and decrease
the number of branch points by targeting VEGFA (53). MiR-29a
overexpression in cardiac endothelial cells could partly inhibit the
HPC-exo-circHIPK3-induced promotion of tube formation and
cell proliferation (53). In summary, HPC-exos (circHIPK3) plays
a cardioprotective role by promoting angiogenesis and limiting
the infarct size. CircHIPK3 can maintain the cardiac endothelial
cell function post-MI via the miR-29a-VEGFA axis (53).

Ischemia–Reperfusion Injury
Myocardial injury could have different etiology, such as HF,
MI, and ischemia–reperfusion (I/R) (20). As a heart enriched
circRNA, circHIPK3 has been found to be relevant to I/R injury
caused by oxidative stress (50).

Several factors could contribute to I/R injury, including
microcirculatory dysfunction and oxidative stress (50, 80).
Cardiac microvascular endothelial cells (CMVECs) play a
critical role in microcirculation and regulate cardiac function
(81, 82). Exosomes are extracellular vesicles that participate in
microcirculation. Exosomes usually function by transporting
small bioactive molecules, including non-coding RNAs.
Exosomes can be released from cardiomyocytes (CMs) under
ischemic conditions (83). Wang et al. demonstrated that
circHIPK3 could be packaged in exosomes (50). CMs treated
with hypoxia secrete exosomes containing circHIPK3, and
the exosomes are transported to CMVECs. CircHIPK3 is
upregulated both in HPC-exosand in the CMVECs treated
with HPC-exos. In contrast, circHIPK3 levels are significantly
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decreased in CMVECs pretreated with hydrogen peroxide. HPC-
exos (containing circHIPK3) treatment could help CMVECs
resist oxidative stress and rescue the levels of circHIPK3 in
hydrogen peroxide-treated CMVECs, suggesting that circHIPK3
might protect CMVECs from oxidative damage. Luciferase
reporter assays, AGO2 RNA immunoprecipitation (RIP), and
FISH assays verified that circHIPK3 could interact with miR-29a.
MiR-29a overexpression induced apoptosis and CMVEC injury,
whereas downregulation of miR-29a protected CMVECs from
oxidative stress injury and apoptosis. Further analyses showed
that miR-29a could target insulin-like growth factor-1 (IGF-1),
a multifunctional protein that inhibits apoptosis (84, 85).
Upregulation of circHIPK3 in HPC-exos could increase the
level of IGF-1 in CMVECs subjected to oxidative conditions
by inhibiting the activity of miR-29a, thereby rescuing the
dysfunction of CMVECs (50). In conclusion, circHIPK3
enclosed in HPC-exos might play a crucial role in CMVECs
under oxidative stress via the miR-29a-IGF-1 axis to facilitate the
repair of the damaged function of CMVECs.

Bai et al. illustrated the promoting role of circHIPK3 in I/R
injury (32). An in vitro I/R injury model was induced by oxygen
and glucose deprivation (OGD) and reperfusion (OGD/R)
in human CM (HCM) cells. CircHIPK3 was upregulated in
HCM cells with I/R injury. CCK-8 assays and flow cytometry
revealed the suppressive effect of circHIPK3 on human CM cell
proliferation and its promoting effect on apoptosis. Subsequent
experiments showed that circHIPK3 could aggravate myocardial
I/R by targeting miR-124-3p. Bax and Bcl-2, two apoptosis-
related proteins (86), were found to have a dynamic expression
in HCM cells along with the altered expression of circHIPK3
and miRNA-124-3p (32). However, the detailed underlying
mechanisms are still unknown.

Cardiomyopathy
Cardiomyopathy is a disease that could lead to HF due to an
impaired ability of the heart to pump blood (87, 88). Due to
different etiologies, there are different types of cardiomyopathy,
such as hypertrophic cardiomyopathy (cardiac hypertrophy,
blood flow blocked by stretched, and thickened heart muscles),
dilated cardiomyopathy (loss of pumping power due to
weakened heart muscles), ischemic cardiomyopathy (long-term
myocardial ischemia), and diabetic cardiomyopathy (structural
and functional abnormalities of the myocardium in diabetic
patients). CircRNAs have been demonstrated to play critical roles
in the pathogenesis of cardiomyopathy (20, 89, 90). Researchers
have illuminated the function of circHIPK3 in hypertrophic
cardiomyopathy (91) and diabetic cardiomyopathy (92).

In hypertrophic cardiomyopathy, the blood flow is decreased
or blocked as the heart muscle become stretched and thick. Xu
et al. reported that circHIPK3 expression was increased in the
cardiac tissue of mice with cardiac hypertrophy (91). Knockdown
of circHIPK3 alleviated cardiac hypertrophy symptoms both in
vivo (animal models) and in vitro, indicating the promoting effect
of circHIPK3 on cardiac hypertrophy. Further analyses showed
that circHIPK3 could bind to miR-185-3p. Overexpression of
circHIPK3 significantly reduced the level of miR-185-3p, while
silencing of circHIPK3 elevated the expression of miR-185-3p.

Calcium sensing receptor (CaSR) was the downstream target
of miR-185-3p. CaSR has been shown to participate in cardiac
physiology and pathophysiology (93–95). CircHIPK3 silencing
resulted in a reduced level of CaSR, while overexpression of CaSR
reversed the antihypertrophic effect of circHIPK3 silencing (91).
Therefore, knockdown of circHIPK3 could inhibit hypertrophic
cardiomyopathy through the miR-185-3p-CaSR axis (91).

As a serious complication of diabetes, diabetic
cardiomyopathy might cause myocardial fibrosis, ventricular
remodeling, and cardiac dysfunction (96, 97). Wang et al.
elucidated the role of circHIPK3 in the pathogenesis of
myocardial fibrosis in diabetic cardiomyopathy (92). CircHIPK3
was stably and highly expressed in the cytoplasm of cardiac
fibroblasts (CFs). Treatment with high glucose concentrations
increased the expression of circHIPK3 in CFs. In diabetic
mice, circHIPK3 levels were elevated in the myocardium.
Knockdown of circHIPK3 suppressed myocardial fibrosis and
cardiac hypertrophy in diabetic mice. Left ventricular systolic
function was impaired in diabetic mice, but could be improved
by circHIPK3 silencing. Moreover, circHIPK3 silencing reduced
the levels of fibrosis-associated proteins. CircHIPK3 was
upregulated in CFs treated with angiotensin (Ang) II, which
can induce the fibrotic phenotype (98). CircHIPK3 silencing
repressed cell proliferation induced by Ang II. Bioinformatics
prediction, dual luciferase reporter assays, and AGO2 RIP assays
showed that circHIPK3 could target miR-29b-3p. Collagen type
I alpha 1 (COL1A1) and collagen type III alpha 1 (COL3A1)
were shown to be direct downstream targets of miR-29b-
3p. Overexpression of circHIPK3 suppressed the inhibitory
activity of miR-29b-3p on COL1A1 and COL3A1 (92). In
general, circHIPK3 could promote myocardial fibrosis during
diabetic cardiomyopathy by upregulating COL1A1/COL3A1 via
suppressing miR-29b-3p (92).

Myocardial Fibrosis
Myocardial fibrosis is a pathological process of CVD (20). In this
process, CFs are activated to proliferate and differentiate
into myofibroblasts (99). Then, numerous non-beating
myofibroblasts replace the functional myocardium, resulting in
myocardial dysfunction (99). CircHIPK3 has been identified to
be abundantly expressed in CFs and to function in myocardial
fibrosis (34, 44).

Ni et al. reported increased levels of circHIPK3 in Ang
II-treated CFs and heart tissues (44). Silencing of circHIPK3
suppressed Ang II-induced CF proliferation and migration. RIP
assays, bioinformatics analyses, and dual luciferase reporter
assays were performed. The results demonstrated that circHIPK3
could bind to miR-29b-3p at two binding sites (44). MiR-29b-3p
was also shown to interact with α-smooth muscle actin (α-SMA)
and the COL1A1 and COL3A1 proteins, which are markers of
myofibroblasts (100, 101). MiR-29b-3p overexpression inhibited
CF cell migration and reduced the protein expression of α-
SMA, COL1A1, and COL3A1 protein. In summary, circHIPK3
might stimulate the progression of cardiac fibrosis and attenuate
diastolic function by sponging miR-29b-3p (44).

Liu et al. illuminated the role of circHIPK3 in cardiac
fibrosis under hypoxia (34). The expression of circHIPK3 was
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significantly increased in CFs treated with hypoxia. CircHIPK3
could strongly promote the proliferation, migration, and
phenotypic switching of CFs under hypoxia. Further analyses
indicated that circHIPK3 could sponge miR-152-3p which might
inhibit CF proliferation and cause phenotypic changes. MiR-152-
3pwas found to interact with transforming growth factor β (TGF-
β2). Downregulation of circHIPK3 could result in decreased
levels of TGF-β2 by upregulating miR-152-3p (34). Therefore,
circHIPK3 might participate in the development of cardiac
fibrosis through the miR-152-3p-TGF-β2 axis (34).

Heart Failure
Heart failure (HF) is a serious cardiac disease with symptoms
resulting from a structural and functional cardiac abnormality
(102). The clinical symptoms are accompanied by increased
natriuretic peptide levels or objective diagnostic evidence
(imaging or hemodynamic measurement) of cardiogenic
pulmonary or systemic congestion (102). Severe HF can
lead to death, and therefore, HF should be detected
and treated as early as possible. CircHIPK3 has been
identified to enhance the effect of adrenaline in treating
HF (103).

β-blocker is an efficient intervention drug for HF and has
been found to function through blocking the activation of the
β-adrenergic receptor (β-AR) (104). β-AR can improve cardiac
function in the short term, but it increases the mortality rate
in the long term (104). Calcium plays an important role in
HF (105, 106). Deng et al. found that the level of circHIPK3
was remarkably increased in mouse hearts with HF post-MI
(103). Bioinformatics analyses showed that circHIPK3 might
participate in adrenergic signaling or the calcium pathway.
CircHIPK3 overexpression increased the calcium concentration
in cytoplasm, whereas the downregulation of circHIPK3 reduced
the calcium concentration. Further analyses revealed that
circHIPK3 could interact with miR-17-3p to regulate the calcium
distribution. Adenylated cyclase type 6 (ADCY6), an isoform of
the calcium-inhibited family (107), was shown to be a target of
miR-17-3p. Overexpression of circHIPK3 upregulated the level
of ADCY6. This effect could be suppressed by miR-17-3p. In
vitro studies of neonatal mouse CMs indicated that circHIPK3
might function through the miR-17-3p-ADCY6 axis. Adrenaline
has been shown to upregulate the level of circHIPK3 through
cAMP responsive element-binding protein 1 (CREB1) (108), a
key transcription factor that can be activated by various growth
factors and stress signals (108). Downregulation of circHIPK3
in vivo alleviated cardiac fibrosis and heart remodeling post-MI,
thereby maintaining heart function (103). Therefore, circHIPK3
could assist the function of adrenaline in cardiomyocytes via the
miR-17-3p-ADCY6 axis.

Myocardial Dysfunction Induced by
Myocarditis
Myocardial dysfunction is a typical type of cardiac dysfunction
that results in the proliferation of inflammatory lesions in
the myocardium (109). There are several causes of myocardial
dysfunction, such as infectious pathogens and toxic and
hypersensitivity reactions (110, 111). circHIPK3 has been shown

to play a role in regulating myocardial dysfunction caused by
myocarditis (112).

Fan et al. found that knockdown of circHIPK3 could
elevate heart rate and left ventricle ejection fraction, and
significantly reduce the expression of heart damage markers,
demonstrating that knockdown of circHIPK3 can repress heart
damage and inhibit CM apoptosis (112). In addition, knockdown
of circHIPK3 also effectively attenuated oxidative stress and
inflammation in vivo. The level of circHIPK3 was significantly
increased when exposed to lipopolysaccharide (LPS) in vivo
and in vitro. LPS can induce apoptosis, inflammatory events
and oxidative damage, resulting in serious tissue damage.
Knockdown of circHIPK3 partly reversed these damaging effects
and protected the myocardium. In general, the downregulation
of circHIPK3 could effectively ameliorate the symptoms of LPS-
induced myocarditis (112).

The result of this article is contrary to that of Wang
et al. and Si et al. on the effect of circHIPK3 in cardiac
dysfunction (43, 50). We speculate that the contradicting
results may be due to differences in the methods and
sample sizes.

CONCLUDING REMARKS

CircHIPK3 is an ecRNA that is conserved among many species.
CircHIPK3 is multifunctional; it has been shown to participate
in various physiological and pathological processes. CircHIPK3
has several characteristics, including high conservation, high
stability, extracellular secretion ability and dynamic expression
under different physiological and pathological conditions. In
the past 5 years, many studies on the role of circHIPK3
in various diseases have been reported. CircHIPK3 has
been demonstrated to participate in the occurrence and
development of CVD (Table 1). The sponging of miRNAs is the
primary mechanism of action of circHIPK3. The circHIPK3-
miRNA-protein signaling pathway allows circHIPK3 to function
in the pathogenesis of different CVD patterns via various
miRNA-protein axes (Figure 2). Therefore, circHIPK3 could
have clinical applications in the diagnosis and treatment
of CVD.

However, several gaps in knowledge and limitations should be
addressed. First, the sample sizes in most reports were relatively
small. The insufficient samples might have led to inaccurate
results, which could explain the conflicting findings among
studies. Therefore, further studies with a larger sample size
are needed. Second, there has been substantial research on
circHIPK3, but the underlying mechanisms of circHIPK3 in
many diseases are still unclear. Therefore, more investigation
and efforts should be made to unveil the details of the
mechanisms. Third, the existing forms of circHIPK3 in different
pathological processes need to be explored. CircRNAs can
exist as free molecules or be confined inside extracellular
vesicles (e.g., exosomes), which would definitely affect
their function.

In summary, circHIPK3 is widely involved in the
development of CVD. It functions through sponging
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TABLE 1 | The mechanisms of circHIPK3 in CVD.

CVD Subjects Expression Regulatory Mechanism Effect References

Atherosclerosis Atherosclerosis mouse Downregulated circHIPK3-miR-190b-ATG7 Suppression (46)

Myocardial infarction MI mouse, HCAEC, CMs – Gata4-circHIPK3-miR-133a-CTGF Suppression (43)

circHIPK3-N1ICD

MI mouse, cardiac endothelial cells Downregulated circHIPK3-miR-29a-VEGFA Suppression (53)

Ischemia-reperfusion injury Hypoxia treated-CMVEC Downregulated circHIPK3-miR-29a-IGF-1 Suppression (50)

HCM cells with I/R injury Upregulated circHIPK3-miR-124-3p–?–Bax/Bcl-2 Promotion (32)

Cardiomyopathy Hypertrophic cardiomyopathy mouse Upregulated circHIPK3-miR-185-3p-CaSR Promotion (91)

Diabetic cardiomyopathy mouse, CFs Upregulated circHIPK3-miR-29b-3p-

COL1A1/COL3A1

Promotion (92)

Myocardial fibrosis CFs and heart tissues Upregulated circHIPK3-miR-29b-3p-α-

SMA/COL1A1/COL3A1

Promotion (44)

CFs under hypoxia Upregulated circHIPK3- miR-152-3p-TGFβ2 Promotion (34)

Heart failure Mouse heart with HF post MI Upregulated circHIPK3-miR-17-3p-ADCY6 Promotion (103)

Myocardial dysfunction induced

by myocarditis

CMs Upregulated – Promotion (112)

miRNAs. The current findings suggest potential clinical
uses of cirHIPK3 in the prognosis and treatment
of CVDs.
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